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ADAPTIVE ESTIMATION OF RANDOM-EFFECTS DENSITIES IN LINEAR

MIXED-EFFECTS MODEL

G. MABON

Abstract. In this paper we consider the problem of adaptive estimation of random-effects densities in
linear mixed-effects model. The linear mixed-effects model is defined as Yk,j = αk + βktj + εk,j where

Yk,j is the observed value for individual k at time tj for k = 1, . . . , N and j = 1, . . . , J . Random variables

(αk, βk) are called random effects and stand for the individual random variables of entity k. We denote
their densities fα and fβ and assume that they are independent of the measurement errors (εk,j). We

introduce kernel estimators of fα and fβ and present upper risk bounds. We also compute examples of

rates of convergence. The focus of this work lies on the near optimal data driven choice of the smoothing
parameter using a penalization strategy in the particular case of fixed interval between times tj . Risk

bounds for the adaptive estimators of fα and fβ are provided. Simulations illustrate the relevance of the

methodology.

Keywords. Adaptive estimation. Nonparametric density estimation. Deconvolution. Linear mixed-effects
model. Random effect density. Mean squared risk.

1. Introduction

Mixed models bring together fixed and random effects. They allow analysis of repeated measurements or
longitudinal data. In this paper, we concentrate on linear mixed-effects models defined as

Yk,j = αk + βktj + εk,j , k = 1, . . . , N and j = 1, . . . , J (1)

where Yk,j denotes the observed value for individual k at time tj and (αk, βk) represent the individual
random variables of entity k. They are known as random effects. The random variables (εk,j) represent
the measurement errors. We denote their densities fα, fβ and fε. We do not assume that αk and βk are
independent. We make the following assumptions:

(A1) Times (tj)0≤j≤J are known and deterministic and ∆j = ∆ for all j, tj = j∆ and J ≥ 6.
(A2) (εk,j)k,j are i.i.d. with distribution fε and the Fourier transform of fε does not vanish on the real

line.
(A3) (αk, βk) are i.i.d. with respective distribution fα and fβ .
(A4) (αk, βk) are independent of (εk,j)k,j .
(A5) ε is symmetric.

The aim of this paper is to recover the densities fα and fβ from the data (Yk,j) in a nonparametric setting.
Mixed models have been widely studied in a parametric context. For example, Pinheiro and Bates (2000)

have considered the problem assuming that both random effects and measurement errors are Gaussian,
which enables them to use a maximum likelihood approach. Nonetheless the normality assumption can be
too strong in some cases. In this way, Wu and Zhu (2010) relaxed the normality assumption estimating the
first four moments of the random-effects density. We can also cite previous works of Shen and Louis (1999)
who consider a smoothing method without any assumption on the error distribution fε, Zhang and Davidian
(2001) and Vock et al. (2011) who propose a semi-nonparametric approach based on the approximation of
the random-effects density by an Hermite series assuming that the error distribution is Gaussian. Some
approaches are based on normal mixtures, see Ghidey et al. (2004), Komárek and Lesaffre (2008). For
nonparametric approach, we can cite Claeskens and Hart (2009) who develop a nonparametric goodness-of-
fit test in mixed models providing a nonparametric estimator if the normality hypothesis is rejected. Mixed
models are also studied in Bayesian litterature, see Ibrahim and Kleinman (1998) who allow the prior to be
nonparametric by taking a Dirichlet process.

Here we consider an approach based on deconvolution methods. The convolution model is a classical
setting in nonparametric statistics which has been widely studied. There exists a large amount of literature
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on the subject assuming first that the noise density is known. We can cite Carroll and Hall (1988), Stefanski
(1990), Stefanski and Carroll (1990), Fan (1991), Efromovich (1997) and Delaigle and Gijbels (2004) who
study rates of convergence and their optimality for kernel estimators. Concerning studies of rate optimality
in the minimax sense, we refer to Butucea (2004) and Butucea and Tsybakov (2008a,b). Yet the drawback
of these methods is that they all work under the assumption that the error distribution is known. We
can also cite, in the known error case, Dion (2014) who study nonparametric estimators based on Lepski’s
method. However, the main goal of this paper lies in an adaptive choice of a smoothing parameter. For
the most part, the adaptive bandwidth selection in deconvolution models has been addressed with a known
error distribution, see for example Pensky and Vidakovic (1999) for wavelet strategy, Comte et al. (2006),
Butucea and Comte (2009) for projection strategies, or Meister (2009) and references therein. Adaptive
estimation in deconvolution problems with unknown error density has been recently studied in a rigorous
way. Several papers focus on that matter as those of Comte and Lacour (2011), Johannes and Schwarz
(2013), Dattner et al. (2013), Kappus (2014) and Kappus and Mabon (2014). Rates of convergence have
been presented in Neumann (1997) and, more recently, in Johannes (2009), or Meister (2009) under the
assumption that a preliminary sample of the noise ε is observed.

More precisely, we follow an approach introduced in deconvolution literature but in presence of repeated
measurements. Rates of convergence in a repeated observations model have been presented in Li and Vuong
(1998), Neumann (2007), Delaigle et al. (2008) and Comte et al. (2013). More recently, Kappus and Mabon
(2014) have achieved a new adaptive procedure in this setting. Their method has the advantage of deriving
a nearly optimal data driven choice of the smoothing parameter using a penalization strategy under very
weak assumptions: in particular no semi parametric assumption on the shape of the characteristic function
of the noise is required. In this paper, we propose to adapt their method in the context of a mixed-effects
model.

Model (1) has been considered by Comte and Samson (2012). Let us emphasize the novelty of our paper.
Comte and Samson (2012) derive theoretical properties of the nonparametric estimators of fα and fβ only
when the error distribution is known. In that particular case they establish oracle inequalities which ensure
that their method is adaptive. Since assuming that the noise is known is not realistic, they also define an
estimator when it is not. They prove an upper bound for its risk for fixed smoothing parameter. Then
they propose an adaptive strategy which is implemented but not studied from a theoretical point of view.
Here, we modify the procedure and improve the upper bound. Moreover we prove oracle risk bounds for
the adaptive estimators of fα and fβ in presence of unknown noise. These results are difficult and new. We
also derive the rates of convergence for fβ .

This paper is organized as follows. In Section 2, we give the notations, specify the statistical model and
estimation procedures for fα and fβ along with upper bounds for both densities and rates of convergence
for fβ those of fα being known. In Section 3, we introduce adaptive estimators and propose a new adaptive
procedure by penalization in the context of linear mixed-effects model under weak assumptions inspired by
the work of Kappus and Mabon (2014). Besides, the theoretical properties of the adaptive estimators are
studied. In Section 4, we lead a study of the adaptive estimators through simulation experiments. Numerical
results are then presented. In the concluding Section 5 we give further possible developments or extensions
of the method. All the proofs are postponed to Section 6.

2. Statistical model and estimation procedure

2.1. Notations. For two real numbers a and b, we denote a ∨ b = max(a, b), a ∧ b = min(a, b) and
(a)+ = max(a, 0). For two functions ϕ, ψ : R → C belonging to L1(R) ∩ L2(R), we denote ‖ϕ‖ the
L2 norm of ϕ defined by ‖ϕ‖2 =

∫
R |ϕ(x)|2 dx, 〈ϕ,ψ〉 the scalar product between ϕ and ψ defined by

〈ϕ,ψ〉 =
∫
R ϕ(x)ψ(x) dx. The Fourier transform ϕ∗ is defined by ϕ∗(x) =

∫
eixuϕ(u) du. Besides, if ϕ∗

belongs to L1(R) ∩ L2(R), then the function ϕ is the inverse Fourier transform of ϕ∗ and can be written
ϕ(x) = 1/(2π)

∫
e−ixuϕ∗(u) du. Lastly the convolution product ∗ is defined as (ϕ∗ψ)(x) =

∫
ϕ(x−u)ψ(u) du.

2.2. Estimation of fα. Under Assumption (A1), we can write Model (1) for j = 0 as follows

Yk,0 = αk + εk,0 and k = 1, . . . , N. (2)

If observations at t = 0 are not available, we simply set t′j = tj − t1. Then we would estimate the density of
α′k defined by α′k = αk+βkt1 instead. Thus it is interessing that we do not need an independence assumption
between α and β. This is a classical deconvolution model in the context of unknown measurement errors
(see references above).
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The density distribution of Yk,0 is noted fY . Under Model (2) and independence assumptions we have
clearly that fY = fα ∗ fε which implies that f∗α = f∗Y /f

∗
ε . In this case, we have that

fα(x) =
1

2π

∫
e−iuxf∗α(u) du =

1

2π

∫
e−iux

f∗Y (u)

f∗ε (u)
du.

If f∗ε were known, we could simply estimate f∗α with f̂∗Y /f
∗
ε where f̂∗Y is an estimator obtained directly from

the data with a simple empirical estimator. We should only apply the inverse Fourier transform to get an
estimate of fα. Nevertheless, 1/f∗ε is not integrable over R. That is why we cannot compute the inverse
Fourier transform over R. We need to regularize the problem, for example, with a spectral cutoff parameter.
For that we introduce the projection of fα denoted fα,m defined by

fα,m(x) =
1

2π

∫ πm

−πm
e−iux

f∗Y (u)

f∗ε (u)
du. (3)

In this paper the error distribution is assumed to be unknown. To make the problem identifiable, some
additional information on the noise is required. In this subsection we derive an estimation prodecure for f∗ε
which is specific for the estimation of fα. When estimating fβ we will not use the same estimator of f∗ε .

