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Abstract

A technique is given to derive the well known Bell–Szekeres solu-
tion of the Einstein–Maxwell vacuum field equations describing the
space–time and the Maxwell field following the head–on collision of
two homogeneous, plane, electromagnetic shock waves. The analogue
of this technique is then utilized to construct the space–time model
of the gravitational field following the head–on collision of two homo-
geneous, plane, gravitational shock waves. The latter collision, which
is followed by a pair of impulsive gravitational waves and a pair of
light like shells traveling away from each other, provides a mechanism
for generating a cosmological constant which may be important in the
theoretical description of dark energy.
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1 Introduction

This paper is concerned with exploring the strong analogy between the col-
lision of electromagnetic shock waves and the collision of gravitational shock
waves and with demonstrating that the latter is a mechanism for generating a
cosmological constant, which may be important in the theoretical description
of dark energy [1]. It is important in this context to note that the appearance
of a cosmological constant term on the left–hand side of the Einstein field
equations is equivalent to the appearance of an energy–momentum–stress
tensor for a perfect fluid with an equation of state expressing the vanishing
of the sum of the matter proper density and the isotropic pressure. Thus for
the case of colliding gravitational shock waves the space–time consists of an
anti–collision region which is a vacuum and a post–collision region which is a
non–vacuum in this sense. Vacuum and non–vacuum regions of space–time
are familiar from solving the field equations for so–called interior and exterior
solutions. Immediately following the collisions considered here a pair of im-
pulsive gravitational waves is formed, moving away from each other, for the
case of colliding electromagnetic shock waves (which is a well–known phe-
nomenon [2]) while following the collision of two gravitational shock waves a
pair of impulsive gravitational waves and a pair of light–like shells, moving
away from each other, are formed.

The collision of plane electromagnetic shock waves with a Heaviside step
function profile has been solved in Einstein–Maxwell theory many years ago
by Bell and Szekeres [2]. The collision is head–on and the waves are homo-
geneous. Such waves are described by a solution of the vacuum Einstein–
Maxwell field equations starting with the line element

ds2 = − cos2 au+(dx2 + dy2) + 2 du dv , (1.1)

where a is a real constant and u+ = uϑ(u) with ϑ(u) the Heaviside step
function which is equal to zero if u < 0 and equal to unity if u > 0. If we
write the line element in terms of the basis 1–forms ϑ1 = cos au+ dx, ϑ2 =
cos au+ dy, ϑ3 = dv and ϑ4 = du we have

ds2 = −(ϑ1)2 − (ϑ2)2 + 2ϑ3 ϑ4 = gabϑ
aϑb , (1.2)

where the constants gab = gba are the components of the metric tensor on
the half null tetrad defined by the basis 1–forms. Tetrad indices (such as a, b
here) will be lowered and raised using gab and gab respectively, with gab the
components of the inverse of the matrix with entries gab and thus gabgbc = δa

c .
The components of the Ricci tensor on this tetrad are given by

Rab = −2a2ϑ(u)δ4

aδ
4

b . (1.3)
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The Maxwell field is described by the 2–form

F =
1

2
Fabϑ

a ∧ ϑb = a ϑ(u)ϑ1 ∧ ϑ4 , (1.4)

(or equivalently by the Newman–Penrose [3] component Φ2 = a ϑ(u)) and
the corresponding electromagnetic energy–momentum tensor is

Eab = FacF
c
b −

1

4
gab FdcF

dc = −a2ϑ(u)δ4

aδ
4

b . (1.5)

Hence (1.3) and (1.5) demonstrate that the Einstein–Maxwell vacuum field
equations

Rab = 2 Eab , (1.6)

are satisfied. The Hodge dual of the Maxwell 2–form (1.4) is

∗F = aϑ(u)ϑ2 ∧ ϑ4 , (1.7)

which clearly satisfies the vacuum Maxwell field equations

d∗F = 0 , (1.8)

where d denotes exterior differentiation. The Maxwell field (1.4) is type N
(the radiative type) in the Petrov classification with the vector field ∂/∂v as
degenerate principal null direction and thus represents pure electromagnetic
radiation. The profile of the wave is the Heaviside step function and so
the wave is a shock wave. The coefficient of the step function in (1.4) is
a constant (in particular independent of the coordinates x, y) and thus the
waves are homogeneous. The histories of the wave fronts in space–time are
the null hyperplanes u = constant which are generated by the null, geodesic,
shear–free (and, trivially, twist–free) integral curves of the vector field ∂/∂v.
In the space–time with line–element (1.1) the vector field ∂/∂u is null and
generates the null hyperplanes v = constant. The latter can be the histories
of the wave fronts of electromagnetic shock waves traveling in the opposite
direction to those with histories u = constant and are given by the solution of
the Einstein–Maxwell vacuum field equations consisting of the line element

ds2 = − cos2 bv+(dx2 + dy2) + 2 du dv , (1.9)

where b is a real constant and v+ = vϑ(v), and the Maxwell field is given by
the 2–form

