A Degree-Decreasing Lemma for (MOD_q-MOD_p) Circuits - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2001

A Degree-Decreasing Lemma for (MOD_q-MOD_p) Circuits

Résumé

Consider a (MOD_q,MOD_p) circuit, where the inputs of the bottom MOD_p gates are degree-d polynomials with integer coefficients of the input variables (p, q are different primes). Using our main tool ―- the Degree Decreasing Lemma ―- we show that this circuit can be converted to a (MOD_q,MOD_p) circuit with \emphlinear polynomials on the input-level with the price of increasing the size of the circuit. This result has numerous consequences: for the Constant Degree Hypothesis of Barrington, Straubing and Thérien, and generalizing the lower bound results of Yan and Parberry, Krause and Waack, and Krause and Pudlák. Perhaps the most important application is an exponential lower bound for the size of (MOD_q,MOD_p) circuits computing the n fan-in AND, where the input of each MOD_p gate at the bottom is an \empharbitrary integer valued function of cn variables (c<1) plus an arbitrary linear function of n input variables.
Fichier principal
Vignette du fichier
dm040213.pdf (63.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00958960 , version 1 (13-03-2014)

Identifiants

Citer

Vince Grolmusz. A Degree-Decreasing Lemma for (MOD_q-MOD_p) Circuits. Discrete Mathematics and Theoretical Computer Science, 2001, Vol. 4 no. 2 (2), pp.247-254. ⟨10.46298/dmtcs.289⟩. ⟨hal-00958960⟩

Collections

TDS-MACS
52 Consultations
1004 Téléchargements

Altmetric

Partager

More