Model (2) can be seen as a repeated observation model. Therefore we can recover an estimation of the
error distribution from the following data:

Uk = Yk,4 − Yk,3 − (Yk,2 − Yk,1) = εk,4 − εk,3 − εk,2 + εk,1

which imply the following equality under Assumption (A2)

f∗U (x) = E
[
eixU

]
= |f∗ε (x)|4 .

Assumption (A5) together with (A2) imply that f∗ε is real-valued and positive, so that f∗U (x) = (f∗ε (x))
4
.

As a consequence f∗4ε can be estimated as follows

f̂∗4ε (x) =

(
1

N

N∑
k=1

cos(xUk)

)
+

. (4)

Nevertheless we need to prevent f̂∗4ε to become too small. For that we introduce a regularization of the
Fourier transform by truncating the estimator following methods presented in Neumann (1997), Comte and
Lacour (2011), Kappus (2014) and Kappus and Mabon (2014). We define the following threshold

kN (x) = sN (x)N−1/2 (5)

where sN (x) ≥ 1 will be defined later. Now we can introduce another estimator of f∗ε defined by

f̌∗ε (x) =

{
(f̂∗4ε (x))1/4 if f̂∗4ε (x) ≥ kN (x),

(kN (x))1/4 otherwise.
(6)

So using the inverse Fourier transform, we can estimate fα,m as follows

f̂α,m(x) =
1

2π

∫ πm

−πm
e−ixu

f̂∗Y (u)

f̌∗ε (u)
du (7)

where f̂∗Y (u) = 1/N
∑N
k=1 e

iuYk,0 .

We can state the following upper bound on the L2 risk for f̂α,m.

Proposition 2.1. Under Assumptions (A1)-(A5), for kN (x) defined by (5) and for f̂α,m defined by (7)
then there is a positive constant C such that

E
∥∥∥fα − f̂α,m∥∥∥2

≤ ‖fα − fα,m‖2 +
C

N

(
1

2π

∫ πm

−πm

1

|f∗ε (u)|2
du+

1

2π

∫ πm

−πm
s2
N (u)

|f∗α(u)|2

|f∗ε (u)|8
du

)
, (8)

where fα,m is defined by (3) and C is a numerical constant.

The first two terms of the right-hand side of Equation (8) correspond to the usual terms when the error

distribution is known (see Comte et al. (2006)): a squared bias term (‖fα − fα,m‖2) and a bound on the
variance depending only on f∗ε . The last term is due to the estimation of f∗ε and in addition depends on f∗α.
This upper bound, for sN ≡ 1, is smaller than the upper bound in Comte and Samson (2012).

Note that for sN ≡ 1, we get the optimal bound. The rates of convergence, for that kind of bounds, are
derived in Comte and Lacour (2011), Comte et al. (2013), Neumann (1997) and Delaigle et al. (2008).
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2.3. Estimation of fβ. First let us define the estimator of fβ . For the estimation of fβ , we use another
approach to see the problem as a deconvolution problem. Without loss of generality we assume that J is
even. So for 1 ≤ j ≤ J/2, we can transform the data as follows

Zk,j =
Yk,2j − Yk,2j−1

∆
= βk +

εk,2j − εk,2j−1

∆
= βk +

ηk,j
∆

, ηk,j = εk,2j − εk,2j−1. (9)

Let us notice that for a fixed j, the (Zk,j)k for k = 1, . . . , N are i.i.d. but Zk,j and Zk,l for j 6= l are not
independent. It means that we preserve the independence between individuals of the sample.

Since βk is independent of ηk,j under Assumption (A4), we can write the following equality fZ1
=

fβ ∗ fηk,j/∆ which implies f∗Zj (x) = f∗β(x)
∣∣f∗ε ( x∆)∣∣2 . Therefore under Assumption (A2) we have f∗β(x) =

f∗Z1
(x)/

∣∣f∗ε ( x∆)∣∣2 . Now using all the observations j we can write that

f∗β(x) =
f∗Z1

(x)

|f∗ε
(
x
∆

)
|2
.

Unlike in the estimation of fα, we do not need to estimate the Fourier transform f∗ε of the error distribution
but only |f∗ε |2: that is why we do not assume here that the noise is symmetric. Let us notice the following
equality

Uk
∆

= Zk,2 − Zk,1 =
1

∆
(εk,4 − εk,3 − εk,2 + εk,1) .

Then we have

f∗U
∆

(x) = E
[
eixU/∆

]
=
∣∣f∗ε ( x∆)∣∣4 .

So |f∗ε |4 can be estimated as follows

|̂f∗4ε |
(
x
∆

)
=

(
1

N

N∑
k=1

cos(xUk∆ )

)
+

.

And to prevent the denominator from becoming too small, we regularize the Fourier transform of the error
distribution as follows

|f̃∗ε
(
x
∆

)
|2 =

|f̂∗ε
(
x
∆

)
|2 =

(
|̂f∗4ε |

(
x
∆

))1/2

if |̂f∗4ε |
(
x
∆

)
≥ kN

(
x
∆

)
,(

kN
(
x
∆

))1/2
otherwise.

(10)

Thus we can estimate f∗β as follows

f̂∗β(x) =
f̂∗Z(x)

|f̃∗ε
(
x
∆

)
|2

with f̂∗Z(x) =
2

N(J − 4)

J/2∑
j=3

N∑
k=1

eixYk,j , for j = 3, . . . , J/2.

We emphasize that the previous definition uses distinct observations for f̃∗ε and f̂∗Z , so that the numerator
and the denominator are independent. This is why Assumption (A1) requires J ≥ 6. We then define fβ,m
as follows

fβ,m(x) =
1

2π

∫ πm

−πm
e−ixu

f∗Z1
(u)

|f∗ε
(
u
∆

)
|2

du. (11)

Applying the inverse Fourier transform, we get an estimate of fβ,m

f̂β,m(x) =
1

2π

∫ πm

−πm
e−ixu

f̂∗Z(u)

|f̃∗ε
(
u
∆

)
|2

du. (12)

Thus we can state the following upper bound on the L2 risk for f̂β,m.

Proposition 2.2. Under Assumptions (A1)-(A4), for kN (x) defined by (5), then f̂β,m defined by (12)
satisfies

E
∥∥∥fβ − f̂β,m∥∥∥2

≤ ‖fβ − fβ,m‖2 +
6m

N
+

12

N(J − 4)

1

2π

∫ πm

−πm

du∣∣f∗ε ( u∆)∣∣4 +
4C1

N

1

2π

∫ πm

−πm

s2
N (u)|f∗β(u)|2∣∣f∗ε ( u∆)∣∣8 du.

(13)
where fβ,m is defined by (11) and C1 is defined in Lemma B.2.
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The terms of the right-hand side of Equation (13) correspond to a squared bias (‖fβ − fβ,m‖2) variance
decomposition. Compared to Comte and Samson (2012), this inequality differs from the last term which is
smaller than theirs, for sN ≡ 1. The first term of variance with order m/N is the bound we would have
if we were in a direct density estimation context. The second term is a classical term appearing in density
deconvolution problems when the error distribution is known but the J − 4 factor is specific to the repeated
measurement framework. The last term of variance is due to the estimation of f∗ε .

2.3.1. Discussion about resulting rates. In order to derive the corresponding rates of convergence of the
estimator of fβ defined by (12), we assume that the density functions fβ and fε belong to some nonparametric
classes of functions. First, we introduce the following type of smoothness spaces

A(a, r, L) =

{
f ∈ L1 ∩ L2(R),

∫
|f∗(u)|2e2a|u|r du ≤ L

}
(14)

S(δ, L) =

{
f ∈ L1 ∩ L2(R),

∫
|f∗(u)|2(1 + u2)δ du ≤ L

}
(15)

with r ≥ 0, a > 0, δ > 1/2 and L > 0. Then if fβ belongs to A(a, r, L), the squared bias term can be
bounded as follows

‖fβ − fβ,m‖2 ≤
L

2π
e−2a|πm|r ,

or if fβ belongs to S(δ, L)

‖fβ − fβ,m‖2 ≤
L

2π
((πm)2 + 1)−δ.

To derive the order of the bound on the variance in Equation (13), we need more information about the
regularity of fε. We add the following classical assumption:

There exist positive constants k0, k
′
0, γ, µ, and s such that for any real x

k0(x2 + 1)−γ/2e−µ|x|
s

≤ |f∗ε (x)| ≤ k′0(x2 + 1)−γ/2e−µ|x|
s

. (16)

• We say that f∗ε ∈ OS(γ) (for ordinary smooth), if f∗ε satisfies (16) with γ = 0, s > 0 and µ > 0.
• We say that γ = 0 f∗ε ∈ SS(s) (for supersmooth), if f∗ε satisfies (16) with s = 0.

Proposition 2.3. If f∗ε satisfies (16) and fβ ∈ S(δ, L) defined by (14), then

E
∥∥∥fβ − f̂β,m∥∥∥2

≤ Cm−2δ +
6m

N
+ C ′

m4γ+1−se4µ(πm)s

N(J − 4)
+ C ′′

m(4γ+1−s)∧2(2γ−δ)+e4µ(πm)s

N

where C,C ′ and C ′′ are positive constants independent of N or J .

