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DENSITY CONVERGENCE IN THE BREUER-MAJOR THEOREM FOR GAUSSIAN STATIONARY SEQUENCES

Consider a Gaussian stationary sequence with unit variance X = {X k ; k ∈ N ∪ {0}}. Assume that the central limit theorem holds for a weighted sum of the form

, where f designates a finite sum of Hermite polynomials. Then we prove that the uniform convergence of the density of V n towards the standard Gaussian density also holds true, under a mild additional assumption involving the causal representation of X.

Introduction

Let X = {X k ; k ∈ N∪{0}} be a centered Gaussian stationary sequence with unit variance. For all v ∈ Z, we set ρ(v) = E[X 0 X |v| ]. Therefore ρ(0) = 1 and |ρ(v)| ≤ 1 for all v. Let γ be the standard Gaussian probability measure and f ∈ L 2 (γ) be a fixed deterministic function such that E[f (X 1 )] = 0. We expand f in the orthonormal basis of Hermite polynomials {H k ; k ≥ 0}, which are more specifically defined in Section 2.2. In particular, if f has Hermite rank d ≥ 1, it admits the following Hermite expansion:

f (x) = ∞ j=d a j H j (x), with a d = 0. Define V n = 1 √ n n-1 k=0 f (X k ).
Then the celebrated Breuer-Major Theorem (see [START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF] or Theorem 7.2.4 in [START_REF] Nourdin | Normal Approximations using Malliavin Calculus: from Stein's Method to the Universality[END_REF]) can be written as follows:

Theorem 1.1. Suppose that v∈Z |ρ(v)| d < ∞ and set σ 2 = ∞ j=d j!a 2 j v∈Z ρ(v) j , which is assumed to be in (0, ∞). Then the convergence:

V n Law --→ N (0, σ 2 ) (1)
holds true as n tends to infinity.

We shall be in fact interested in a particular case of Theorem 1.1 for finite linear combinations of Hermite polynomials, which is stated here for convenience: Corollary 1.2. Consider 2 ≤ d ≤ q < ∞ and a family of real numbers {a j ; j = d, . . . , q}. Let H j be the jth order Hermite polynomial, and assume that σ 2 ∈ (0, ∞), where σ 2 ≡ q j=d j!a 2 j v∈Z ρ(v) j . Set

V d,q n = 1 √ n n-1 k=0 q j=d a j H j (X k ). (2) 
Then V d,q n Law --→ N (0, σ 2 ) as n tends to infinity. In particular, we have:

lim n→0 E V d,q n 4 = 3σ 4 . (3) 
Remark 1.3. The relation between Gaussian convergence in law for sequences in a fixed Wiener chaos and behavior of the fourth moment has been extensively studied since the seminal paper [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF]. We will need only a small part of the information available on the topic, such as relation [START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF].

Due to its importance, Breuer-Major theorem has been extended and refined in several directions. Important generalizations can be found in Arcones [START_REF] Arcones | Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors[END_REF] (multidimensional case), Chambers and Slud [START_REF] Chambers | Central limit theorems for non-linear functionals of stationary Gaussian processes[END_REF] and Giraitis and Surgailis [START_REF] Giriatis | CLT and other limit theorems for functionals of Gaussian processes[END_REF]. A proof of Theorem 1.1 using a combination of Stein's method with Malliavin calculus was given by Nourdin, Peccati and Podolskij in [START_REF] Nourdin | Quantitative Breuer-Major theorems[END_REF], where one can find explicit bounds in the total variation and Wasserstein distances. We refer the reader to the monograph by Nourdin and Peccati [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] for a more detailed account on this topic.

We shall mainly be concerned here by convergences of densities, and here again the relationship between fourth moment behavior and various type of convergences of random variables in a fixed Wiener chaos have been thoroughly studied in the recent past. The interested reader is referred to [START_REF] Nourdin | Normal Approximations using Malliavin Calculus: from Stein's Method to the Universality[END_REF] for further details, but we will use here the following recent criterion (see [START_REF] Nourdin | Fisher Information and the Fourth Moment Theorem[END_REF]Corollary 1.2] and [START_REF] Hu | Convergence of densities of some functionals of Gaussian processes[END_REF]Corollary 4.6]).

