The Optimal Lower Bound for Generators of Invariant Rings without Finite SAGBI Bases with Respect to Any Admissible Order - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 1999

The Optimal Lower Bound for Generators of Invariant Rings without Finite SAGBI Bases with Respect to Any Admissible Order

Résumé

We prove the existence of an invariant ring \textbfC[X_1,...,X_n]^T generated by elements with a total degree of at most 2, which has no finite SAGBI basis with respect to any admissible order. Therefore, 2 is the optimal lower bound for the total degree of generators of invariant rings with such a property.
Fichier principal
Vignette du fichier
dm030203.pdf (80.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00958927 , version 1 (13-03-2014)

Identifiants

Citer

Manfred Göbel. The Optimal Lower Bound for Generators of Invariant Rings without Finite SAGBI Bases with Respect to Any Admissible Order. Discrete Mathematics and Theoretical Computer Science, 1999, Vol. 3 no. 2 (2), pp.65-70. ⟨10.46298/dmtcs.259⟩. ⟨hal-00958927⟩

Collections

TDS-MACS
40 Consultations
835 Téléchargements

Altmetric

Partager

More