Proposition 2.4. Suppose that f∗ε ∈ OS(γ) and fβ ∈ A(a, r, L) defined by (15), then

E
∥∥∥fβ − f̂β,m∥∥∥2

≤ Ce−2a(πm)r +
6m

N
+ C ′

m4γ+1

N(J − 4)
+
C ′′

N

where C,C ′ and C ′′ are positive constants independent of N or J .

The rates are reported in Table 1. We clearly see that the rates of convergence depend on unknown quantities
since they describe the regularity of the density function under estimation as well as the error distribution.
When J is considered as a constant, we find the usual rates of convergence corresponding to density decon-
volution already presented in the literature. Increasing J may improve the rates.

fβ ∈ S(δ, L, ), f∗ε ∈ OS(γ) fβ ∈ S(δ, L), f∗ε ∈ SS(s) fβ ∈ A(a, r, L), f∗ε ∈ OS(γ)

(NJ)
−2δ

2δ+4γ+1 +N−( 2δ
2δ+1∧

δ
2γ ) (logNJ)−2δ/s (logNJ)

4γ+1
r

NJ
+

(logN)
1
r

N

Table 1. Rates of convergence for the MISE

The idea now for the adaptive estimation is to find a penalty term which have the same order as the
bound on the variance. Thus the adaptive estimator will reach automatically the rates of convergence
presented in Table 1. The following section shows that we can obtain an adaptive procedure under weak
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assumptions. In particular, we do not assume there that the characteristic function of the error distribution
has a particular shape (ordinary smooth or supersmooth). In other words, Assumptions (14) or (15) and
(16) are not necessary to derive an adaptive procedure.

3. Model selection

In this section, we introduce an adaptive estimator of |f∗ε |2 which can be uniformly controlled on the
real line. This brings a model selection procedure with very weak assumptions on the error distribution f∗ε .
For that we need to choose a new and adequate sN (x), larger than previously, which will allow us to apply
concentration inequalities of Talagrand type. For δ > 0, let us introduce the weight function w defined as

∀x ∈ R, w(x) = (log(e+ |x|))−
1
2−δ

which has originally been proposed in Neumann and Reiß (2009). The considerations presented in that
paper, combined with ideas given in Kappus (2014) play an important role for the arguments. This function
is of high importance since the penalty terms will involve an empirical version of the characteristic function

in the denominator ; therefore the oracle inequalities depend on a precise control of the deviation of f̂∗4ε
from f∗4ε on the real line. It is shown in Neumann and Reiß (2009) that the distance between both objects,
weighted by w, is simultaneously small on the real axes. In the penalty terms, there will hence occur a loss
of logarithmic order, in comparison to the variance term.

As from now, we set the threshold kN defined by (5) as follows

sN (x) = κ (logN)
1/2

w(x)−1 (17)

where κ is a positive universal constant.

We want to propose an estimator f̂m̂ of f completely data driven. Following the model selection paradigm,
see Birgé (1999), Birgé and Massart (1997) or Massart (2003), we select m̂ as the minimizer of a penalized
criterion

m̂ = argmin
m∈MN

{
−‖f̂m‖2 + p̂en(m)

}
where MN describes the model collections. The penalty term should be chosen large enough to counter-

balance the fluctuation of f̂m around f̂ , but on the other hand, should ideally not be much larger than the
variance terms presented in Equation (13). Here the penalty term is stochastic since the variance terms
depend on the error distribution which is supposed unknown.

3.1. Adaptive estimation procedure for fα. In this section, we adapt the results of Kappus and Mabon
(2014) who proposed a completely data driven procedure in the framework of density estimation in deconvo-
lution problems with unknown error distribution. In the present paper, Model (2) can be seen as a repeated
observation model, which is studied in their paper. The main difference lies in the fact that in Kappus and
Mabon (2014) f∗2ε can be estimated directly from the data with an empirical estimator whereas here only
f∗4ε can be estimated. This, in our case, implies that f∗ε is raised to a greater power in the term specific to
the unknown noise density.

We introduce the following notations

Θ(m) =
1

2π

∫ πm

−πm

w(u)−2

|f∗ε (u)|2
du and Θα(m) =

1

2π

∫ πm

−πm

w(u)−2|f∗α(u)|2

|f∗ε (u)|8
du

Θ̂(m) =
1

2π

∫ πm

−πm

w(u)−2

|f̌∗ε (u)|2
du and Θ̂α(m) =

1

2π

∫ πm

−πm

w(u)−2|f̂∗Y (u)|2

|f̌∗ε (u)|10
du.

These terms correspond to the deterministic and stochastic bounds on the variance appearing in Equa-
tion (8). The difference lies in the introduction of the function w essential for the adaptive procedure. Thus,
we define an empirical penalty as

p̂en(m) = 12λ2(m, Θ̂(m))
Θ̂(m)

n
+ 16κ2 log(Nm)

Θ̂α(m)

N

where κ is the same as in Equation (17), and a deterministic penalty

pen(m) = 12λ2(m,Θ(m))
Θ(m)

N
+ 16κ2 log(Nm)

Θα(m)

N
,
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with λ(m,D) = max

{√
8 log (1 +Dm2),

16
√

2

3
√
N

log
(
1 +Dm2

)}
.

Then, we select the cutoff parameter m̂ as a minimizer of the following penalized criterion

m̂ = argmin
m∈MN

{
−‖f̂α,m‖2 + p̂en(m)

}
(18)

where MN = {1, . . . , N}. We can now state the following oracle inequality:

Theorem 3.1. Under Assumptions (A1)-(A4), let f̂α,m̂ be defined by (7) and (18). Then there are positive
constants Cad and C such that

E‖fα − f̂α,m̂‖2 ≤ Cad inf
m∈MN

{
‖fα − fα,m‖2 + pen(m)

}
+
C

N
. (19)

The latest result is an oracle inequality which means that the squared bias variance compromise is automat-
ically made and completely data driven in a non-asymptotic setting. So rates of convergence are reached
without being specified in the framework. This result is of high interest since in deconvolution problems,
rates of convergence are classically intricate and depend on the regularity types of the function f under
estimation and the error density f∗ε which is alos unknown (see Section 2.3.1).

However the penalty term is not exactly the same as the upper bound terms shown in Equation (8). We
may wonder if a loss due to adaptation occurs. To answer that question, right-hand side of Equations (8)
and (19) have to be compared. More precisely, since the squared bias term ‖fα − fα,m‖2 is unchanged and
N−1 is a negligible term, it comes down to compare pen(m) with

1

N

(
1

2π

∫ πm

−πm

1

|f∗ε (u)|2
du+

1

2π

∫ πm

−πm

|f∗α(u)|2

|f∗ε (u)|8
du

)
.

Clearly the difference lies in the logarithmic terms, and thus, the loss is negligible.

3.2. Adaptive estimation procedure for fβ. As in the previous section, we start by defining the bound
appearing in the known-error case, then the one appearing in the unknown-error case, with additional w
function.

Ξ(m) =
1

2π

∫ πm

−πm

w
(
u
∆

)−2∣∣f∗ε ( u∆)∣∣4 du and Ξβ(m) =
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f∗β(u)|2∣∣f∗ε ( u∆)∣∣8 du.

Ξ̂(m) =
1

2π

∫ πm

−πm

w
(
u
∆

)−2∣∣∣f̃∗ε ( u∆)∣∣∣4 du and Ξ̂β(m) =
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗Z(u)|2∣∣∣f̃∗ε ( u∆)∣∣∣12 du.

We can now define the stochastic penalty associated to the adaptive procedure

q̂en(m) = qen1(m) + q̂en2(m) + q̂en3(m)

= 64
m

N
+ 16

µ2(m, Ξ̂(m))Ξ̂(m)

N(J − 4)
+ 16κ2 log(Nm)

Ξ̂β(m)

N

and the deterministic penalty

qen(m) = qen1(m) + qen2(m) + qen3(m)

= 64
m

N
+ 16µ2(m,Ξ(m))

Ξ(m)

N(J − 4)
+ 16κ2 log(Nm)

Ξβ(m)

N

with weight µ(m,D) = max

{√
8 log (1 +Dm2),

16
√

2

3
√
N(J − 4)

log
(
1 +Dm2

)}
.

It is worth mentioning that the penalty takes into account the three terms of variance showed in Equa-
tion (13). So the penalty has the same order as the bounds on the variance. Therefore we select the cutoff
parameter m̂ as a minimizer of the following penalized criterion

m̂ = argmin
m∈MN

{
−
∥∥∥f̂β,m∥∥∥2

+ q̂en(m)

}
. (20)

Theorem 3.2. Under Assumptions (A1)-(A4), consider f̂β,m̂ defined by (12) and (20). Then there are
positive constants Cad and C such that

E
∥∥∥fβ − f̂β,m̂∥∥∥2

≤ Cad inf
m∈MN

{
‖fβ − fβ,m‖2 + qen(m)

}
+

C

N(J − 4)
+
C

N
. (21)
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The same kind of remarks as after Theorem 3.1 hold here. The latest result is an oracle inequality which
means that the bias variance compromise is automatically made and completely data driven in an almost
non-asymptotic setting. So rates of convergence are reached automatically without being specified in the
framework. As far as we know this result is new in the literature.