Theorem 1.4. Let {F n ; n ∈ N} be a sequence of random variables belonging to a fixed chaos H q with q ≥ 2. Suppose E[F 2 n ] = 1 and lim n→∞ E[F 4 n ] = 3. Let p Fn be the density of the random variable F n and let φ(x) = (2π) -1/2 exp(-|x| 2 /2) be the density of the standard Gaussian distribution on R.

(i) Suppose that for some ǫ > 0,

sup n E DF n -4-ε < ∞.
Then, there exists a constant c such that for all n ≥ 1,

sup x∈R |p Fn (x) -φ(x)| ≤ c E[F 4 n ] -3.
(ii) Suppose that for all p ≥ 1,

sup n E DF n -p < ∞.
Then, for any m ≥ 0, there exists a constant c m such that for all n ≥ 1,

sup x∈R |p (m) Fn (x) -φ (m) (x)| ≤ c m E[F 4 n ] -3.
The goal of the current paper is to apply the criterion given by Theorem 1.4 in order to get convergence of density in the landmark of Breuer-Major theorem. In order to do this we need a uniform estimate on the negative moments of the Malliavin derivative of the sequence, and this is the contents of our main result.

Theorem 1.5. Let X be a Gaussian stationary sequence whose spectral density f ρ satisfies

f ρ ∈ L 1/2 ([-π, π]) and log(f ρ ) ∈ L 1 ([-π, π]) (see the hypothesis 2.
1 and examples in the next section). Let V d,q n be the random variable defined by (2), and assume the hypothesis of Corollary 1.2 to be satisfied. Then for any p ≥ 1, there exists n 0 such that

sup n≥n 0 E DV d,q n -p < ∞. (4) 
In the case of a fixed Wiener chaos we can obtain the following consequence.

Corollary 1.6. Under the conditions of Theorem 1.5, if q = d, and we define

F n = V d,d n /σ n , where σ 2 n = E[(V d,d n ) 2 ],
then, for all m ≥ 0 there exists an n 0 (depending on m) such that sup

n≥n 0 sup x∈R |p (m) Fn (x) -φ (m) (x)| ≤ c m E[F 4 n ] -3.
In the case q = d, Theorem 1.4 cannot be applied. In the reference [START_REF] Hu | Convergence of densities of some functionals of Gaussian processes[END_REF] one can find results on the uniform convergence of density for general random variables similar to those stated in Theorem 1.4, but they require a uniform lower bound for the negative moments of the random variable | DF n , -DL -1 F n H |, and our approach does not seem to work in this case because it is not clear how to express DF n , -DL -1 F n H as a sum of squares. Nevertheless, condition (4) allows us to derive the uniform convergence of the densities and their derivatives from a general result proved below (see Proposition 2.6) although in this case we have no information about the rate of convergence. Corollary 1.7. Under the conditions of Theorem 1.5, if we define F n = V d,q n /σ n , where

σ 2 n = E[(V d,q n ) 2 ],
then, for all m ≥ 0 we have lim

n→∞ sup x∈R |p (m) Fn (x) -φ (m) x)| = 0.
Notice that a particular case of Theorem 1.5 has been established in [START_REF] Nourdin | Fisher Information and the Fourth Moment Theorem[END_REF], for q = 2 and X k = B k+1 -B k for a fractional Brownian motion B with Hurst parameter H ∈ (0, 1). The proof of the existence of negative moments for DF n there is based on the Volterra representation of B, which leads to long computations. In comparison our current Theorem 1.5 is more general, since it is valid for a wide class of Gaussian stationary sequences. Its proof is also significantly simplified. These are achieved by the introduction of two new ingredients in the proof, namely:

• A general formula to compute conditional expectations for random variables of the form H q (X k ). • Related to the previous item, we heavily resort to the causal representation of X k , which is particularly convenient in order to compute conditional expectations.

Here is how our paper is structured: we give some preliminary results concerning Gaussian stationary sequences and related Malliavin calculus in Section 2. We then prove our main Theorem 1.5 in Section 3.

Preliminaries

This section is devoted to some preliminaries on causal or moving average representations for Gaussian stationary sequences, as well as Malliavin calculus tools which will be used in the sequel.

