On the maximum average degree and the incidence chromatic number of a graph - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2005

On the maximum average degree and the incidence chromatic number of a graph

Résumé

We prove that the incidence chromatic number of every 3-degenerated graph G is at most Δ (G)+4. It is known that the incidence chromatic number of every graph G with maximum average degree mad(G)<3 is at most Δ (G)+3. We show that when Δ (G) ≥ 5, this bound may be decreased to Δ (G)+2. Moreover, we show that for every graph G with mad(G)<22/9 (resp. with mad(G)<16/7 and Δ (G)≥ 4), this bound may be decreased to Δ (G)+2 (resp. to Δ (G)+1).
Fichier principal
Vignette du fichier
dm070112.pdf (140.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00959037 , version 1 (13-03-2014)

Identifiants

Citer

Mohammad Hosseini Dolama, Eric Sopena. On the maximum average degree and the incidence chromatic number of a graph. Discrete Mathematics and Theoretical Computer Science, 2005, Vol. 7, pp.203-216. ⟨10.46298/dmtcs.349⟩. ⟨hal-00959037⟩

Collections

CNRS TDS-MACS
126 Consultations
1569 Téléchargements

Altmetric

Partager

More