4. Simulation

In this section, we only concentrate on a simulation study of fβ . Indeed, the proposed method for the
estimation of fα being mainly taken from Kappus and Mabon (2014), we refer to that paper for the perfor-
mance of the estimator.

The whole implementation is conducted using R software. The integrated squared error ‖f − f̂β,m̂‖2 is
computed via a standard approximation and discretization (over 300 points) of the integral on an interval of

R denoted by I. Then the mean integrated squared error (MISE) E‖f− f̂β,m̂‖2 is computed as the empirical
mean of the approximated ISE over 100 simulation samples.

4.1. Practical estimation procedure. The adaptive procedure is implemented as follows:

. For m ∈MN = {m1, . . . ,mN}, compute −‖f̂β,m‖2 + q̂en(m).

. Choose m̂ such as m̂ = argmin
m∈MN

{
−‖f̂β,m‖2 + q̂en(m)

}
.

. And compute f̂β,m̂(x) =

∫ πm̂

−πm̂
e−ixu

f̂∗Z(u)

|f̃∗ε
(
u
∆

)
|2
du.

Riemann’s sums are used to approximate all the integrals. The penalties are chosen according to Theorem 3.2
and as in Comte et al. (2007) we consider that m can be fractional by taking the following model collection
MN = {m = k/10, 1 ≤ k ≤ 25} associated with the following penalty

q̂en(m) = κ1

(
m

N
+

log(1 + Ξ̂(m)m2)Ξ̂(m)

N(J − 4)

)
+ κ2 log(Nm)

Ξ̂β(m)

N

Moreover the times tj are chosen as tj = j∆ with ∆ = 2 and J = 6 as in Comte and Samson (2012).

4.2. Simulation setting. We consider the four following distributions for β :

. Standard Gaussian distribution, I = [−4, 4].

. Cauchy distribution, f(x) = (π(1 + x2))−1, I = [−10, 10].

. Gamma distribution : 5 · Γ(25, 1
25 ), I = [−1, 13].

. Mixed Gamma distribution : X = W/
√

5.48, with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1), I = [−1.5, 26].

All the densities are normalized with unit variance except the Cauchy density. In all considered cases, fα is
a standard Gaussian distribution.

We consider the two following noise densities with same variance σ2
ε . In the simulation the variance takes

the values 1/10 and 1/4. The first one is a Gaussian density (supersmooth density) which means f∗ε ∈ SS(2).
The second one is a Laplace density (ordinary smooth density) which means f∗ε ∈ OS(2).

Gaussian noise : fε(x) =
1

σε
√

2π
exp

(
− x2

2σ2
ε

)
, f∗ε (x) = exp

(
−σ

2
εx

2

2

)
.

Laplace noise : fε(x) =
1

2σε
exp

(
−|x|
σε

)
, f∗ε (x) =

1

1 + σ2
εx

2
.

The calibration of the two constants are done with intensive preliminary simulations with a sample size
of 500. In the end, we choose κ1 = κ2 = 1. We can notice that in Kappus and Mabon (2014) the constant
are larger. It seems that the greater the power of f∗ε is in the denominator, the smaller the constants are.

4.3. Simulation results. The results of the simulations are given in Tables 2 and 3. For both tables, the
MISE is multiplied by 100 and computed from 100 simulated data sets. We also give the medians of the ISE.
A first remark: estimating the Fourier transform of the noise f∗ε reduces the risk compared to knowing the
density of the noise, a fact already pointed in Comte and Lacour (2011). This can be explained by the fact
that an additional regularization of the characteristic function of the noise comes in. This regularization is
not applied in the procedure when the error distribution is known.

Table 2 corresponds to an estimation procedure where the error distribution is a Laplace density while
Table 3 corresponds to a Gaussian noise. We notice that increasing the sample size improves the estimation
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and increasing the variances degrades the estimation but in an acceptable way. Concerning the medians
of the ISE, they are always lower than the means of the ISE which may indicate that only few estimates
degrade global performance.

For all the test densities, the results are very good.

Comparison with existing results. The results of the standard Gaussian distribution, Cauchy distribu-
tion and Gamma distribution can be compared to those of Kappus and Mabon (2014). We estimate the
same functions but in a more difficult context. In fact we have access to an estimate of (f∗ε )4 when they
have access to an estimate of f∗ε or (f∗ε )2. That makes the problem tougher since the information about f∗ε
is less precise. Nevertheless, if we compare to Kappus and Mabon (2014) the results are very close which is
quite remarkable.

Now if we compare our results to those of Comte and Samson (2012), we must compare: standard
Gaussian distribution and Gamma distribution. We have exactly the same model. We can point out that
our results are twice better when the error distribution is Gaussian. When the error distribution is a Laplace
the results are similar. It is due to the fact that in their procedure their penalty is roughly our penalty qen
multiplied by a term depending on the dimension of the model. When the noise is ordinary smooth as a
Laplace distribution this term behaves as a constant whereas with a supersmooth noise as a Gaussian it
leads to an over penalisation.

So our methodology can handle more cases (supersmooth error) than Comte and Samson (2012) and give
very good results of estimation.

σ2
ε = 1

10 σ2
ε = 1

4

N 200 2000 200 2000

Gaussian fε known 0.344 0.054 0.514 0.129
(0.273) (0.045) (0.513) (0.105)

fε unknown 0.331 0.042 0.317 0.057
(0.251) (0.033) (0.236) (0.051)

Cauchy fε known 0.625 0.105 0.804 0.216
(0.573) (0.097) (0.765) (0.211)

fε unknown 0.507 0.075 0.657 0.090
(0.427) (0.071) (0.599) (0.079)

Gamma fε known 0.398 0.069 0.620 0.161
(0.360) (0.063) (0.517) (0.140)

fε unknown 0.381 0.051 0.506 0.066
(0.347) (0.044) (0.430) (0.051)

Mixed Gamma fε known 0.545 0.095 0.715 0.150
(0.480) (0.084) (0.620) (0.141)

fε unknown 0.506 0.082 0.518 0.092
(0.453) (0.080) (0.495) (0.084)

Table 2. Results of simulation as MISE E
(
‖f − f̂β,m̂‖2

)
×100 averaged over 100 samples.

In brackets we give the median of the ISE also averaged over 100 samples with a Laplace
noise.

5. Concluding remarks

This paper deals with the construction of penalized estimators of the random effect densities fα and fβ
in a linear mixed-effects models. It improves the results of Comte and Samson (2012) to the unknown error
case. We have proved oracle risk bounds for the adaptive estimators of fα and fβ in presence of unknown
noise and derived the rates of convergence for fβ . We have also illustrated our procedures on datasets
simulations. We have noted that our results for the estimation of fβ are twice better when the error is
Gaussian since the procedure of Comte and Samson (2012) is over penalized.

Let us emphasize that we do not assume that fα and fβ are independent. Then we may wonder how we
can recover the joint density of α and β fα,β . We have to construct an estimator of f∗α,β to use the same
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σ2
ε = 1

10 σ2
ε = 1

4

N 200 2000 200 2000

Gaussian fε known 0.349 0.054 0.650 0.142
(0.296) (0.045) (0.598) (0.128)

fε unknown 0.285 0.038 0.349 0.052
(0.239) (0.029) (0.273) (0.053)

Cauchy fε known 0.588 0.119 0.848 0.272
(0.532) (0.112) (0.791) (0.263)

fε unknown 0.481 0.076 0.680 0.089
(0.449) (0.070) (0.607) (0.084)

Gamma fε known 0.401 0.072 0.956 0.207
(0.332) (0.063) (0.910) (0.190)

fε unknown 0.402 0.049 0.461 0.067
(0.316) (0.041) (0.418) (0.055)

Mixed Gamma fε known 0.504 0.089 0.704 0.163
(0.454) (0.084) (0.639) (0.146)

fε unknown 0.504 0.079 0.552 0.101
(0.446) (0.072) (0.484) (0.093)

Table 3. Results of simulation as MISE E
(
‖f − f̂β,m̂‖2

)
×100 averaged over 100 samples.

In brackets we give the median of the ISE also averaged over 100 samples with a Gaussian
noise.

kind of argument. Let us notice that

f∗α,β(u, v) =
E
[
ei(uYk,0+vZk,j)

]
f∗ε (u)|f∗ε ( v∆ )|2

so we could estimate f∗α,β by replacing E
[
ei(uYk,0+vZk,j)

]
by an empirical mean. Next as

fα,β(u, v) =
1

(2π)2

∫∫
e−i(xu+yv)f∗α,β(u, v) dudv,

this implies that a projection estimator would be

(f̂α,β)m1,m2
(u, v) =

1

(2π)2

∫ πm1

−πm1

∫ πm2

−πm2

e−i(xu+yv)f̂∗α,β(u, v) dudv.

This problem requires to choose indepently the cutoffs m1 and m2 which would lead to establish an adaptive
procedure based on Goldenshluger and Lepski (2011) method. This problem would be very difficult and
probably rather technical, this is why it is beyond the scope of the present work.

6. Proofs

6.1. Sketch of the proof of Proposition 2.2. The proof follows the same lines as Proposition 5.2 in
Comte and Samson (2012). The difference is that we apply our Lemma B.2 instead.

6.2. Proof of Theorem 3.1. The proof is similar to the proof of Theorem 3.2. See also Kappus and
Mabon (2014). Thus the proof is omitted.

