The Stack-Size of Combinatorial Tries Revisited - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2002

The Stack-Size of Combinatorial Tries Revisited

Résumé

In the present paper we consider a generalized class of extended binary trees in which leaves are distinguished in order to represent the location of a key within a trie of the same structure. We prove an exact asymptotic equivalent to the average stack-size of trees with α internal nodes and β leaves corresponding to keys; we assume that all trees with the same parameters α and β have the same probability. The assumption of that uniform model is motivated for example by the usage of tries for the compression of blockcodes. Furthermore, we will prove asymptotics for the r-th moments of the stack-size and we will show that a normalized stack-size possesses a theta distribution in the limit.
Fichier principal
Vignette du fichier
dm050101.pdf (156.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00958969 , version 1 (13-03-2014)

Identifiants

Citer

Markus E. Nebel. The Stack-Size of Combinatorial Tries Revisited. Discrete Mathematics and Theoretical Computer Science, 2002, Vol. 5, pp.1-16. ⟨10.46298/dmtcs.301⟩. ⟨hal-00958969⟩

Collections

TDS-MACS
50 Consultations
787 Téléchargements

Altmetric

Partager

More