3x+1 Minus the + - Archive ouverte HAL
Journal Articles Discrete Mathematics and Theoretical Computer Science Year : 2002

3x+1 Minus the +

Abstract

We use Conway's \emphFractran language to derive a function R:\textbfZ^+ → \textbfZ^+ of the form R(n) = r_in if n ≡ i \bmod d where d is a positive integer, 0 ≤ i < d and r_0,r_1, ... r_d-1 are rational numbers, such that the famous 3x+1 conjecture holds if and only if the R-orbit of 2^n contains 2 for all positive integers n. We then show that the R-orbit of an arbitrary positive integer is a constant multiple of an orbit that contains a power of 2. Finally we apply our main result to show that any cycle \ x_0, ... ,x_m-1 \ of positive integers for the 3x+1 function must satisfy \par ∑ _i∈ \textbfE \lfloor x_i/2 \rfloor = ∑ _i∈ \textbfO \lfloor x_i/2 \rfloor +k. \par where \textbfO=\ i : x_i is odd \ , \textbfE=\ i : x_i is even \ , and k=|\textbfO|. \par The method used illustrates a general mechanism for deriving mathematical results about the iterative dynamics of arbitrary integer functions from \emphFractran algorithms.
Fichier principal
Vignette du fichier
dm050103.pdf (56.26 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-00958971 , version 1 (13-03-2014)

Identifiers

Cite

Kenneth G. Monks. 3x+1 Minus the +. Discrete Mathematics and Theoretical Computer Science, 2002, Vol. 5, pp.47-54. ⟨10.46298/dmtcs.297⟩. ⟨hal-00958971⟩

Collections

TDS-MACS
93 View
1041 Download

Altmetric

Share

More