Permutations Containing and Avoiding $\textit{123}$ and $\textit{132}$ Patterns
Résumé
We prove that the number of permutations which avoid 132-patterns and have exactly one 123-pattern, equals $(n-2)2^{n-3}$, for $n \ge 3$. We then give a bijection onto the set of permutations which avoid 123-patterns and have exactly one 132-pattern. Finally, we show that the number of permutations which contain exactly one 123-pattern and exactly one 132-pattern is $(n-3)(n-4)2^{n-5}$, for $n \ge 5$.
Domaines
Mathématique discrète [cs.DM]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...