F =
1

2
Fabϑ

a ∧ ϑb = b ϑ(v)ϑ3 ∧ ϑ1 , (1.10)
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or equivalently by the Newman–Penrose component Φ0 = b ϑ(v). Bell and
Szekeres considered the collision of two such families of electromagnetic shock
waves, in the sense that if the space–time and Maxwell field for v < 0 is
given by (1.1) and (1.4) and if the space–time and Maxwell field for u < 0
is given by (1.9) and (1.10) (the space–time for v < 0 and u < 0 is trivially
flat Minkowskian space–time with vanishing Maxwell field) then what is the
post–collision space–time for u > 0, v > 0 and post–collision Maxwell field for
u > 0, v > 0? The post–collision space–time and Maxwell field constitute the
Bell–Szekeres solution of the Einstein–Maxwell vacuum field equations. We
give a derivation of this solution in section 2 which acts as a guide for solving
the analogous problem for colliding gravitational shock waves in section 3.

The space–time model of the gravitational field of gravitational shock
waves is given by the line element

ds2 = − cos2 au+dx2 − cosh2 au+dy2 + 2 du dv , (1.11)

where a is a real constant. This takes the form (1.2) with now the basis
1–forms given by

ϑ1 = cos au+ dx , ϑ2 = cosh au+ dy , ϑ3 = dv , ϑ4 = du . (1.12)

The components Rab of the Ricci tensor on the tetrad defined by the basis
1–forms vanish, so that the metric tensor given via the line element (1.11) is
a solution of Einstein’s vacuum field equations. The corresponding Riemann
curvature tensor components in Newman–Penrose notation are given by

Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0 and Ψ4 = a2ϑ(u) . (1.13)

This is a Petrov type N curvature tensor and thus represents pure gravi-
tational radiation with propagation direction in space–time the degenerate
principal null direction of the Riemann tensor ∂/∂v. We have again here
plane, shock waves which are homogeneous and have a step function profile,
but in this case the waves are gravitational waves. For similar waves traveling
in the opposite direction

ds2 = − cos2 bv+dx2 − cosh2 bv+dy2 + 2 du dv , (1.14)

where b is a real constant. The analogue of the Bell and Szekeres problem is
to ask: if the space–time for v < 0 is given by (1.11) and if the space–time
for u < 0 is given by (1.14) (the space–time for v < 0 and u < 0 is trivially
flat Minkowskian space–time) then what is the post–collision space–time for
u > 0, v > 0? Following the pattern of the Bell–Szekeres derivation in section
2 below we give the answer to this question in section 3. This is the main
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result of this paper. The most significant feature of this answer is that the
appropriate field equations in the post–collision region of the space–time are
Einstein’s vacuum field equations with a cosmological constant. The cosmo-
logical constant, which could conceivably represent dark energy, is propor-
tional to the product of the constants a and b associated with the incoming
gravitational shock waves indicated above. Some important properties of the
derivation are discussed in section 4 including a summary of the principal
physical attributes of the solution derived in section 3.

2 Derivation of Bell-Szekeres Solution

For the head–on collision of homogeneous plane waves, the post–collision
region u > 0, v > 0 of space–time is well known to take the Rosen–Szekeres
form [4], [5], [6]

ds2 = −e−U(eV dx2 + e−V dy2) + 2e−Mdu dv , (2.1)

where U, V,M are each functions of u, v. For the case involving electromag-
netic waves, which interests us particularly in this section, the Maxwell field
has in general only two Newman-Penrose components Φ0(u, v) and Φ2(u, v),
or equivalently, the Maxwell field is given by a 2–form

F =
1

2
Fabϑ

a ∧ ϑb = Φ0ϑ
3 ∧ ϑ1 + Φ2ϑ

1 ∧ ϑ4 , (2.2)

which also serves to define Φ0 and Φ2 in terms of Fab and the basis 1–forms.
It is convenient to write

Φ0 = eM/2φ0 and Φ2 = eM/2φ2 , (2.3)

and then Maxwell’s equations in terms of φ0(u, v) and φ2(u, v) read:

∂φ0

∂u
=

1

2
Uu φ0 −

1

2
Vv φ2 , (2.4)

∂φ2

∂v
=

1

2
Uv φ2 −

1

2
Vu φ0 , (2.5)

with the subscripts denoting partial differentiation, and the Einstein–Maxwell
field equations read:

Uuv = Uu Uv , (2.6)

2Uuu = U2

u + V 2

u − 2UuMu + 4φ2

2 , (2.7)