6.3. Proof of Theorem 3.2. Let us introduce some notations: for k > m,

Ξ̂(m, k) = Ξ̂(k)− Ξ̂(m), Ξ̂β(m, k) = Ξ̂β(k)− Ξ̂β(m).

Moreover,

q̂en(m, k) = qen1(m, k) + qen2(m, k) + qen3(m, k)

=
64(k −m)

N
+ 16

µ̂2(m, k)Ξ̂(m, k)

N(J − 4)
+ 16κ2 log(N(k −m))

Ξ̂β(m, k)

N
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with µ̂(m, k) = max

{√
8 log

(
1 + Ξ̂(m, k)m2

)
,

16
√

2

3
√
N(J − 4)

log
(

1 + Ξ̂(m, k)(k −m)2
)}

.

Now we can start the proof of Theorem 3.2. We denote by m? the oracle cutoff defined by

m? = argmin
m∈MN

{
−‖fβ,m‖2 + qen(m)

}
.

We have
∥∥∥fβ − f̂β,m̂∥∥∥2

≤ 2
∥∥∥fβ − f̂β,m?∥∥∥2

+ 2
∥∥∥f̂β,m? − f̂β,m̂∥∥∥2

.

• Let us notice on the set G = {m̂ ≤ m?} :∥∥∥f̂β,m? − f̂β,m̂∥∥∥2

1G =

(∥∥∥f̂β,m?∥∥∥2

−
∥∥∥f̂β,m̂∥∥∥2

)
1G.

Besides according to the definition of m̂, one has the following inequalities:

−
∥∥∥f̂β,m̂∥∥∥2

+ q̂en(m̂) ≤ −
∥∥∥f̂β,m?∥∥∥2

+ q̂en(m?) (22)

which implies

−
∥∥∥f̂β,m̂∥∥∥2

≤ −
∥∥∥f̂β,m?∥∥∥2

+ q̂en(m?).

Thus ∥∥∥f̂β,m? − f̂β,m̂∥∥∥2

1G =

(∥∥∥f̂β,m?∥∥∥2

−
∥∥∥f̂β,m̂∥∥∥2

)
1G ≤ q̂en(m?).

Taking expectation, we apply the following Lemma proved in Section 6.4.

Lemma 6.1. There is a positive constant C such that for any arbitrary m ∈MN

E [q̂en(m)] ≤ Cqen(m). (23)

It yields for some positive constant C

E
[∥∥∥fβ − f̂β,m̂∥∥∥2

1G

]
≤ 2E

[∥∥∥fβ − f̂β,m?∥∥∥2
]

+ 2E [q̂en(m?)] ≤ 2 ‖fβ − fβ,m?‖2 + 2Cqen(m?).

We just proved the desired result on G as ‖fβ − fβ,m?‖2 = ‖fβ‖2 −‖fβ,m?‖2 and using the definition of m?

E
[
‖fβ − f̂β,m̂‖21G

]
≤ C inf

m∈MN

{
‖fβ − fβ,m‖2 + qen(m)

}
. (24)

• We now consider the set Gc = {m̂ > m?}.∥∥∥f̂β,m̂ − f̂β,m?∥∥∥2

1Gc =

(∥∥∥f̂β,m̂ − f̂β,m?∥∥∥2

− 4 ‖fβ,m̂ − fβ,m?‖2 −
1

2
q̂en(m?, m̂)

)
1Gc

+

(
4 ‖fβ,m̂ − fβ,m?‖2 +

1

2
q̂en(m?, m̂)

)
1Gc

≤ sup
k≥m?
k∈MN

{∥∥∥f̂β,k − f̂β,m?∥∥∥2

− 4 ‖fβ,k − fβ,m?‖2 −
1

2
q̂en(m?, k)

}
+

+ 4‖fβ,m̂ − fβ,m?‖2 +
1

2

∑
k≥m?
k∈MN

q̂en(m∗, k)1{m̂=k}. (25)

Let us first notice the following inequality

∀k > m, q̂en(m, k) ≤ q̂en(k). (26)

Besides by definition of m̂ (see Equation (20)), on the set {m̂ = k} ∩ Gc and applying Equation (22), one
has

1

2
(q̂en(k)− q̂en(m?)) ≤

∥∥∥f̂β,m̂ − f̂m?∥∥∥2

− 1

2
q̂en(k) +

1

2
q̂en(m?)

1

2
q̂en(k) ≤

∥∥∥f̂β,m̂ − f̂β,m?∥∥∥2

− 1

2
q̂en(m?, k) +

1

2
q̂en(m?)

1

2
q̂en(k) ≤

(∥∥∥f̂β,m̂ − f̂β,m?∥∥∥2

− 4 ‖fβ,m̂ − fβ,m?‖2 −
1

2
q̂en(m?, k)

)
+ 4 ‖fβ,m̂ − fβ,m?‖2 +

1

2
q̂en(m?).

(27)
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Now using Equations (26) and (27)

1

2

∑
k≥m?
k∈MN

q̂en(m?, k) ≤ sup
k≥m?
k∈MN

{∥∥∥f̂β,m̂ − f̂∗β,m?∥∥∥2

− 4 ‖fβ,m̂ − fβ,m?‖2 −
1

2
q̂en(m?, k)

}
+

+ 4 ‖fβ,m̂ − fβ,m?‖2 +
1

2
q̂en(m?).

From Equation (25), we now have∥∥∥f̂β,m̂ − f̂β,m?∥∥∥2

1Gc ≤ 2 sup
k≥m?
k∈MN

{∥∥∥f̂β,k − f̂β,m?∥∥∥2

− 4 ‖fβ,k − fβ,m?‖2 −
1

2
q̂en(m?, k)

}
+

+ 8 ‖fβ,m̂ − fβ,m?‖2 +
1

2
q̂en(m?). (28)

Taking expectation the first summand is negligible by applying the following Proposition proved in Sec-
tion 6.5.

Proposition 6.2. There is a positive constant C such that for any arbitrary m ∈MN

E

 sup
k≥m
k∈MN

{∥∥∥f̂β,k − f̂β,m∥∥∥2

− 4 ‖fβ,k − fβ,m‖2 −
1

2
q̂en(m, k)

}
+

 ≤ C

N
.

Finally we have E
[∥∥∥fβ − f̂β,m̂∥∥∥2

1Gc

]
≤ C

(
‖fβ − fβ,m?‖2 + qen(m?)

)
+

C ′

N(J − 4)
+
C ′

N
. This combining

with (24) complete the proof. �

6.4. Proof of Lemma 6.1. There is nothing to prove for q̂en1(m).

• Consider q̂en2(m). For q = 1/2 or 1, using Cauchy-Schwarz’s inequality, we have

E
[
logq

(
1 + Ξ̂(m)m2

)
Ξ̂(m)

]
≤
√
E
[
log2q

(
1 + Ξ̂(m)m2

)]
E
[
Ξ̂2(m)

]
.

Ξ̂2(m) =

 1

2π

∫ πm

−πm

w
(
u
∆

)−2∣∣∣f̃∗ε ( u∆)∣∣∣4 du


2

≤ 1

4π2

∫ πm

−πm
w
(
u
∆

)−2

∣∣∣∣∣∣∣
1∣∣∣f̃∗ε ( u∆)∣∣∣2 −

1∣∣f∗ε ( u∆)∣∣2 +
1∣∣f∗ε ( u∆)∣∣2

∣∣∣∣∣∣∣
2

du


2

≤ 2

π2

∫ πm

−πm
w
(
u
∆

)−2

∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
2

du

2

+ 8Ξ2(m).

Now noticing that we can write the first term of the lastest inequality, we have

E

∫ πm

−πm
w
(
u
∆

)−2

∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
2

du

2

=

∫ πm

−πm

∫ πm

−πm
w
(
u
∆

)−2
w
(
v
∆

)−2 E

∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
2 ∣∣∣∣∣ 1

|f̃∗ε
(
v
∆

)
|2
− 1

|f∗ε
(
v
∆

)
|2

∣∣∣∣∣
2
 dudv.

Now applying Cauchy-Schwarz’s inequality and Lemma B.2 for p = 2

E

∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
2 ∣∣∣∣∣ 1

|f̃∗ε
(
v
∆

)
|2
− 1

|f∗ε
(
v
∆

)
|2

∣∣∣∣∣
2


≤

√√√√E

∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
4

E

∣∣∣∣∣ 1

|f̃∗ε
(
v
∆

)
|2
− 1

|f∗ε
(
v
∆

)
|2

∣∣∣∣∣
4

≤ C2|f∗ε
(
u
∆

)
|−4|f∗ε

(
v
∆

)
|−4
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So we have

E
[
Ξ̂2(m)

]
≤ (8C2 + 8)Ξ2(m).

Besides we have

Ξ̂(m) =
1

2π

∫ πm

−πm

w
(
u
∆

)−2∣∣∣f̃∗ε ( u∆)∣∣∣4 du ≤ 1

π

∫ πm

−πm
w
(
u
∆

)−2

∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
2

du+ 2Ξ(m).

Once again applying Lemma B.2 for p = 1

E

∫ πm

−πm
w
(
u
∆

)−2

∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
2

du


≤
∫ πm

−πm
w
(
u
∆

)−2 E

∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
2
 du ≤ C1

∫ πm

−πm
w
(
u
∆

)−2 |f∗ε
(
u
∆

)
|−4 du.

So we have

E
[
Ξ̂(m)

]
≤ (2C1 + 2)Ξ(m).