2.1. Moving average representation. The classical results on time series presented here are borrowed from [START_REF] Beran | Statistics for long-memory processes[END_REF][START_REF] Brockwell | Time series: theory and methods[END_REF], to which we refer for further details. Start from our Gaussian stationary sequence {X k ; k ∈ N ∪ {0}} with covariance function ρ. We will work under the following assumptions: Hypothesis 2.1. We suppose that ρ admits a spectral density called f ρ , defined by

f ρ (λ) = 1 2π k∈Z ρ(k) e ıkλ , λ ∈ [-π, π]. (5) 
We further assume that

f ρ ∈ L 1/2 ([-π, π]) and log(f ρ ) ∈ L 1 ([-π, π]). (6) 
Notice that the condition log(f

ρ ) ∈ L 1 ([-π, π]
) is referred to as purely nondeterministic property in the literature.

The interest of dealing with purely nondeterministic sequences is that they admit a socalled causal representation which is particularly convenient for conditional expectation computations. Let us state a result in this direction, which is taken from [4, Chapter 5]. Proposition 2.2. Let X be a Gaussian stationary sequence satisfying Hypothesis 2.1. Then for each k ∈ N ∪ {0} the random variable X k can be decomposed as

X k = j≥0 ψ j w k-j , (7) 
where (w k ) k∈Z is a discrete Gaussian white noise and the coefficients ψ j are deterministic. With a slight abuse of notation, extend the sequence ψ to (ψ j ) j∈Z by setting ψ -j = 0 for j ≥ 0. Then one can choose ψ such that it enjoys the following properties:

(i) The sequence ψ admits a spectral density f ψ such that

f ψ = f 1/2 ρ 2π . (ii) In particular, ψ 0 = 1 2π π -π f 1/2 ρ (λ) dλ and ψ 0 > 0. (iii) For all k 1 , k 2 ∈ N we have ρ(k 1 -k 2 ) = k 1 ∧k 2 l=-∞ ψ k 1 -l ψ k 2 -l . Proof.
As mentioned above, those results are classic and borrowed from [START_REF] Brockwell | Time series: theory and methods[END_REF], see in particular formula (5.7.9) therein. Let us justify briefly the fact that ψ 0 > 0. Indeed, the purely nondeterministic assumption imposes log(f ρ ) ∈ L 1 ([-π, π]), and thus f ρ > 0 almost everywhere. This easily yields

ψ 0 = π -π f 1/2 ρ (λ) dλ > 0. Item (iii) is obtained by writing E[X k 1 X k 2 ]
with the expression of X k given by [START_REF] Giriatis | CLT and other limit theorems for functionals of Gaussian processes[END_REF].

Let us now turn to examples for which our standing assumptions of Hypothesis 2.1 are met. The following proposition provides two typical and classical cases for which a spectral density exists and satisfies some integrability properties. Proposition 2.3. Let ρ be the covariance function of X. We have the following statements. (i) If ρ ∈ ℓ 1 , then the spectral density f ρ exists and is a nonnegative L 2 function defined on [-π, π]. Condition (5) is thus fulfilled. (ii) If lim k→∞ |k| α ρ(k) = c ρ for some α ∈ (0, 1) and some positive constant c ρ , then the spectral density exists, is strictly positive almost everywhere and satisfies lim λ→0 |λ| 1-α f ρ (λ) = c f . In particular, condition (5) is satisfied.

We now give two specific and important examples which satisfy Hypothesis 2.1.

Example 2.4. The so-called autoregressive fractionally integrated moving-average (ARFIMA) processes are introduced in [START_REF] Granger | An introduction to long-memory time series models and fractional differencing[END_REF] and [START_REF] Hosking | Fractional differencing[END_REF]. Denote by B the one lag backward operator (BX k = X k-1 ). Let φ(z) and θ(z) be two polynomials which have no common zeros and such that the zeros of φ lie outside the closed unit disk {z , |z| ≤ 1}. Suppose that X k is given by

φ(B)X k = (Id -B) -d θ(B)w k , (8) 
where -1 < d < 1/2, and where the operator (Id -B) -d is defined by:

(Id -B) -d = ∞ j=1 η j B j with η j = Γ(d + j) Γ(j + 1)Γ(d)
.

Also notice that in (8) the sequence (w k ) k∈Z is a discrete Gaussian white noise. It is wellknown (see [START_REF] Palma | Long-memory time series[END_REF], Theorem 3.4 and equation (3.19)) that under the above conditions, {X k , k ∈ N} admits a spectral density whose exact expression is:

f (λ) = 1 2π 2 sin λ 2 -2d |θ(e -iλ )| 2 |φ(e -iλ )| 2 .
It is thus readily checked that the conditions ( 5) and ( 6) are satisfied, and hence X k has a causal representation.