2Uvv = U2

v + V 2

v − 2MvUv + 4φ2

0 , (2.8)

2Vuv = UuVv + UvVu + 4φ0φ2 , (2.9)

2Muv = VuVv − UuUv . (2.10)
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We wish to solve these equations in the region u > 0, v > 0 with the following
boundary conditions (which are obtained from (1.1), (1.4) and from (1.9),
(1.10) respectively) :

When v = 0 : e−U = cos2 au , V = 0 , M = 0 , φ2 = a ; (2.11)

When u = 0 : e−U = cos2 bv , V = 0 , M = 0 , φ0 = b , (2.12)

where a, b are constants. We note the well known fact that under a change
of coordinates u → ū = ū(u) and v → v̄ = v̄(v) the line element and field
equations remain invariant in form with M → M̄, φ0 → φ̄0, φ2 → φ̄2 with

eM̄ =
dū

du

dv̄

dv
eM , φ̄0 =

(

dv̄

dv

)

−1

φ0 , φ̄2 =

(

dū

du

)

−1

φ2 . (2.13)

Eq.(2.6) is equivalent to (e−U)uv = 0 and solving this with

e−U = −1 + cos2 au + cos2 bv = cos(au − bv) cos(au + bv) , (2.14)

satisfies the boundary conditions.
We see from (2.12) that when u = 0 we have Vv = 0 but we shall require

Vu and φ2 when u = 0 which we write as (Vu)u=0 and (φ2)u=0. Also when
v = 0 we have Vu = 0 and we shall require (Vv)v=0 and (φ0)v=0. To derive
(Vu)u=0 and (φ2)u=0 we use (2.5) and (2.9) evaluated at u = 0. First we note
from (2.14) that

Uu = a tan(au − bv) + a tan(au + bv) , (2.15)

Uv = −b tan(au − bv) + b tan(au + bv) , (2.16)

and so (Uu)u=0 = 0 and (Uv)u=0 = 2b tan bv. Hence (2.5) and (2.9) evaluated
at u = 0 yield

d

dv
{(φ2)u=0 cos bv} = −

b

2
(Vu)u=0 cos bv , (2.17)

d

dv
{(Vu)u=0 cos bv} = 2b (φ2)u=0 cos bv , (2.18)

respectively. Solving these we arrive at

(φ2)u=0 = P tan bv + Q and (Vu)u=0 = −2P + 2Q tan bv , (2.19)

where P, Q are constants. When u = 0 and v = 0 we have φ2 = a and Vu = 0
and this implies that P = 0 and Q = a. Therefore

(φ2)u=0 = a and (Vu)u=0 = 2a tan bv . (2.20)
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Similarly using (2.4) and (2.9) evaluated at v = 0 leads to

(φ0)v=0 = b and (Vv)v=0 = 2b tan au . (2.21)

Now Maxwell’s equations can be written in the form

∂

∂u
(log φ0) =

1

2
Uu −

1

2
Vv

φ2

φ0

and
∂

∂v
(log φ2) =

1

2
Uv −

1

2
Vu

φ0

φ2

, (2.22)

from which we easily deduce that

2
∂2

∂u∂v

(

log
φ0

φ2

)

=
∂

∂u

(

Vu
φ0

φ2

)

−
∂

∂v

(

Vv
φ2

φ0

)

. (2.23)

We now make the key assumption that

φ0

φ2

=
A(u)

B(v)
, (2.24)

for some functions A(u), B(v). On account of (2.13) this means that there
exists a frame of reference ū, v̄ such that φ̄0 = φ̄2. This implies that φ̄2

0 = φ̄2
2

and so if φ̄0, φ̄2 are thought of as describing two families of backscattered
electromagnetic radiation following the collision, then we are making the
simplifying assumption that in the barred frame the energy densities of the
two families of backscattered waves are equal. From (2.20) and (2.21) it
follows that (2.24) implies

φ0

φ2

=
b

a
, (2.25)

for u ≥ 0, v ≥ 0. Using this in (2.23) we arrive at the wave equation

1

a

∂

∂u

(

1

a
Vu

)

=
1

b

∂

∂v

(

1

b
Vv

)

, (2.26)

or, with ū = au, v̄ = bv,
Vūū = Vv̄v̄ . (2.27)

Solving this for V (ū, v̄) using the d’Alembert formula, with

V (0, v̄) = 0 and Vū(0, v̄) = 2 tan v̄ , (2.28)

by (2.12) and (2.20), we find that

V (ū, v̄) =
1

2

∫ v̄+ū

v̄−ū
2 tan ξ dξ = log

cos(ū − v̄)

cos(ū + v̄)
, (2.29)
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and thus

V (u, v) = log
cos(au − bv)

cos(au + bv)
, (2.30)

for u ≥ 0, v ≥ 0. Now

Vu = −a tan(au − bv) + a tan(au + bv) , (2.31)

