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Abstract. Universal Nearest Neighbours (unn) is a classifier recently
proposed, which can also effectively estimates the posterior probability
of each classification act. This algorithm, intrinsically binary, requires
the use of a decomposition method to cope with multiclass problems,
thus reducing their complexity in less complex binary subtasks. Then,
a reconstruction rule provides the final classification. In this paper we
show that the application of unn algorithm in conjunction with a recon-
struction rule based on the posterior probabilities provides a classifica-
tion scheme robust among different biomedical image datasets. To this
aim, we compare unn performance with those achieved by Support Vec-
tor Machine with two different kernels and by a k Nearest Neighbours
classifier, and applying two different reconstruction rules for each of the
aforementioned classification paradigms. The results on one private and
five public biomedical datasets show satisfactory performance.

1 Introduction

Humans are limited in their ability to distinguish similar objects and to diagnose
diseases during image interpretation because of noise and of their non-systematic
search patterns. In addition, the vast amount of image data generated by imaging
devices makes the detection of potential diseases a burdensome task, may reduce
the reproducibility and may cause oversight errors. In biomedical imaging, de-
velopments in computer vision, machine learning as well as artificial intelligence
have shown that automatic or semi-automatic image analysis may support the
physicians in different medical fields, overcoming most of the above limitations.

In this paper we focus on the challenging task of classifying biomedical im-
ages. Indeed, developing one classifier architecture with robust and satisfactory
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120 R. D’Ambrosio et al.

performance over different biomedical image datasets is still an open issue. Main
difficulties are related to several factors, e.g. high variability of images belonging
to different fields, the number of available images, the type of descriptors, etc..

Recently, some of the authors of this paper have proposed the Universal Near-
est Neighbours (unn) classifier [1]. This algorithm, intrinsically binary, requires
the use of a decomposition method to cope with multiclass problems reducing
these tasks into several binary subtasks. Then, a reconstruction rule provides
the final classification [2–4]. Furthermore, it was proven that unn classifier can
effectively estimates the posterior probability of each classification act [5]. This
permits us to use this information to apply reconstruction rules potentially more
effective than others criteria proposed in the literature, which set the final deci-
sion using the crisp labels provided by the binary learners.

The contribution of this paper is the proposal of a new classification scheme
combining unn algorithm with a reconstruction rule based on posterior prob-
ability. To proof this claim, we have performed several tests on six different
biomedical image datasets comparing unn performance with those achieved by
Support Vector Machine (SVM) with two different kernels and by a k Near-
est Neighbours (kNN) classifier. Moreover, the tests were conducted applying
two different reconstruction rules for each of the aforementioned classification
paradigms.

2 Methods

This section first presents decomposition schemes used by unn to address mul-
ticlass classification tasks and, second, it introduces the unn itself.

2.1 Decomposition Methods

A classification task consists in assigning to sample x ∈ R
n a label representative

of one class belonging to a set Ω : {ω1, ω2, . . . , ωC}. When we are facing with
a multiclass problem, we can make use of a decomposition approach reducing
problem complexity in less complex binary subtasks and recombining binary
classifiers outputs through a reconstruction rule.

Among the several decomposition rules proposed in literature [2, 3] we inves-
tigate the One-per-Class (OpC) decomposition method that reduces the original
problem into C binary problems each one addressed by a dichotomizer Mc.
We say that Mc is specialized in the cth class when it aims at recognizing
if the sample x belongs either to the cth class or, alternatively, to any other
class. Its output is 1 if x ∈ ωc, otherwise it is −1. For each sample x, the
crisp outputs of dichotomizers are collected into the binary profile: M(x) =
[M1(x),M2(x), . . . ,MC(x)]. Furthermore, dichotomizers may supply other in-
formation typically related to the degree that the sample belongs (or does not
belong) to the corresponding class. Such information is collected in a reliability
profile, ψ(x) = [ψ1(x), ψ2(x), . . . , ψC(x)], whose elements measure the classifica-
tion reliability on pattern x provided by each dichotomizer. Each entry varies in
the interval [0, 1], and a value close to 1 indicates a very reliable classification.
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Table 1. The three unn loss functions, their corresponding solutions δj of eq. (4) and
their corresponding weights wi updating eq. (5)

Loss function(ψ) W+
j W−

j δj in eq. (4) wi in eq. (5)

exp(−x) ∑
i:j∼ki, yicyjc>0 wi

∑
i:j∼ki, yicyjc<0 wi

1
2
log(

W+
j

W−
j

) wiexp(−δjyicyjc)

log2(1 + exp(−x)) ∑
i:j∼ki, yicyjc>0 wi

∑
i:j∼ki, yicyjc<0 wi log(

W
+
j

W−
j

)
wiexp(−δjyicyjc)