Example 2.5. Our second example is the fractional Gaussian noise. Let {B t , t ≥ 0} be a fractional Brownian motion of Hurst parameter H ∈ (0, 1). Then

{X k = B k+1 -B k , k ∈ N ∪ {0}} is a stationary Gaussian process with correlation ρ(k) = 1 2 (k + 1) 2H -2k 2H -(k -1) 2H .
Its spectral density (see e.g. [START_REF] Beran | Statistics for long-memory processes[END_REF], equation (2.17)) is:

f (λ) = 1 2π ∞ k=-∞ ρ(|k|)e iλ = 2c f (1 -cos(λ)) ∞ j=-∞ |2πj + λ| -2H-1 , λ ∈ [-π, π] ,
where

c f = (2π) -1 sin(πH)Γ(2H + 1). If H ≤ 1/2, it is clear that ∞ k=-∞ |ρ(|k|)| < ∞. This implies sup λ∈[-π,π] |f (λ)| < ∞ . Thus f ∈ L 1/2 . If 1/2 < H < 1, then 0 ≤ f (λ) ≤ 2c f (1 -cos(λ))|λ| -2H-1 + 2c f j =0 |2πj + λ| -2H-1 , λ ∈ [-π, π] .
The first term is in

L 1 since H < 1. When j = 0, π -π |2πj + λ| -2H-1 dλ ≤ Cj -2H for some positive constant C. Thus π -π j =0 |2πj + λ| -2H-1 dλ < ∞,
owing to the fact that H > 1/2. Therefore, we have f ∈ L 1 and hence f ∈ L 1/2 . Summarizing we have f ∈ L 1/2 for all H ∈ (0, 1). This also implies log

+ f (λ) ∈ L 1 . To see log -f (λ) ∈ L 1 , we notice that f (λ) ≥ 2c f (1 -cos(λ))|λ| -2H-1 . So log -f (λ) ≤ C + log (1 -cos(λ))|λ| -2H-1 which is in L 1 .
In conclusion, the sequence X satisfies Hypothesis 2.1.

Malliavin calculus.

We start by briefly recalling some basic notation and results connected to Gaussian analysis and Malliavin calculus. The reader is referred to [START_REF] Nourdin | Normal Approximations using Malliavin Calculus: from Stein's Method to the Universality[END_REF][START_REF] Nualart | The Malliavin calculus and related topics[END_REF] for details or missing proofs.

2.2.1.

Wiener space and generalities. Let H be a real separable Hilbert space with inner product •, • H . The norm of H will be denoted by • = • H . Recall that we call isonormal Gaussian process over H any centered Gaussian family W = {W (h) : h ∈ H}, defined on a probability space (Ω, F , P) and such that E[W (h)W (g)] = h, g H for every h, g ∈ H.

In our application the underlying Gaussian family will be a discrete Gaussian white noise (w k ) k∈Z . The space H is given here by H = ℓ 2 (Z) (the space of square integrable sequences indexed by Z) equipped with its natural inner product. Set {ε j ; j ∈ Z} for the canonical basis of ℓ 2 (Z), that is ε j k = δ j (k). We thus identify w j with W (ε j ). Assume from now on that our underlying σ-algebra F is generated by W .

For any integer q ∈ N ∪ {0}, we denote by H q the qth Wiener chaos of W . We recall that H 0 is simply R whereas, for any q ≥ 1, H q is the closed linear subspace of L 2 (Ω) generated by the family of random variables {H q (W (h)), h ∈ H, h H = 1}, with H q the q-th Hermite polynomial given by

H q (x) = (-1) q e x 2 2 d q dx q e -x 2 2 . ( 9 
)
Let S be the set of all cylindrical random variables of the form

F = g(W (h 1 ), . . . , W (h n )),
where n ≥ 1, h i ∈ H, and g is infinitely differentiable such that all its partial derivatives have polynomial growth. The Malliavin derivative of F is the element of L 2 (Ω; H) defined by

