Paths of specified length in random k-partite graphs - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2001

Paths of specified length in random k-partite graphs

Résumé

Fix positive integers k and l. Consider a random k-partite graph on n vertices obtained by partitioning the vertex set into V_i, (i=1, \ldots,k) each having size Ω (n) and choosing each possible edge with probability p. Consider any vertex x in any V_i and any vertex y. We show that the expected number of simple paths of even length l between x and y differ significantly depending on whether y belongs to the same V_i (as x does) or not. A similar phenomenon occurs when l is odd. This result holds even when k,l vary slowly with n. This fact has implications to coloring random graphs. The proof is based on establishing bijections between sets of paths.
Fichier principal
Vignette du fichier
dm040206.pdf (39.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00958953 , version 1 (13-03-2014)

Identifiants

Citer

C.R. Subramanian. Paths of specified length in random k-partite graphs. Discrete Mathematics and Theoretical Computer Science, 2001, Vol. 4 no. 2 (2), pp.133-138. ⟨10.46298/dmtcs.286⟩. ⟨hal-00958953⟩

Collections

TDS-MACS
59 Consultations
805 Téléchargements

Altmetric

Partager

More