Vv = b tan(au − bv) + b tan(au + bv) , (2.32)

and so with (2.15) and (2.16) we find that UuUv = VuVv. Now from (2.10)
we have Muv = 0 from which it follows, using the boundary conditions (2.11)
and (2.12), that M = 0 for u ≥ 0, v ≥ 0. Substituting U from (2.14) and V
from (2.30) into (2.7) and (2.8) with M = 0 results in

φ0 = b and φ2 = a , (2.33)

for u ≥ 0, v ≥ 0, and now (2.9) is automatically satisfied, as are the Maxwell
equations (2.4) and (2.5) since bUu − aVv = 0 = aUv − bVu on account of
(2.15), (2.16), (2.31) and (2.32). The line element for u > 0, v > 0 is now

ds2 = − cos2(au − bv) dx2 − cos2(au + bv) dy2 + 2 du dv . (2.34)

Equations (2.33) and (2.34) constitute the Bell–Szekeres solution of the
Einstein–Maxwell vacuum field equations.

We can write the line element of the space–time in a unified form in-
corporating each of the four regions of the space–time I(u < 0, v < 0),
II(u > 0, v < 0), III(u < 0, v > 0) and IV(u > 0, v > 0) as

ds2 = − cos2(au+ − bv+) dx2 − cos2(au+ + bv+) dy2 + 2 du dv . (2.35)

On the tetrad defined by the basis 1–forms ϑ1 = cos(au+ − bv+) dx, ϑ2 =
cos(au+ + bv+) dy, ϑ3 = dv and ϑ4 = du the Ricci tensor components are

Rab = −2 ab ϑ(u) ϑ(v) δ1

a δ1

b + 2 ab ϑ(u) ϑ(v) δ2

a δ2

b

−2 b2ϑ(v)δ3

a δ3

b − 2 a2ϑ(u)δ4

a δ4

b

= 2 Eab , (2.36)

where Eab is the electromagnetic energy–momentum tensor calculated with
the Maxwell field

F = a ϑ(u)ϑ1 ∧ ϑ4 + b ϑ(v)ϑ3 ∧ ϑ1 . (2.37)
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Finally the Newman–Penrose components of the Weyl conformal curvature
tensor for the Bell–Szekeres space–time are given by

Ψ0 = −b δ(v) tan au+ , (2.38)

Ψ1 = 0 , (2.39)

Ψ2 = 0 , (2.40)

Ψ3 = 0 , (2.41)

Ψ4 = −a δ(u) tan bv+ . (2.42)

For u > 0, v > 0 this space–time is conformally flat. The appearance of
the Dirac delta functions in two of these components means that there is
an impulsive gravitational wave with history v = 0, u > 0 described by Ψ0

and an impulsive gravitational wave with history u = 0, v > 0 described
by Ψ4. Thus the energy in the incoming electromagnetic shock waves is
re-distributed following the collision into two impulsive gravitational waves
followed by the superposition of two systems of electromagnetic shock waves
described by (2.37).

3 Collision of Gravitational Shock Waves

Taking the Bell–Szekeres example as our guide we consider now the head–on
collision of the homogeneous, plane gravitational waves described by (1.11)
and (1.14). Again for the post collision space–time we work with a line ele-
ment of the form (2.1) but now we are interested in Einstein’s field equations
with a cosmological constant Λ given by Rab = Λ gab. Written out explicitly
these equations read:

Uuv = Uu Uv − Λ e−M , (3.1)

2Vuv = UuVv + UvVu , (3.2)

2Uuu = U2

u + V 2

u − 2MuUu , (3.3)

2Uvv = U2

v + V 2

v − 2MvUv , (3.4)

2Muv = VuVv − UuUv . (3.5)

The Newman–Penrose components of the Weyl conformal curvature tensor
are:

Ψ0 = −
1

2
eM{Vvv + (Mv − Uv)Vv} , (3.6)

Ψ1 = 0 , (3.7)

Ψ2 =
1

4
eM(VuVv − UuUv) +

1

6
Λ , (3.8)
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Ψ3 = 0 , (3.9)

Ψ4 = −
1

2
eM{Vuu + (Mu − Uu)Vu} . (3.10)

The Bianchi identities are:

∂Ψ0

∂u
=

(

Mu +
1

2
Uu

)

Ψ0 −
3

2
VvΨ2 , (3.11)

∂Ψ4

∂v
=

(

Mv +
1

2
Uv

)

Ψ4 −
3

2
VuΨ2 , (3.12)

∂Ψ2

∂u
=

3

2
UuΨ2 −

1

2
VvΨ4 , (3.13)

∂Ψ2

∂v
=

3

2
UvΨ2 −

1

2
VuΨ0 . (3.14)

These can be calculated using the formulas given by Chandrasekhar [7] or,
alternatively, they can be calculated directly by taking the appropriate partial
derivatives of (3.6)–(3.10) and simplifying the results using the field equations
(3.1)–(3.5) and using again (3.6)–(3.10). The boundary conditions in this
case are:

When v = 0 : e−U = cos au cosh au , eV =
cos au

cosh au
, M = 0 , Ψ4 = a2 ;

(3.15)

When u = 0 : e−U = cos bv cosh bv , eV =
cos bv

cosh bv
, M = 0 , Ψ0 = b2 ,

(3.16)
where a, b are constants.