DF = n i=1 ∂g ∂x i (W (h 1 ), . . . , W (h n )) h i .
By iteration, for every m ≥ 2, we define the mth derivative D m F . This is an element of L 2 (Ω; H ⊙m ), where H ⊙m designates the symmetric mth tensor product of H. For m ≥ 1 and p ≥ 1, D m,p denote the closure of S with respect to the norm • m,p defined by 

F p m,p = E[|F | p ] + m j=1 E D j F p H ⊗j . Set D ∞ = ∩ m,p D m,
ϕ : R n → R is in C 1 b
(that is, belongs to the set of continuously differentiable functions with a bounded derivative) and if {F i } i=1,...,n is a vector of elements of D 1,2 , then ϕ(F 1 , . . . , F n ) ∈ D 1,2 and 

Dϕ(F 1 , . . . , F n ) = n i=1 ∂ϕ ∂x i (F 1 , . . . , F n ) DF i . (10 
E[ DF n -p ] < ∞. (11) 
Then, for all m ≥ 0 the derivative p (m) n of the density of F n , converges uniformly and in in L p (R) for all p ≥ 1 to the corresponding derivative of the density of F ∞ .

Proof. First notice that by condition [START_REF] Nourdin | Fisher Information and the Fourth Moment Theorem[END_REF], the random variable F n has an infinitely differentiable density p n , whose derivatives can be expressed by

p (m) n (x) = E 1 {F >x} G (m) n , (12) 
where the random variables G n ] = 0, we get:

sup n p (m) n (x) ≤ sup n P(|F n | > |x|) E |G (m) n | 2 1 2 ≤ c m,2 sup n P(|F n | > |x|) ≤ c m,2 sup n E[|F n | q ] 1 2 |x| -q 2 ≤ c|x| -q 2 ,
for all q ≥ 1 and for some constant c depending on q and m. By the results of [START_REF] Nourdin | Convergence in total variation on Wiener chaos[END_REF], the densities p n converge in L 1 (R) to the density p ∞ of F ∞ . The boundedness in L p (R) and the uniform bound of p n imply that this convergence holds in L p (R) for any p ≥ 1. From a compactness argument we can deduce the convergence of all the derivatives in L p (R) for any p ≥ 1. Finally, the uniform convergence is also easy to establish.

2.4.

A key lemma. Our future computations will heavily rely on an efficient way to compute conditional expectations. Towards this aim, we state here some general results. Let us start with a decomposition for Hermite polynomials: Lemma 2.7. For any q ≥ 1, let H q be the polynomial defined by relation [START_REF] Hosking | Fractional differencing[END_REF]. Consider y, z ∈ R and two real parameters a, b with a 2 + b 2 = 1. Then the following relation holds true:

H q (ay + bz) = q ℓ=0 q ℓ a q-ℓ b ℓ H q-ℓ (y) H ℓ (z). ( 13 
)
Proof. By the definition of the Hermite polynomials, we have

e aty-(at) 2 2 = ∞ i=0 (at) i H i (y), and e tbz-(bt) 2 2 = ∞ j=0 (bt) j H j (z). (14) 
In the same way, we also obtain:

e t(ay+bz)-t 2 /2 = ∞ q=0
t q H q (ay + bz).

Since a 2 + b 2 = 1, we obviously have e aty-(at) 2 2 e tbz-(bt) 2 2 = e t(ay+bz)-t 2 /2 . Thus, multiplying the right hand sides of ( 14) we recover the right hand side of (15), namely:

∞ q=0 t q H q (ay + bz) = ∞ i=0 (at) i H i (y) ∞ j=0 (bt) j H j (z),
which easily yields the desired identity [START_REF] Nourdin | Normal Approximations using Malliavin Calculus: from Stein's Method to the Universality[END_REF].

With this preliminary result in hand, we are ready to state our result on conditional expectations: Proposition 2.8. Let Y and Z be two centered Gaussian random variables such that Y is measurable with respect to a σ-algebra G ⊂ F and

Z is independent of G. Assume that E[Y 2 ] = E[Z 2 ] = 1.
Then for any q ≥ 1, and real parameters a, b such that a 2 + b 2 = 1, we have:

E[H q (aY + bZ)|G] = a q H q (Y ). (16) 
Proof. Apply identity [START_REF] Nourdin | Normal Approximations using Malliavin Calculus: from Stein's Method to the Universality[END_REF] in order to decompose H q (aY + bZ). Then identity [START_REF] Nourdin | Convergence in total variation on Wiener chaos[END_REF] follows easily from the fact that Y is G-measurable, Z is independent from G and Hermite polynomials have 0 mean under a centered Gaussian measure except for H 0 ≡ 1.