1−wi(1+exp(−δjyicyjc))

−x+
√
1 + x2

∑
i:j∼ki, yicyjc>0 wi

∑
i:j∼ki, yicyjc<0 wi

2W+
j

−1

2
√

W+
j W−

j

1− 1−wi+
√

wi(2−wi)δjyicyjc√
1+δ2jwi(2−wi)+2(1−wi)

√
wi(2−wi)δjcyicyjc

Table 2. unn loss function and posterior probability estimators (p̂c(x))

Loss function name Loss function(ψ) p̂c(x) Acronym

exponential exp(−x) (1 + exp(−2hc(x)))
−1 unn(exp)

logistic log2(1 + exp(−x)) (1 + exp(−hc(x)))
−1 unn(log)

Matsushita −x+
√
1 + x2 1

2
(1 + hc(x)√

1+hc(x)2
) unn(Mat)

The reconstruction rules may use both binary and reliability profiles to set
the final decision. We present now two reconstruction rules for OpC: the first
is a traditional implementation referred to as Hamming decoding (Hd), whereas
the second is referred to as MDS rule and it has been introduced in [4]. In case
of Hd, the final decision is given by O(x) = ωs, with:

s = argminidH(D(ωi),M(x)) (1)

where

dH(D(ωi),M(x)) =
∑C

c=1(
1−(D(ωi,c)Mc(x))

2 ) ; D(ωi, c) =

{
1 if i = c

−1 if i �= c

(2)
where s denotes the index of the dichotomizer setting the final output O(x) ∈ Ω.
In case of MDS, we have:

s =

{
argmaxc(Mc(x) · ψc(x)), if m ∈ [1, C]

argminc(−Mc(x) · ψc(x)), if m = 0
(3)

where m is defined as m =
∑C

c=1[Mc(x) = 1], and square brackets denote the
indicator function.

2.2 Universal Nearest Neighbours

Universal Nearest Neighbour (unn) is a supervised learning algorithm that in-
duces a leveraged kNN rule by globally minimizing a surrogate loss function in
a boosting framework [1, 6–8].
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122 R. D’Ambrosio et al.

Algorithm 1. Algorithm Universal Nearest Neighbors, unn(S, ψ, k)

Input: S = {(xi,yi), i = 1, 2, ...,m, xi ∈ R
n, yi ∈ {−1, 1}C}, ψ strictly convex loss,

k ∈ N∗;
Let αj ← 0,∀j = 1, 2, ...,m;
for c = 1, 2, ..., C do

Let w ← −∇ψ(0)/m;
for t = 1, 2, ..., T do

[I.0] Let j ←Wic(S,w);
[I.1] Let δj ∈ R solution of:

∑
i:j∼ki

yicyjc∇ψ
(
δjyicyjc +∇−1

ψ (−wi)
)

= 0 ; (4)

[I.2] ∀i : j ∼k i, let
wi ← −∇ψ

(
δjyicyjc +∇−1

ψ (−wi)
)
, (5)

∀i = 1, 2, ..,m, let

wi ←
wi∑m
h=1 wh

, (6)

[I.3] Let αjc ← αjc + δj ;

Output: hc(xq) =
∑
j∼kq αjcyjc ; ∀c = 1, 2, · · · , C

Let denote by S = {(xi,yi), i = 1, 2, ...,m, xi ∈ R
n, yi ∈ {−1, 1}C} the

training set. According with OpC decomposition scheme the problem is re-
duced into C binary classification tasks with corresponding sets of samples
S(c) = {(xi, yic), i = 1, 2, ...,m}. The vector of labels yi ∈ {−1, 1}C encodes
class memberships, assuming yic = 1 iff xi belongs to class c and yic = −1
otherwise. For each problems, we learn a classifier hc : R

n → R by minimizing
a surrogate risk over S(c) [9, 7, 8]. A surrogate risk, considered as the actual
missclassification rate of hc on the training data S, has the following general
expression:

εψS (hc)
.
=

1

m

m∑

i=1

ψ(yichc(xi)) , (7)

for some function ψ that we call a surrogate loss. Quantity yichc(xi) ∈ R is called
the multiclass edge of classifier hc on example (xi, yic).

Let NNk(x) be the set of the k nearest neighbours (k ∈ N
∗) of an example x.