To begin with we shall require (Uv)v=0, (Vv)v=0, (Mv)v=0 and (Ψ0)v=0. It
is useful to note from the boundary conditions that

(Uu)v=0 = a tan au − a tanh au , (3.17)

(Vu)v=0 = −a tan au − a tanh au . (3.18)

Evaluating (3.1) at v = 0 results in

d

du
(Uv)v=0 + a(− tan au + tanh au)(Uv)v=0 = −Λ , (3.19)

which we can rewrite as

d

du
(cos au cosh au(Uv)v=0) = −Λ cos au cosh au , (3.20)

and solve with

cos au cosh au(Uv)v=0 = −
Λ

2a
(sin au cosh au + cos au sinh au) + C , (3.21)
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where C is a constant of integration. Since Uv at u = 0 and v = 0 vanishes
we have C = 0 and thus

(Uv)v=0 = −
Λ

2a
(tan au + tanh au) . (3.22)

Similarly by evaluating (3.1) at u = 0 we obtain

(Uu)u=0 = −
Λ

2b
(tan bv + tanh bv) . (3.23)

To determine (Vv)v=0 we evaluate (3.2) at v = 0 and arrive at

d

du
(Vv)v=0 =

a

2
(tan au − tanh au)(Vv)v=0 +

Λ

4
(tan au + tanh au)2 . (3.24)

To solve this we make use of the identity

Λ

4
(tan au + tanh au)2 =

Λ

2a

d

du
(tan au − tanh au) −

Λ

4
(tan au − tanh au)2 .

(3.25)
This enables us to write (3.24) in the form

dW

du
−

a

2
(tan au − tanh au)W = 0 , (3.26)

with

W = (Vv)v=0 −
Λ

2a
(tan au − tanh au) . (3.27)

Now (3.26) reads
d

du
{(cos au cosh au)1/2W} = 0 , (3.28)

and thus we arrive at

(Vv)v=0 =
Λ

2a
(tan au − tanh au) + C1(cos au cosh au)−1/2 , (3.29)

where C1 is a constant of integration. Since Vv vanishes when u = 0 and

v = 0 we have C1 = 0 and thus

(Vv)v=0 =
Λ

2a
(tan au − tanh au) . (3.30)

Proceeding similarly with (3.2) evaluated at u = 0 we find that

(Vu)u=0 =
Λ

2b
(tan bv − tanh bv) . (3.31)
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Next we require (Mv)v=0 and this is obtained by evaluating (3.5) at v = 0.
From (3.17), (3.18), (3.22) and (3.30) we see that the right hand side of (3.5)
evaluated at v = 0 vanishes and so we have

d

du
(Mv)v=0 = 0 , (3.32)

and thus (Mv)v=0 = C2 = constant. But Mv vanishes when u = 0 and v = 0
and so C2 = 0. Hence

(Mv)v=0 = 0 . (3.33)

Evaluating (3.5) at u = 0 similarly results in

(Mu)u=0 = 0 . (3.34)

Finally we shall require (Ψ0)v=0. The expression for Ψ2 given by (3.8) eval-
uated at v = 0, remembering (3.15), yields

(Ψ2)v=0 =
1

6
Λ . (3.35)

Using this, along with (3.17) and (3.30), in the Bianchi identity (3.11) eval-
uated at v = 0 we find

d

du
(Ψ0)v=0−

1

2
a(tan au−tanh au)(Ψ0)v=0 = −

Λ2

8a
(tan au−tanh au) , (3.36)

which can be rewritten in the form

d

du
{(cos au cosh au)1/2(Ψ0)v=0} =

Λ2

4a2

d

du
(cos au cosh au)1/2 , (3.37)

which leads to

(Ψ0)v=0 =
Λ2

4a2
+

C3

(cos au cosh au)1/2
, (3.38)

where C3 is a constant of integration. Now we can summarize the current
situation with regard to the Weyl tensor evaluated at v = 0 as follows:

(Ψ0)v=0 =
Λ2

4a2
+

C3

(cos au cosh au)1/2
, (Ψ2)v=0 =

Λ

6
, (Ψ4)v=0 = a2 . (3.39)

We will return to these equations after we have discussed, for the present
case, the analogue of (2.23) with (2.24).