2.5. Carbery-Wright inequality. In the proof of Theorem 1.5, we will make use of the following inequality due to Carbery and Wright [5, Theorem 8], which is recalled here for convenience:

Proposition 2.9. Let X = (X 1 , . . . , X n ) be a Gaussian random vector in R n and Q : R n → R a polynomial of degree at most m. Then there is a universal constant c > 0 such that:

E[|Q(X 1 , . . . , X n )|] 1 m P(|Q(X 1 , . . . , X n )| ≤ x) ≤ c m x 1 m , for all x > 0. (17) 
3. Proof of Theorem 1.5

In this section, we will prove our main result, which amounts to show the inequality (4). This will be done into several steps.

Step 1: Computation of the Malliavin norm. Recall that V d,q n is defined by relation [START_REF] Beran | Statistics for long-memory processes[END_REF], and set for the moment f = q j=d a j H j . Invoking relation [START_REF] Hu | Convergence of densities of some functionals of Gaussian processes[END_REF], plus the fact that Dw j = ε j with the notation of Section 2.2.1, we get:

DV d,q n = 1 √ n n-1 k=0 f ′ (X k ) j≥0 ψ j ε k-j = 1 √ n n-1 l=-∞ n-1 k=l + ψ k-l f ′ (X k ) ε l , (18) 
where l + = max{l, 0}. Invoking Proposition 2.3, item (iii), it is thus readily checked that:

DV d,q n , DV d,q n H = 1 n n-1 k 1 ,k 2 =0 f ′ (X k 1 )ρ(k 1 -k 2 )f ′ (X k 2 ),
where we recall that ρ is the covariance function of the Gaussian stationary sequence {X k ; k ≥ 0}. This is consistent with the expression found in [START_REF] Nourdin | Normal Approximations using Malliavin Calculus: from Stein's Method to the Universality[END_REF]Chapter 5]. However, in order to write the above expression as sum of some squares, we will start directly from expression [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF]. Since {ε l ; l ∈ Z} is an orthonormal basis of ℓ 2 (Z) we obtain:

DV d,q n , DV d,q n H = 1 n n-1 ℓ=-∞ n-1 k=ℓ + ψ k-ℓ f ′ (X k ) 2 .
Rearranging terms (namely, change kℓ to k and then nℓ -1 to m), we end up with:

DV d,q n , DV d,q n H ≥ 1 n n-1 ℓ=0 n-ℓ-1 k=0 f ′ (X ℓ+k ) ψ k 2 = 1 n n-1 m=0 m k=0 f ′ (X n-1-(m-k) ) ψ k 2 ≡ A n .
As a last preliminary step we resort to the fact that X = {X k ; k ∈ N ∪ {0}} is a Gaussian stationary sequence, which allows to assert that A n is identical in law to B n with

B n := 1 n n-1 m=0 m k=0 f ′ (X m-k ) ψ k 2 = 1 n n-1 m=0 m k=0 f ′ (X k ) ψ m-k 2 .
We will now bound the negative moments of B n .

Step 2: Block decomposition. We now wish to apply the Carbery-Wright inequality [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] in order to get bounds for negative moments of B n . However, relation [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] only applies to moments of small order, and this is why we proceed to a decomposition of B n into smaller blocks.

Fix thus an integer N ≥ 1 and let M = [n/N] be the integer part of n/N. Then n ≥ NM and as a consequence,

B n = 1 n n-1 m=0 m k=0 f ′ (X k ) ψ m-k 2 ≥ 1 n N -1 i=0 (i+1)M -1 m=iM m k=0 f ′ (X k ) ψ m-k 2 
.