Then, the unn classification rule , introduced in [1], is expressed as the following
weighted kNN voting rule:

hc(x) =
∑

j∈NNk(x)
αjcyjc (8)

where αjc ∈ R is the leveraging coefficient for example j in class c, with j =
{1, 2, . . . ,m} and c = {1, 2, . . . , C}. Note that those coefficients are the solution
of minimising the surrogate risk in eq. (7). Hence, eq. (8) linearly combines class
labels of the k nearest with their leveraging coefficients. Eventually, one leverage
coefficient (αjc) per class is learned for each weak classifier (Alg.1)
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We report in this paper three versions of unn with the following losses: ex-
ponential, logistic and Matsushita, detailed in Table 1 and Table 2. For each of
those functions we give the corresponding expression of δj , approximation to the
solution of eq. (4), and wi in eq. (5) in Table 1.

unn may supply information related to the degree that the test sample x
belongs (or not) to the corresponding class. Thus, we estimate the posterior
probability (p̂c(x)) of decision taken by unn on a query sample x. We report es-
timator’s formal definition for each loss function of unn in Table 2. The theorical
approach for deriving p̂c(x) from hc(x) is fully given in [5].

3 Datasets

Table 3. Summary of the used datasets

Dataset Samples Classes Majority class Minority class features Availability

BioCells 489 2 79.6% 20.5% 64 Private

DERM 366 6 30.6% 5.5% 33 UCI

IIFI 600 3 36.0% 31.5% 14 UCBM

Yeast 1479 9 31.3% 1.6% 8 UCI

ICPRBOF 721 6 28.9% 8.0% 1024 ICPR2012

ICPRBIF 721 6 28.9% 8.0% 1024 ICPR2012

We used one private and five public datasets, belonging to images classification
problems of different biomedical domains. They are characterized by a large
variability with respect to the number and type of features, classes and samples,
allowing the assessment of the performance of classifiers in different conditions.
Synthetic data about the used datasets are reported in Table 3, while a more
detailed description is reported in the following:

Bio Cells (BioCells)[10]: The images were acquired by means of a fully flu-
orescence microscope. In biological experiments different NIS proteins mutated
are expressed for putative sites of phosphorylation. The effect on the protein
localization of each mutation is studied after immunostaining using anti-NIS an-
tibodies. Immunocytolocalization analysis on 489 cells revealed 2 cell types with
different subcellular distributions of NIS.

Dermatology (DERM)[11]: This is a dataset with 366 instances represented
by 12 clinical features and 21 histopathological features taken from skin samples.

Indirect Immunofluorescence Intensity (IIFI) [12]: Connective tissue dis-
ease is autoimmune disorder identified by a chronic inflammatory process diag-
nosed by Indirect Immunofluorescence on HEp-2 substrate. The dataset consists
of 14 statistical features extracted from 600 samples distributed over 3 classes.

Yeast (Yeast)[11]: This database contains information about 10 localization
sites of Yeast cells. It is composed of 1484 instances represented by 8 features. We
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remove the endoplasmic reticulum lumen class that makes impossible perform
ten-fold cross validation since it has only 5 sample.

International Conference on Pattern Recognition HEp2 Cells (ICPR):
HEp2 images were acquired by means of a fluorescence microscope coupled with a
50Wmercury vapor lamp. This is a dataset has 791 instances distributed over six
classes. We generated two version of this dataset, ICPRBOF and ICPRBIF using
two kind of descriptors: Bag of Features and BIF respectively.

4 Experiments

To proof that unn in conjunction with MDS provides robust performance, we
performed several tests on six datasets comparing unn performance with those
achieved by SVM with a linear (SVMl) and a gaussian (SVMRBF ) kernels, and
by a kNN classifier. According to section 2.1, compared decomposition schemes
are MDS and Hamming decoding (Hd).

As measure of classifier performance, we compute the accuracy and the F-
measure. The latter is defined as F-measure = 2((Recall)−1×(Precision)−1)−1.
Recall is the fraction of samples labelled as belonging to the considered class that
are correctly classified, whereas Precision is the fraction of samples in the con-
sidered class that are correctly classified.

Experiments are performed using a 10-fold cross validation scheme. Each
fold is randomly generated maintaining the a-priori distribution of the original
dataset. For each fold, classifiers parameters are optimized running a 5-fold cross
validation. Reported results are computed averaging out the results obtained for
each fold.

4.1 Classifier Reliability

We have tested three implementations of unn, i.e. unn(exp), unn(log) and
unn(Mat), using three different loss functions for the learn of leveraging kNN .
Reliabilities of unn implementations tested measured in terms of posterior
probabilities p̂c(x) are computed as reported in Table 2. For further details, the
interested reader may refer to [5]. To estimate the posterior probabilities for
SVM we use the method presented in [13]. Given a SVM decision value f for
class c, we compute ψc(x) as:

ψc(x) =
1

1 + exp(af(x) + b)
, (9)

where a and b are estimated by maximizing the log-likelihood on training samples
using a five-fold cross validation.

kNN is a statistical classifier where its classification reliability is computed
using the definition reported in [14]:

ψc(x) = min[ max (1− Omin
Omax

, 0) , 1− Omin
Omin2

] (10)
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Table 4. Average values (%) of accuracy and F-measure of the different classifiers. We
mark highest value (red) and the second one (green) in each row.