From (3.11) we have

∂

∂u
log Ψ0 = Mu +

1

2
Uu −

3

2
Vv

Ψ2

Ψ0

, (3.40)
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and from (3.12)
∂

∂v
log Ψ4 = Mv +

1

2
Uv −

3

2
Vu

Ψ2

Ψ4

, (3.41)

from which we deduce that

2

3

∂2

∂u∂v
log

(

Ψ4

Ψ0

)

=
∂

∂v

(

Vv
Ψ2

Ψ0

)

−
∂

∂u

(

Vu
Ψ2

Ψ4

)

. (3.42)

Next (3.13) and (3.14) can be written as

∂

∂u
log Ψ2 =

3

2
Uu −

1

2
Vv

Ψ4

Ψ2

, (3.43)

∂

∂v
log Ψ2 =

3

2
Uv −

1

2
Vu

Ψ0

Ψ2

, (3.44)

and thus we have

∂

∂v

(

Vv
Ψ4

Ψ2

)

−
∂

∂u

(

Vu
Ψ0

Ψ2

)

= 0 . (3.45)

We have here two equations, (3.42) and (3.45), where we had one equation
(2.23) in the electromagnetic case. If we make the assumption that

Ψ2 = kΨ
1/2

0 Ψ
1/2

4 , (3.46)

for some constant k to be determined later, we can arrive at a situation
exactly analogous to the electromagnetic case. With this assumption (3.42)
becomes

2

3k

∂2

∂u∂v
log

(

Ψ4

Ψ0

)

=
∂

∂v



Vv
Ψ

1/2

4

Ψ
1/2

0



−
∂

∂u



Vu
Ψ

1/2

0

Ψ
1/2

4



 , (3.47)

while (3.45) now reads

∂

∂v



Vv
Ψ

1/2

4

Ψ
1/2

0



−
∂

∂u



Vu
Ψ

1/2

0

Ψ
1/2

4



 = 0 . (3.48)

Thus we now have the analogue of the electromagnetic case in that

Ψ4

Ψ0

=
A(u)

B(v)
, (3.49)

for some functions A(u) and B(v) and then V (u, v) is determined by (3.48)
(the analogue of (2.26)).
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Before proceeding it is useful to now compute the constant of integration
C3 in (3.38). We see that when (3.46) is evaluated at v = 0 we must have
(Ψ0)v=0 constant, since (Ψ2)v=0 and (Ψ4)v=0 are constants given in (3.39).
Therefore C3 = 0 and so

(Ψ0)v=0 =
Λ2

4a2
. (3.50)

But from (3.16) we have Ψ0 = b2 when u = 0 and v = 0 and so Λ2 = 4a2b2

and we can take
Λ = 2ab , (3.51)

from now on since, in particular, the signs of a and b are free to specify. This
demonstrates the importance of including the cosmological constant in the
field equations at the beginning of this derivation. Thus we have

(Ψ0)v=0 = b2 , (Ψ2)v=0 =
1

3
ab , (Ψ4)v=0 = a2 , (3.52)

and so (3.46) evaluated at v = 0 yields k = 1

3
.

We now have in particular (Ψ0)v=0 = b2 and (Ψ4)v=0 = a2 and similarly
we find that (Ψ4)u=0 = a2 and (Ψ0)u=0 = b2. Hence it follows from (3.49)
that for u ≥ 0, v ≥ 0,

Ψ4

Ψ0

=
a2

b2
. (3.53)

Consequently with ū = au, v̄ = bv we see, following (3.48), that V (ū, v̄)
satisfies the wave equation

Vv̄v̄ = Vūū . (3.54)

Using the d’Alembert formula with (by (3.16) and (3.31))

V (0, v̄) = log
cos v̄

cosh v̄
, and Vū(0, v̄) = tan v̄ − tanh v̄ , (3.55)

we have

V (ū, v̄) =
1

2
log

(

cos(ū + v̄) cos(v̄ − ū)

cosh(ū + v̄) cosh(v̄ − ū)

)

+
1

2

∫ v̄+ū

v̄−ū
tan ξ − tanh ξ dξ ,

(3.56)
which simplifies to

V = log

(

cos(au − bv)

cosh(au + bv)

)

, (3.57)

for u ≥ 0, v ≥ 0.
We do not yet know Ψ0, Ψ2, Ψ4 individually for u > 0, v > 0. However we

do know the following relations between them which hold for u ≥ 0, v ≥ 0:

Ψ4

Ψ0

=
a2

b2
, 3Ψ2 = Ψ

1/2

0 Ψ
1/2

4 , (3.58)
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and thus

3 Ψ2 =
b

a
Ψ4 =

a

b
Ψ0 . (3.59)