For i = 0, . . . , N -1, define

B i n = 1 n (i+1)M -1 m=iM m k=0 f ′ (X k ) ψ m-k 2 so that B n ≥ N -1 i=0 B i n .
Then it is readily checked that:

(B n ) -p 2 ≤ N -1 i=0 (B i n ) -p 2N . ( 19 
)
Recall once again the representation of the sequence X in [START_REF] Giriatis | CLT and other limit theorems for functionals of Gaussian processes[END_REF], and denote by F k the filtration generated by {w ℓ : ℓ < k}. Then starting from [START_REF] Palma | Long-memory time series[END_REF] we obtain:

E (B n ) -p 2 ≤ E N -1 i=0 (B i n ) -p 2N = E E (B N -1 n ) -p 2N |F (N -1)M N -2 i=0 (B i n ) -p 2N . (20) 
Step 3: Application of Carbery-Wright. Let us go back to the particular situation of f = q j=d a j H j , which means in particular that f ′ = q j=d j a j H j-1 . We are now in a position to apply a conditional version of inequality [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] to the block (B N -1 n ) -p 2N in (20). First, we notice

E (B N -1 n ) -p 2N |F (N -1)M ≤ 1 + p 2N 1 0 P B N -1 n ≤ x| F (N -1)M x -p 2N -1 dx . ( 21 
) Since B N -1
n is a polynomial of order m = 2(q -1), Carbery-Wright's inequality (17) yields:

P B N -1 n ≤ x|F (N -1)M ≤ c x 1 2(q-1) E B N -1 n |F (N -1)M 1 2(q-1) . ( 22 
)
Step 4: Estimates for the conditional expectation. We now estimate the conditional expectation

E[B N -1 n |F (N -1)M ].
We have:

E B N -1 n |F (N -1)M = 1 n N M -1 m=(N -1)M E   m k=0 f ′ (X k ) ψ m-k 2 F (N -1)M   ≥ 1 n N M -1 m=(N -1)M A m , (23) 
where we have set

A m = Var m k=(N -1)M f ′ (X k ) ψ m-k F (N -1)M .
Furthermore, notice that

f ′ (X k ) = f ′ k ℓ=-∞ ψ k-i w i = f ′ (Y k + Z k ),
where

Y k = (N -1)M -1 i=-∞ ψ k-i w i is F (N -1)M -measurable and Z k = k i=(N -1)M ψ k-i w i is inde- pendent of F (N -1)M . Recalling that f ′ = q
j=d j a j H j-1 , we can thus resort to Lemmas 2.7 and 2.8. This gives:

H q-1 (X k ) -E[H q-1 (X k )|F (N -1)M ] = q j=d j-1 ℓ=1 j 2 a j j -1 ℓ σ j-1-ℓ Y k H j-1-ℓ ( Y k )σ ℓ Z k H ℓ ( Z k ), where σ Y k = [Var(Y k )] 1/2 , σ Z k = [Var(Z k )] 1/2 , Y k = Y k /σ Y k and Z k = Z k /σ Z k . Therefore, A m = E     m k=(N -1)M q j=d j-1 ℓ=1 a j,ℓ,k H j-1-ℓ ( Y k ) H ℓ ( Z k ) ψ m-k   2 F (N -1)M   = E     q-1 ℓ=1 m k=(N -1)M q j=(ℓ+1)∨d a j,ℓ,k H j-1-ℓ ( Y k ) H ℓ ( Z k ) ψ m-k   2 F (N -1)M   ,
where we have set a j,ℓ,k = j 2 a j j-1

ℓ σ j-1-ℓ Y k σ ℓ Z k .
Recall that the random variables Y k are F (N -1)M -measurable while the random variables Z k are independent of F (N -1)M . By decorrelation properties of Hermite polynomials we thus get:

A m = q-1 ℓ=1 E     m k=(N -1)M q j=(ℓ+1)∨d a j,ℓ,k H j-1-ℓ ( Y k ) H ℓ ( Z k ) ψ m-k   2 F (N -1)M  
and we trivially lower bound this quantity by taking the term corresponding to ℓ = q -1. In this situation the sum q j=(ℓ+1)∨d is reduced to the term corresponding to j = q, and since a q,q-1,k = q 2 a q σ q-1 Z k we obtain:

A m ≥ E     m k=(N -1)M q 2 a q σ q-1 Z k H q-1 ( Z k ) ψ m-k   2 F (N -1)M   = q 4 a 2 q E     m k=(N -1)M σ q-1 Z k H q-1 ( Z k ) ψ m-k   2   .
We now invoke the identity E[H p ( Zk 1 )H p ( Zk 2 )] = 1 p! (E[ Zk 1 Zk 2 ]) p in order to obtain

A m ≥ q 5 a 2 q q! m k 1 ,k 2 =(N -1)M σ q-1 Z k 1 σ q-1 Z k 2 E Z k 1 Z k 2 q-1 ψ m-k 1 ψ m-k 2 .
Furthermore, it is readily checked that:

E Z k 1 Z k 2 = 1 σ Z k 1 σ Z k 2 k 1 ∧k 2 i=(N -1)M ψ k 1 -i ψ k 2 -i ,
and thus

A m ≥ q 5 a 2 q q! m k 1 ,k 2 =(N -1)M   k 1 ∧k 2 i=(N -1)M ψ k 1 -i ψ k 2 -i   q-1 ψ m-k 1 ψ m-k 2 = q 5 a 2 q
q! m i 1 ,...,i q-1 =(N -1)M m k 1 ,k 2 =max(i 1 ,...,i q-1 )

ψ m-k 1 ψ m-k 2 q-1 j=1
ψ k 1 -i j ψ k 2 -i j = q 5 a 2 q q! m i 1 ,...,i q-1 =(N -1)M   m k=max(i 1 ,...,i q-1 )

ψ m-k q-1 j=1 ψ k-i j   2 .
Here again, this sum of squares is trivially lower bounded by taking the term corresponding to i 1 = • • • = i q-1 = m, which yields:

A m ≥ c a,q,ψ with c a,q,ψ ≡ q 5 a 2 q q! ψ 2q 0 > 0.

(24)

Step 5: Conclusion. In the remainder of the proof the constants c a,q,ψ,N and so can change from line to line without further mention. Plugging relation (24) into (23) and recalling that N is a given integer whose exact value will be fixed below, we get:

E B N -1
n |F (N -1)M ≥ M c a,q,ψ n ≥ c a,q,ψ,N > 0, as long as N stays bounded. We then insert back this inequality into (21) and ( 22) in order to get:

P B N -1 n ≤ x|F (N -1)M ≤ 1 + p c a,q,ψ,N 2N 1 0
x 1 2(q-1) -p 2N -1 dx = c a,q,ψ,N,p < ∞, where we have chosen N such that p 2N < 1 2(q-1) . Iterating this bound into (20), we have thus obtained: 

E (B n ) -

,

  for any m ≥ 1. From this formula it follows that the derivatives p (m) n are uniformly bounded and also uniformly bounded in L p (R) for all p ≥ 1. Indeed, by[START_REF] Nourdin | Convergence in total variation on Wiener chaos[END_REF] Lemma 2.4] we have sup n E[|F n | r ] < ∞ for all r ≥ 1. This uniform bound on the moments, together with the equivalence of the • m,p norms in any finite sum of Wiener chaoses and condition[START_REF] Nourdin | Fisher Information and the Fourth Moment Theorem[END_REF] imply that sup n G (m) n L p (Ω) = c m,p < ∞ for all m ≥ 0. Then, we can write from[START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] supn sup x p (m) n (x) ≤ sup n E |G (m) n | = c m,1 < ∞,and, using the fact that E[G (m)

p 2 ≤

 2 c N a,q,ψ,N,p , which is a finite quantity. Finally recall from Step1 that E[(B n ) -p 2 ] = E[ DV d,q n -pH ], which finishes the proof.

  p . One can then extend the definition of D m to D m,p . When m = 1, one simply write D instead of D 1 . As a consequence of the hypercontractivity property of the Ornstein-Uhlenbeck semigroup (see, e.g.,[START_REF] Nourdin | Normal Approximations using Malliavin Calculus: from Stein's Method to the Universality[END_REF] Theorem 2.7.2]), all the • m,p -norms are equivalent in any finite sum of Wiener chaoses.Finally, let us recall that the Malliavin derivative D satisfies the following chain rule: if

  ) 2.3. Convergence of densities. Suppose that F is a random variable in D ∞ such that E[ DF -p ] < ∞ for all p ≥ 1.Then, we know that F has an infinitely differentiable density and there are explicit formulas for the density and its derivatives (see[START_REF] Nualart | The Malliavin calculus and related topics[END_REF] Proposition 2.1.5]). Using this result, we can establish the following criteria for convergence of densities for random variables in a finite sum of Wiener chaos.

Proposition 2.6. Let {F n ; n ∈ N} be a sequence of random variables belonging to a finite sum of Wiener chaos ⊕ M k=1 H k , which converges in law to a nonzero random variable F ∞ . Suppose that, for all p ≥ 1 sup n
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