Now using Jensen’s inequality (since log is concave)

E
[
log2q

(
1 + Ξ̂(m)m2

)]
≤ log2q

(
E
[
1 + Ξ̂(m)m2

])
≤ log2q

(
1 + E

[
Ξ̂(m)

]
m2
)
≤ log2q

(
1 + CΞ(m)m2

)
≤ C log2q

(
1 + Ξ(m)m2

)
.

Finally E[q̂en2(m)] ≤ Cqen2(m).

• Consider now q̂en3(m). Another application of Lemma B.2 yields

1

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗Z(u)|2

|f̃∗ε
(
u
∆

)
|12

du

]

≤ 2

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|12

du

]
+

2

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗Z(u)− f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|12

du

]

≤ C

N

1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f∗Z(u)|2

|f∗ε
(
u
∆

)
|12

+
2

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗Z(u)− f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|12

du

]

≤ C

N
Ξβ(m) +

2

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗Z(u)− f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|12

du

]
.

Let us notice that

eiuZk,j − E
[
eiuZk,j

]
= eiuZk,j − f∗β(u)|f∗ε

(
u
∆

)
|2 = eiu(βk+ηk,j/∆) − f∗β(u)|f∗ε

(
u
∆

)
|2

= eiuβk
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)

+
(
eiuβk − f∗β(u)

)
|f∗ε
(
u
∆

)
|2,

hence

f̂∗Z(u)− f∗Z(u) =
1

N

N∑
k=1

(
eiuβk − f∗β(u)

)
|f∗ε
(
u
∆

)
|2 +

2

N(J − 4)

N∑
k=1

J/2∑
j=3

(
eiuβk

(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
))

.

(29)
Then

1

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗Z(u)− f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|12

du

]

≤ 2

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗β(u)− f∗β(u)|2|f∗ε
(
u
∆

)
|4

|f̃∗ε
(
u
∆

)
|12

du

]

+
2

N
E

 1

2π

∫ πm

−πm

w
(
u
∆

)−2 | 2
N(J−4)

∑N
k=1

∑J/2
j=3

(
eiuβk

(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
))
|2

|f̃∗ε
(
u
∆

)
|12

du

 . (30)
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Let us consider the first term on the right-hand side of Equation (30). We use the fact that |f̃∗ε (u)|4 ≥
N−1/2(logN)1/2w(u)−1 as well as the independence of f̂∗β and f̃∗ε to find

1

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗β(u)− f∗β(u)|2|f∗ε
(
u
∆

)
|4

|f̃∗ε
(
u
∆

)
|12

du

]

≤ 1

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2
w(u)−2w(u)2|f̂∗β(u)− f∗β(u)|2|f∗ε

(
u
∆

)
|4

|f̃∗ε
(
u
∆

)
|4N−1(logN)w

(
u
∆

)−2 du

]

≤ E
[
sup
u∈R
|f̂∗β(u)− f∗β(u)|2w(u)2

]
E

[
1

2π

∫ πm

−πm

w(u)−2|f∗ε
(
u
∆

)
|4

|f̃∗ε (u)|4
du

]
.

Thanks to Theorem 5.1 in Neumann and Reiß (2009), for some positive constant C,

E
[
sup
u∈R
|f̂∗β(u)− f∗β(u)|2w(u)2

]
≤ C

N
.

Applying Lemma B.2 for p = 1, we get

E

[
1

2π

∫ πm

−πm

w(u)−2|f∗ε
(
u
∆

)
|4

|f̃∗ε
(
u
∆

)
|4

du

]
≤ C

2π

∫ πm

−πm

w(u)−2|f∗ε
(
u
∆

)
|4

|f∗ε
(
u
∆

)
|4

du ≤ Cm.

which means that there exists C such that

1

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗β(u)− f∗β(u)|2|f∗ε
(
u
∆

)
|4

|f̃∗ε
(
u
∆

)
|12

du

]
≤ C m

N
.

Now let us consider the second term on the right-hand side of Equation (30) and let us notice that

E

∣∣∣∣∣∣ 2

N(J − 4)

N∑
k=1

J/2∑
j=3

(
eiuβk

(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
))∣∣∣∣∣∣

2

=
4

N2(J − 4)2
E

 N∑
k,k′=1

J/2∑
j,j′=3

eiu(βk−βk′ )
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)(

eiuηk′,j′/∆ − |f∗ε
(
u
∆

)
|2
)

=
4

N2(J − 4)2

N∑
k,k′=1

J/2∑
j,j′=3

E
[
eiu(βk−βk′ )

]
E
[(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)(

eiuηk′,j′/∆ − |f∗ε
(
u
∆

)
|2
)]

The term eiu(βk−βk′ ) is equal to 1 if k = k′ otherwise E[eiu(βk−βk′ )] = |f∗β(u)|2 ≤ 1. Moreover if k 6= k′ and

j 6= j′, E
[(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
) (
eiuηk′,j′/∆ − |f∗ε

(
u
∆

)
|2
)]

= 0, then

E

∣∣∣∣∣∣ 2

N(J − 4)

N∑
k=1

J/2∑
j=3

(
eiuβk

(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
))∣∣∣∣∣∣

2

≤ 4

N(J − 4)2

J/2∑
j=3

E
[(
eiuη1,j/∆ − |f∗ε

(
u
∆

)
|2
)(

eiuη1,j/∆ − |f∗ε
(
u
∆

)
|2
)]

≤ 4

N(J − 4)
(1− |f∗ε (u)|4) ≤ 4

N(J − 4)
.

Noticing the independence between the numerator and the denominator, using that |f̃∗ε (u)|4 ≥ N−1/2(logN)1/2w(u)−1

and applying Lemma B.2 for p = 1, we have

1

N
E

 1

2π

∫ πm

−πm

w
(
u
∆

)−2 | 2
N(J−4)

∑N
k=1

∑J/2
j=3

(
eiuβk

(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
))
|2

|f̃∗ε
(
u
∆

)
|12

du


≤ 4

N(J − 4)
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2

|f̃∗ε
(
u
∆

)
|4

du

]
≤ C

N(J − 4)
Ξ(m).

This completes the proof. �
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6.5. Proof of Proposition 6.2. Before proving Proposition 6.2, we first to need prove two auxiliary
lemmas. In the sequel, C will always denote some universal positive constant, but the value may vary from
line to line. For k > m, let us introduce the following notation: A(m, k) := {u ∈ R, |u| ∈ [πm, πk]}. .

Lemma 6.3. For an estimator of f̃∗ε defined by (10), assume κ >
√
c1p. Let τ ≥ 2κ and x ≥ 1. Then for

some positive constant C

P
[
∃u ∈ R : |(f̃∗ε )4(u)− (f∗ε )4(u)| > τ (log(Nx))

1/2
w(u)−1N−1/2

]
≤ Cx−pN−p.

Proof.∣∣∣(f̃∗ε )4(u)− (f∗ε )4(u)
∣∣∣ ≤ ∣∣∣(f̃∗ε )4(u)− (f̂∗ε )4(u)

∣∣∣+
∣∣∣(f̂∗ε )4(u)− (f∗ε )4(u)

∣∣∣ ≤ 2kN (u) +
∣∣∣(f̂∗ε )4(u)− (f∗ε )4(u)

∣∣∣
By Lemma A.3, we have

P
[
∃u ∈ R : |(f̃∗ε )4(u)− (f∗ε )4(u)| > τ (log(Nx))

1/2
w(u)−1N−1/2

]
≤ P

[
∃u ∈ R :

∣∣∣(f̂∗ε )4(u)− (f∗ε )4(u)
∣∣∣+ 2kN (u) > τ (log(Nx))

1/2
w(u)−1N−1/2

]
≤ P

[
∃u ∈ R : |(f̃∗ε )4(u)− (f∗ε )4(u)| > (τ − 2κ) (log(Nx))

1/2
w(u)−1N−1/2

]
≤ Cx−pN−p.

�

Lemma 6.4. In the situation of the preceding Lemma

P
[
∃u ∈ R :

∣∣∣|f̃∗ε (u)|2 − |f∗ε (u)|2
∣∣∣1{|f̃∗ε (u)| < |f∗ε (u)|

}
>
τ(log(Nx))1/2w(u)−1N−1/2

|f̃∗ε (u)|2

]
≤ Cx−pN−p.

Proof. This is a direct consequence of Lemma 6.3 using the fact that for x, y ≥ 0, |
√
x − √y| ≤ |x−y|

2
√
x∧y

holds. �

Lemma 6.5. There is a positive constant C such that for any arbitrary m ∈MN

E

 sup
k≥m
k∈MN


∫
A(m,k)

∣∣∣∣∣ 1

N

N∑
k=1

(eiuβk − f∗β(u))

∣∣∣∣∣
2

du− 1

24
q̂en1(m, k)


+

 ≤ C

N

Proof.