Using the latter in the Bianchi identities (3.11)–(3.14) we have

3 b

a

∂Ψ2

∂u
=

(

Mu +
1

2
Uu

)

3 b

a
Ψ2 −

3

2
VvΨ2 , (3.60)

3 a

b

∂Ψ2

∂v
=

(

Mv +
1

2
Uv

)

3 a

b
Ψ2 −

3

2
VuΨ2 , (3.61)

∂Ψ2

∂u
=

3

2
UuΨ2 −

3 a

2 b
VvΨ2 , (3.62)

∂Ψ2

∂v
=

3

2
UvΨ2 −

3 b

2 a
VuΨ2 . (3.63)

Thus (3.60) and (3.62) with Ψ2 6= 0 yield

Mu − Uu = −
a

b
Vv , (3.64)

and (3.61) and (3.63) with Ψ2 6= 0 yield

Mv − Uv = −
b

a
Vu . (3.65)

With V given by (3.57) the first of these two equations reads

Mu − Uu = −a tan(au − bv) + a tanh(au + bv) ,

=
∂

∂u
(log cos(au − bv) + log cosh(au + bv)) . (3.66)

Integrating and using the boundary conditions (3.16) results in

M − U = log {cos(au − bv) cosh(au + bv)} . (3.67)

We easily see that this satisfies (3.65) with again V given by (3.57). At this
point we do not know M and U separately for u > 0, v > 0. Substituting for
U in terms of M from (3.67) and for V from (3.57) into the field equations
(3.3) and (3.4) results in the equations

2 Muu = −M2

u , (3.68)

and
2 Mvv = −M2

v , (3.69)
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respectively. Since Mu = 0 when u = 0 and when v = 0, and in addition
Mv = 0 when u = 0 and when v = 0, the only solutions of (3.68) and (3.69)
which satisfy the boundary conditions are

Mu = 0 = Mv , (3.70)

for u ≥ 0, v ≥ 0 and thus it follows from the boundary conditions (3.15) and
(3.16) that

M = 0 , (3.71)

for u ≥ 0, v ≥ 0. Hence we have from (3.67):

U = − log{cos(au − bv) cosh(au + bv)} , (3.72)

for u ≥ 0, v ≥ 0.
With V, M, U given by (3.57), (3.71) and (3.72) respectively the line ele-

ment (2.1) reads

ds2 = − cos2(au − bv) dx2 − cosh2(au + bv) dy2 + 2 du dv , (3.73)

for u ≥ 0, v ≥ 0. Calculating Ψ0, Ψ2, Ψ4 from (3.6), (3.8) and (3.10), using
V, M, U given by (3.57), (3.71) and (3.72), results in

Ψ0 = b2 , Ψ2 =
1

3
ab , Ψ4 = a2 , (3.74)

for u ≥ 0, v ≥ 0. It is now straightforward to check that (3.11)–(3.14) are
satisfied since b Uu = a Vv and a Uv = b Vu with V given by (3.57) and U by
(3.72).

4 Discussion

We have seen that an important part of the argument in section 3 is the
assumption (3.46) relating Ψ2 to Ψ0 and Ψ4. It is clear that, as a conse-
quence of the field equations (3.42) and (3.45), (3.46) implies the separation
of variables (3.49) in the function Ψ4/Ψ0. The converse is also true. If the
separation of variables (3.49) is assumed then, as a consequence of the field
equations (3.42) and (3.45), the equation (3.46) holds. To see this we note
that if the separation of variables (3.49) is assumed then (3.42) reads

∂

∂v

(

Vv
Ψ2

Ψ0

)

−
∂

∂u

(

Vu
Ψ2

Ψ4

)

= 0 . (4.1)
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Putting

ξ =
Ψ2

Ψ
1/2

0 Ψ
1/2

4

, (4.2)

we can rewrite (4.1) as

∂

∂v



Vv
Ψ

1/2

4

Ψ
1/2

0

ξ



 =
∂

∂u



Vu
Ψ

1/2

0

Ψ
1/2

4

ξ



 . (4.3)

Using (4.2) again we can rewrite (3.45) as

∂

∂v



Vv
Ψ

1/2

4

Ψ
1/2

0

ξ−1



 =
∂

∂u



Vu
Ψ

1/2

0

Ψ
1/2

4

ξ−1



 . (4.4)

Writing these equations out more explicitly we have


Vv
Ψ

1/2

4

Ψ
1/2

0



 ξv −



Vu
Ψ

1/2

0

Ψ
1/2

4



 ξu = −







∂

∂v



Vv
Ψ

1/2

4

Ψ
1/2

0



−
∂

∂u



Vu
Ψ

1/2

0

Ψ
1/2

4











ξ ,

(4.5)

−



Vv
Ψ

1/2

4

Ψ
1/2

0



 ξv +



Vu
Ψ

1/2

0

Ψ
1/2

4



 ξu = −







∂

∂v



Vv
Ψ

1/2

4

Ψ
1/2

0



−
∂

∂u



Vu
Ψ

1/2

0

Ψ
1/2

4











ξ .

