The Cycles of the Multiway Perfect Shuffle Permutation - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2002

The Cycles of the Multiway Perfect Shuffle Permutation

Résumé

The (k,n)-perfect shuffle, a generalisation of the 2-way perfect shuffle, cuts a deck of kn cards into k equal size decks and interleaves them perfectly with the first card of the last deck at the top, the first card of the second-to-last deck as the second card, and so on. It is formally defined to be the permutation ρ _k,n: i → ki \bmod (kn+1), for 1 ≤ i ≤ kn. We uncover the cycle structure of the (k,n)-perfect shuffle permutation by a group-theoretic analysis and show how to compute representative elements from its cycles by an algorithm using O(kn) time and O((\log kn)^2) space. Consequently it is possible to realise the (k,n)-perfect shuffle via an in-place, linear-time algorithm. Algorithms that accomplish this for the 2-way shuffle have already been demonstrated.
Fichier principal
Vignette du fichier
dm050111.pdf (88.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00958980 , version 1 (13-03-2014)

Identifiants

Citer

John Ellis, Hongbing Fan, Jeffrey Shallit. The Cycles of the Multiway Perfect Shuffle Permutation. Discrete Mathematics and Theoretical Computer Science, 2002, Vol. 5, pp.169-180. ⟨10.46298/dmtcs.308⟩. ⟨hal-00958980⟩

Collections

TDS-MACS
322 Consultations
1218 Téléchargements

Altmetric

Partager

More