Classifiers

Metrics (%)
unn(exp) unn(log) unn(Mat) SVMl SVMRBF kNN

MDS Hd MDS Hd MDS Hd MDS Hd MDS Hd MDS Hd

BioCells

Accuracy 87.1 87.1 86.5 86.5 87.3 87.3 74.3 74.3 87.7 87.7 85.2 85.2

F-measure 77.7 77.7 76.9 76.9 78.2 78.9 66.9 66.9 76.9 76.9 75.2 75.2

DERM

Accuracy 97.5 97.6 96.5 96.4 97.7 97.1 97.1 87.7 96.9 95.5 95.9 95.5

F-measure 97.3 97.3 96.1 95.7 97.3 96.6 96.5 81.2 96.6 95.1 95.4 95.2

IIFI

Accuracy 69.5 69.3 68.8 69.1 70.8 68.8 67.2 66.7 71.5 67.4 70.3 68.7

F-measure 69.0 68.5 68.4 68.4 70.3 68.0 66.8 64.8 70.3 65.5 69.6 67.7

Yeast

Accuracy 59.1 58.0 57.1 55.5 53.9 53.5 52.8 48.3 58.4 54.5 54.1 54.3

F-measure 50.7 46.3 47.5 45.4 41.5 40.9 41.2 24.2 47.8 41.7 46.1 44.5

ICPRBOF

Accuracy 88.1 85.3 87.1 84.6 85.9 80.5 65.4 66.0 86.3 81.6 25.1 26.6

F-measure 87.4 84.9 86.2 83.3 85.8 81.1 72.3 55.1 85.2 79.8 21.5 21.2

ICPRBIF

Accuracy 95.7 95.6 94.9 95.5 95.4 94.9 91.8 89.8 95.3 94.4 95.1 93.91

F-measure 95.6 95.4 94.4 95.4 95.6 95.1 90.7 85.5 95.2 94.0 94.8 93.7

Omin is the distance between x and the nearest sample of the validation set,
i.e. the sample determining the class, Omax is the highest among the values of
Omin obtained from all samples of the output class belonging to the test set,
and Omin2 is the distance between x and the nearest sample in the validation
set belonging to a class other than the output one.

4.2 Results on Biomedical Images Datasets

We report in Table 4 the classification performance provided by unn, SVM and
kNN classifiers on the six datasets. For each classification task, we report the re-
sults obtained using both MDS andHd reconstruction rules. In order to provide
a global comparison among the results, we calculate the relative performance of
each experimental configurations with respect to the others (Fig. 1). For each
dataset, the twelve columns with the accuracy values are sorted individually, and
each classification method is assigned a rank with respect to its place among the
others. The largest rank is twelve (assigned to the best method) and the lowest is
one (assigned to the worst method). The six ranks for each classification method
are then summed up to give a measure of the overall dominance among the meth-
ods in terms of accuracy. An analogous procedure has been carried out in case of
F-measure. The analysis of data reported both in Table 4 and Fig. 1 permits us to
derive the following three considerations. The first one concerns the comparison
between MDS and Hd reconstruction rules. Independently of the classifier and
of performance metric considered, the former improves classification results in
comparison with the latter over 90%.We deem that such performance improve-
ment is mainly due to the fact that MDS rule uses not only predicted crisps
labels, as Hd does, but also the corresponding classification reliability. The sec-
ond consideration focuses on unn, observing that its performance improve using
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Fig. 1. Panel A and B show the rank for accuracy and F-measure respectively

posterior based reconstruction rule. Indeed, MDS scheme equals or improves
unn performance with Hd scheme in 85% of the cases, at least. For instance, fo-
cusing on ICPRBOF dataset, MDS improves unn performance for all the three
configurations of 2%, at least, in terms of both accuracy and F-measure. The
third observation concerns how unn performance compares with those provided
by other classifiers. From a general point of view, turn our attention to Fig. 1
where we notice that the value of unn(exp) rank is larger than the ones of other
classifiers. Focusing now on recognition performance we note that unn classifiers
with MDS scheme always overcome performance of SVM with linear kernel.
unn also overcome kNN results with at least one configuration among the three
tested. Comparing performance of unn with those of SVMRBF we note that
results are quite similar.

5 Conclusion

In this paper we have proofed that the unn algorithm in conjunction with a
reconstruction rule based on the posterior probabilities provides a classification
scheme robust among various biomedical image datasets. Indeed, this classifica-
tion scheme outperforms other statistical and kernel-based classifiers. Further-
more, this reconstruction rule based on the posterior probabilities has shown
larger recognition performance than a reconstruction rule based on crisp labels
only.
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