E

 sup
k≥m
k∈MN

 1

2π

∫
A(m,k)

∣∣∣∣∣ 1

N

N∑
k=1

(eiuβk − f∗β(u))

∣∣∣∣∣
2

du− 1

24
q̂en1(m, k)


+


≤

∑
k≥m
k∈MN

E

 1

2π

∫
A(m,k)

∣∣∣∣∣ 1

N

N∑
k=1

(eiuβk − f∗β(u))

∣∣∣∣∣
2

du− 1

24
q̂en1(m, k)


+



≤
∑
k≥m
k∈MN

E

 sup
t∈S(m,k)

∣∣∣∣∣ 1

2π

∫
A(m,k)

t∗(u)
1

N

N∑
k=1

(eiuβk − f∗β(u)) du

∣∣∣∣∣
2

− π(k −m)

N


+

 .
We then study the following empirical process

νN (t) =
1

N

N∑
k=1

(
1

2π

∫
A(m,k)

t∗(u)eiuβk du− E

[
1

2π

∫
A(m,k)

t∗(u)eiuβk du

])
and define the following space: S(m, k) = {Supp(t) ⊂ A(m, k), ‖t‖ = 1}. Then we can write

sup
t∈S(m,k)

|νN (t)|2 =

∣∣∣∣∣
∫
A(m,k)

1

2π
t∗(u)

(
1

N

N∑
k=1

eiuβk − f∗β(u)

)
du

∣∣∣∣∣
2

≤ sup
t∈S(m,k)

1

4π2

∫
A(m,k)

|t∗(u)|2 du

∫
A(m,k)

∣∣∣∣∣ 1

N

N∑
k=1

eiuβk − f∗β(u)

∣∣∣∣∣
2

du ≤ 1

2π

∫
A(m,k)

∣∣∣∣∣ 1

N

N∑
k=1

eiuβk − f∗β(u)

∣∣∣∣∣
2

du,
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hence

E

[
sup

t∈S(m,k)

|νN (t)|2
]
≤ 1

2π

∫
A(m,k)

E

∣∣∣∣∣ 1

N

N∑
k=1

eiuβk − f∗β(u)

∣∣∣∣∣
2

du ≤ (k −m)

N
:= H2.

For the variance term, we have Var

[∣∣∣∣ 1

2π

∫
A(m,k)

t∗(u)eiuβ1 du

∣∣∣∣] ≤ E

[∣∣∣∣ 1

2π

∫
A(m,k)

t∗(u)eiuβ1 du

∣∣∣∣2
]

. Let us

notice that the expectation can be rewritten as follows

E

∣∣∣∣∣ 1

2π

∫
A(m,k)

t∗(u)eiuβ1 du

∣∣∣∣∣
2
 = E

[
1

4π2

∫
A(m,k)

t∗(u)eiuβ1 du

∫
A(m,k)

t∗(v)e−ivβ1 dudv

]

=
1

4π2

∫∫∫
R×A(m,k)×A(m,k)

fβ(x)ei(u−v)xt∗(u)t∗(v) dudv dx =
1

4π2

∫∫
A(m,k)×A(m,k)

f∗β(u− v)t∗(u)t∗(v) dudv.

Now applying Cauchy-Schwarz’s inequality

Var

[∣∣∣∣∣ 1

2π

∫
A(m,k)

t∗(u)eiuβ1 du

∣∣∣∣∣
]
≤ 1

4π2

∫∫
A(m,k)×A(m,k)

∣∣f∗β(u− v)t∗(u)t∗(v)
∣∣ dudv

≤ 1

4π2

√∫∫
A(m,k)×A(m,k)

|f∗β(u− v)||t∗(u)|2 dudv

√∫∫
A(m,k)×A(m,k)

|f∗β(u− v)||t∗(v)|2 dudv

≤ 1

4π2

√∫∫
A(m,k)×R

|f∗β(w)||t∗(u)|2 dudw

√∫∫
R×A(m,k)

|f∗β(w)||t∗(v)|2 dw dv

≤ 1

4π2

∫∫
A(m,k)×A(m,k)

|f∗β(w)||t∗(u)|2 dudw ≤
‖f∗β‖1

2π
.

So we choose ν as follows

sup
t∈S(m,k)

Var

[∣∣∣∣∣ 1

2π

∫
A(m,k)

t∗(u)eiuβ1 du

∣∣∣∣∣
]
≤
‖f∗β‖1

2π
:= ν.

And noticing that

∣∣∣∣ 1

2π

∫
A(m,k)

t∗(u)eiux du

∣∣∣∣2 ≤ k −m,, we choose M1 as

sup
x∈R

∣∣∣∣∣ 1

2π

∫
A(m,k)

t∗(u)eiux du

∣∣∣∣∣ ≤ √k −m := M1.

We can now apply Talagrand’s inequality

E

 sup
k≥m
k∈MN


∫
A(m,k)

∣∣∣∣∣ 1

N

N∑
k=1

(eiuβk − f∗β(u))

∣∣∣∣∣
2

du− 1

24
q̂en1(m, k)


+


≤

∑
k≥m
k∈MN

K1

(‖f∗β‖1
N

e
−K2

k−m
‖f∗
β
‖1 +K2

k −m
N2

e
−K3

√
N(k−m)
√
k−m

)
.

Finally E

[
sup k≥m

k∈MN

{
1

2π

∫
A(m,k)

∣∣∣∣ 1

N

∑N
k=1(eiuβk − f∗β(u))

∣∣∣∣2 du− 1

24
q̂en1(m, k)

}
+

]
≤ C

N
. �

Lemma 6.6. There is a positive constant C such that for any arbitrary m ∈MN

E

 sup
k≥m
k∈MN

{
1

2π

∫
A(m,k)

|SNJ(u)|2

|f̃∗ε
(
u
∆

)
|4

du− 1

16
q̂en2(m, k)

}
+

 ≤ C

N(J − 4)

with SNJ(u) = 2
N(J−4)

∑N
k=1

∑J/2
j=3 e

iuβk
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)
.
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Proof. We introduce the notation E
[
X|f̃∗ε , β

]
which corresponds to the conditional expectation of a random

variable X given β1, . . . , βN and εk,j for j = 1, 2 and k = 1, . . . , N .

E

 sup
k≥m
k∈MN

{
1

2π

∫
A(m,k)

|SNJ(u)|2

|f̃∗ε
(
u
∆

)
|4

du− 1

16
q̂en2(m, k)

}
+



≤ E

 ∑
k≥m
k∈MN

{
1

2π

∫
A(m,k)

|SNJ(u)|2

|f̃∗ε
(
u
∆

)
|4

du− µ̂2(m, k)Ξ̂(m, k)

N(J − 4)

}
+



≤ E

 ∑
k≥m
k∈MN

1

2π

∫
A(m,k)

E

[{
|SNJ(u)|2

|f̃∗ε
(
u
∆

)
|4
− µ̂2(m, k)

N(J − 4)|f̃∗ε
(
u
∆

)
|4

}
+

∣∣∣f̃∗ε , β
]

du



Now
(

2
N(J−4)

∑N
k=1

∑J/2
j=3 e

iuβkeiuηk,j/∆
)
/|f̃∗ε

(
u
∆

)
|2 (conditional on f̃∗ε

(
u
∆

)
and β1, . . . , βN ) is the sum of

N(J − 4) independent and identically distributed random variables with variance v2 ≤ 1/|f̃∗ε
(
u
∆

)
|4 which

are surely bounded by 1/|f̃∗ε
(
u
∆

)
|2. Thus Lemma A.1 gives

E

[{
|SNJ(u)|2

|f̃∗ε
(
u
∆

)
|4
− µ̂2(m, k)

N(J − 4)|f̃∗ε
(
u
∆

)
|4

}
+

∣∣∣f̃∗ε , β
]

≤ 32

N(J − 4)|f̃∗ε
(
u
∆

)
|4

exp

(
− µ̂

2(m, k)

8

)
+

128
√

2

N2(J − 4)2|f̃∗ε
(
u
∆

)
|4

exp

(
− 3

16
√

2

√
N(J − 4)µ̂(m, k)

)
≤ 32

N(J − 4)|f̃∗ε
(
u
∆

)
|4

(k −m)−2Ξ̂(m, k)−1 +
128
√

2

N2(J − 4)2|f̃∗ε
(
u
∆

)
|4

(k −m)−2Ξ̂(m, k)−1

where we used the fact that

µ̂(m, k) ≤ max

{√
8 log

(
1 + Ξ̂(m, k)(k −m)2

)
,

16
√

2

3
√
N(J − 4)

log
(

1 + Ξ̂(m, k)(k −m)2
)}

.

We have thus shown for a universal positive constant C that for any m, k ∈MN∫
A(m,k)

E

[{
|SNJ(u)|2

|f̃∗ε
(
u
∆

)
|4
− µ̂2(m, k)

N(J − 4)|f̃∗ε
(
u
∆

)
|4

}
+

∣∣∣f̃∗ε , β
]

du

≤ C

N(J − 4)
(k −m)−2Ξ̂(m, k)−1

∫
A(m,k)

du

|f̃∗ε
(
u
∆

)
|4
≤ C

N(J − 4)
(k −m)−2.