(4.6)
Adding (4.5) and (4.6) with ξ 6= 0 results in (3.48) and then (4.5) and (4.6)
each become



Vv
Ψ

1/2

4

Ψ
1/2

0



 ξv −



Vu
Ψ

1/2

0

Ψ
1/2

4



 ξu = 0 . (4.7)

We now have before us the wave equation (3.48) and this equation (4.7).
Under the coordinate transformation u → ū = ū(u) and v → v̄ = v̄(v),

mentioned following eq.(2.12) above, Ψ0 → Ψ̄0 = dū
du

(

dv̄
dv

)

−1

Ψ0, Ψ2 → Ψ̄2 =

Ψ2 and Ψ4 → Ψ̄4 = dv̄
dv

(

dū
du

)

−1

Ψ4 and thus ξ → ξ̄ = ξ. Hence if we choose

dū

du
= (A(u))1/2 and

dv̄

dv
= (B(v))1/2 , (4.8)

with A(u), B(v) appearing in the presently assumed separation of variables
(3.49) then Ψ̄4 = Ψ̄0 and (4.7) and (3.48) simplify to read

Vv̄ ξv̄ = Vū ξū , (4.9)

and
Vv̄v̄ = Vūū , (4.10)
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respectively. The general solution of the wave equation (4.10) is

V (ū, v̄) = f(ū + v̄) + g(ū − v̄) , (4.11)

where the functions f, g are arbitrary functions of their arguments. Substi-
tuting into (4.9) we have

(ξū − ξv̄) f ′ + (ξū + ξv̄) g′ = 0 , (4.12)

where the primes on f, g denote differentiation of these functions with respect
to their arguments. If (4.12) is to hold for f, g arbitrary then we must have
ξū = 0 = ξv̄ which implies that ξ = constant and thus (4.2) agrees with
(3.46).

As in section 2 we can write the line element of the space–time in section
3 in a unified form incorporating each of the four regions of the space–time
I(u < 0, v < 0), II(u > 0, v < 0), III(u < 0, v > 0) and IV(u > 0, v > 0) as

ds2 = − cos2(au+ − bv+) dx2 − cosh2(au+ + bv+) dy2 + 2 du dv . (4.13)

On the tetrad defined by the basis 1–forms ϑ1 = cos(au+ − bv+) dx, ϑ2 =
cosh(au+ + bv+) dy, ϑ3 = dv and ϑ4 = du the Ricci tensor components are

Rab = b δ(v) (tan au+ + tanh au+) δ3

a δ3

b + a δ(u) (tan bv+ + tanh bv+) δ4

a δ4

b

+2 ab ϑ(u) ϑ(v) gab . (4.14)

The Weyl conformal curvature tensor components in Newman–Penrose no-
tation are

Ψ0 = b2ϑ(v) +
1

2
b (tanh au+ − tan au+) δ(v) , (4.15)

Ψ1 = 0 , (4.16)

Ψ2 =
1

3
ab ϑ(u) ϑ(v) , (4.17)

Ψ3 = 0 , (4.18)

Ψ4 = a2ϑ(u) +
1

2
a (tanh bv+ − tan bv+) δ(u) . (4.19)

For u > 0, v > 0 this Weyl tensor is Type D in the Petrov classification.
The situation following the collision of the two gravitational shock waves is
more complicated than in the electromagnetic case. Now the energy in the
incoming waves is re-distributed into (1) two light–like shells (see [8]), which
could correspond to bursts of neutrinos, described by the Dirac delta function
terms in the Ricci tensor components (4.14), (2) two impulsive gravitational
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waves described by the Dirac delta function terms in the Weyl tensor com-
ponents (4.15) and (4.19) and (3) dark energy in the region u > 0, v > 0
described by the Ricci tensor in this region of space–time having the form

Rab = Λ gab with Λ = 2 a b . (4.20)

It is well known that the Bell–Szekeres space–time with line element (2.34)
can be written as the sum of the line elements of two 2–dimensional manifolds
of equal constant curvature [9]. This is the so–called Bertotti–Robinson
space–time [10], [11]. Motivated by this we have derived the line element
(3.73) as the sum of the line elements of two 2–dimensional manifolds of
constant curvature differing only in sign (see [12], [13]). This is the so–called
Nariai–Bertotti space–time [10], [14]. A particularly simple example of a
collision of plane, homogeneous, light–like signals combining gravitational
and electromagnetic shock waves in each in–coming signal has recently been
given in [15].
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