Finally, E

[
sup k≥m

k∈MN

{
1

2π

∫
A(m,k)

|SNJ(u)|2

|f̃∗ε
(
u
∆

)
|4

du− 1

16
q̂en2(m, k)

}
+

]
≤ C

N(J − 4)
. �

Proof of Proposition 6.2. Using Plancherel’s formula, we get∥∥∥f̂β,k − f̂β,m∥∥∥2

=
1

2π

∫
A(m,k)

|f̂∗Z(u)|2

|f̃∗ε
(
u
∆

)
|4
1{|f̃∗ε ( u∆ )|>|f∗ε ( u∆ )|} du+

1

2π

∫
A(m,k)

|f̂∗Z(u)|2

|f̃∗ε
(
u
∆

)
|4
1{|f̃∗ε ( u∆ )|≤|f∗ε ( u∆ )|} du

≤ 1

π

∫
A(m,k)

(
|f̂∗Z(u)− f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|4

+
|f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|4

)
1{|f̃∗ε ( u∆ )|>|f∗ε ( u∆ )|} du

+
1

π

∫
A(m,k)

|f̂∗Z(u)|2
∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
2

+

∣∣∣f̂∗Z(u)
∣∣∣2∣∣f∗ε ( u∆)∣∣4
1{|f̃∗ε ( u∆ )|≤|f∗ε ( u∆ )|} du.
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Then it follows that∥∥∥f̂β,k − f̂β,m∥∥∥2

≤ 1

π

∫
A(m,k)

|f̂∗Z(u)− f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|4

1{|f̃∗ε ( u∆ )|>|f∗ε ( u∆ )|} du+
1

π

∫
A(m,k)

|f∗Z(u)|2

|f∗ε
(
u
∆

)
|4
1{|f̃∗ε ( u∆ )|>|f∗ε ( u∆ )|} du

+
1

π

∫
A(m,k)

|f̂∗Z(u)|2

∣∣∣|f̃∗ε ( u∆)2 − |f∗ε ( u∆) |2∣∣∣2
|f̃∗ε
(
u
∆

)
|4|f∗ε

(
u
∆

)
|4

1{|f̃∗ε ( u∆ )|≤|f∗ε ( u∆ )|} du

+
2

π

∫
A(m,k)

|f̂∗Z(u)− f∗Z(u)|2

|f∗ε
(
u
∆

)
|4

1{|f̃∗ε ( u∆ )|≤|f∗ε ( u∆ )|} du+
2

π

∫
A(m,k)

|f∗Z(u)|2

|f∗ε
(
u
∆

)
|4
1{|f̃∗ε ( u∆ )|≤|f∗ε ( u∆ )|} du.

Therefore we can write∥∥∥f̂β,k − f̂β,m∥∥∥2

≤ 2

π

∫
A(m,k)

|f̂∗Z(u)− f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|4

du+
2

π

∫
A(m,k)

|f∗Z(u)|2

|f∗ε
(
u
∆

)
|4

du

+
1

π

∫
A(m,k)

|f̂∗Z(u)|2

∣∣∣|f̃∗ε ( u∆)2 − |f∗ε ( u∆) |2∣∣∣2
|f̃∗ε
(
u
∆

)
|4|f∗ε

(
u
∆

)
|4

1{|f̃∗ε ( u∆ )|≤|f∗ε ( u∆ )|} du

≤ 2

π

∫
A(m,k)

|f̂∗Z(u)− f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|4

du+ 4 ‖fβ,k − fβ,m‖2

+
1

π

∫
A(m,k)

|f̂∗Z(u)|2

∣∣∣|f̃∗ε ( u∆) |2 − |f∗ε ( u∆) |2∣∣∣2
|f̃∗ε
(
u
∆

)
|8

1{|f̃∗ε ( u∆ )|≤|f∗ε ( u∆ )|} du

:= I1(m, k) + 4 ‖fβ,k − fβ,m‖2 + I2(m, k). (31)

To bound I2(m, k), we introduce the following set

C(m, k) =

{
∀u ∈ R :

∣∣∣|f̃∗ε ( u∆) |2 − |f∗ε ( u∆) |2∣∣∣2 1{|f̃∗ε ( u∆ )|≤|f∗ε ( u∆ )|} ≤
4κ2 log (N(k −m))w

(
u
∆

)−2
N−1

|f̃∗ε
(
u
∆

)
|4

}
.

On C(m, k), the following inequalities can be deduced

I2(m, k) ≤ 8κ2 log (N(k −m))N−1 1

2π

∫
A(m,k)

w
(
u
∆

)−2 |f̂∗Z(u)|2

|f̃∗ε
(
u
∆

)
|12

1
{
|f̃∗ε
(
u
∆

)
| ≤ |f∗ε

(
u
∆

)
|
}

du

≤ 8κ2 log (N(k −m))N−1Ξ̂β(m, k) :=
1

2
q̂en3(m, k).

To bound I2(m, k), we use Equation (29) and the notation SNJ defined in Lemma 6.6. Thus we have

I2(m, k) ≤ 4

π

∫
A(m,k)

∣∣∣ 1
N

∑N
k=1 |f∗ε

(
u
∆

)
|2(eiuβk − f∗β(u))

∣∣∣2
|f̃∗ε
(
u
∆

)
|4

du+
4

π

∫
A(m,k)

|SNJ(u)|2

|f̃∗ε
(
u
∆

)
|4

du

≤ 8

π

∫
A(m,k)

∣∣∣ 1
N

∑N
k=1 |f∗ε

(
u
∆

)
|2(eiuβk − f∗β(u))

∣∣∣2
|f∗ε
(
u
∆

)
|4

du+
4

π

∫
A(m,k)

|SNJ(u)|2

|f̃∗ε
(
u
∆

)
|4

du

+
8

π

∫
A(m,k)

∣∣∣∣∣ 1

N

N∑
k=1

|f∗ε
(
u
∆

)
|2(eiuβk − f∗β(u))

∣∣∣∣∣
2 ∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
2

du

≤ 8

π

∫
A(m,k)

∣∣∣∣∣ 1

N

N∑
k=1

(eiuβk − f∗β(u))

∣∣∣∣∣
2

du+
4

π

∫
A(m,k)

|SNJ(u)|2

|f̃∗ε
(
u
∆

)
|4

du

+
8

π

∫
A(m,k)

|f∗ε
(
u
∆

)
|4
∣∣∣∣∣ 1

N

N∑
k=1

(eiuβk − f∗β(u))

∣∣∣∣∣
2 ∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
2

du.
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We can now write the following inequalities, using (31) and the above remarks

∥∥∥f̂β,k − f̂β,m∥∥∥2

− 4‖fβ,k − fβ,m‖2 −
1

2
q̂en(m, k)

≤ 8

π

∫
A(m,k)

∣∣∣∣∣ 1

N

N∑
k=1

(eiuβk − f∗β(u))

∣∣∣∣∣
2

du− 1

4
qen1(m, k) +

4

π

∫
A(m,k)

|SNJ(u)|2

|f̃∗ε
(
u
∆

)
|4

du− 1

2
q̂en2(m, k)

+
8

π

∫
A(m,k)

|f∗ε
(
u
∆

)
|4
∣∣∣∣∣ 1

N

N∑
k=1

(eiuβk − f∗β(u))

∣∣∣∣∣
2 ∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
2

du− 1

4
qen1(m, k)

+
1

2
q̂en3(m, k)− 1

2
q̂en3(m, k)

+
1

π

∫
A(m,k)

|f̂∗Z(u)|2

∣∣∣|f̃∗ε ( u∆) |2 − |f∗ε ( u∆) |2∣∣∣2
|f̃∗ε
(
u
∆

)
|8

1{|f̃∗ε ( u∆ )|≤|f∗ε ( u∆ )|} du1{C(m,k)c}

Taking expectation, we get

E

 sup
k≥m
k∈MN

{∥∥∥f̂β,k − f̂β,m∥∥∥2

− 4‖fβ,k − fβ,m‖2 −
1

2
q̂en(m, k)

}
+


≤

∑
k≥m
k∈MN

E

[{∥∥∥f̂β,k − f̂β,m∥∥∥2

− 4‖fβ,k − fβ,m‖2 −
1

2
q̂en(m, k)

}
+

]

≤ 16
∑
k≥m
k∈MN

E

 1

2π

∫
A(m,k)

∣∣∣∣∣ 1

N

N∑
k=1

(eiuβk − f∗β(u))

∣∣∣∣∣
2

du− 1

64
qen1(m, k)


+



+
∑
k≥m
k∈MN

E

 8

π

∫
A(m,k)

|f∗ε
(
u
∆

)
|4
∣∣∣∣∣ 1

N

N∑
k=1

(eiuβk − f∗β(u))

∣∣∣∣∣
2 ∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
2

du− 1

4
qen1(m, k)


+


+ 8

∑
k≥m
k∈MN

E

[{
1

2π

∫
A(m,k)

|SNJ(u)|2

|f̃∗ε
(
u
∆

)
|4

du− 1

16
q̂en2(m, k)

}
+

]

+
1

π

∑
k≥m
k∈MN

E

∫
A(m,k)

|f̂∗Z(u)|2

∣∣∣|f̃∗ε ( u∆) |2 − |f∗ε ( u∆) |2∣∣∣2
|f̃∗ε
(
u
∆

)
|8

1{|f̃∗ε ( u∆ )|≤|f∗ε ( u∆ )|} du1{C(m,k)c}

 .

Now noticing that
∣∣∣ 1
N

∑N
k=1(eiuβk − f∗β(u))

∣∣∣2 and

∣∣∣∣ 1

|f̃∗ε ( u∆ )|2
− 1

|f∗ε ( u∆ )|2

∣∣∣∣2 are independent and applying

Lemma B.2, we have

8

π
E

∫
A(m,k)

|f∗ε
(
u
∆

)
|4
∣∣∣∣∣ 1

N

N∑
k=1

(eiuβk − f∗β(u))

∣∣∣∣∣
2 ∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
2

du


=

8

π

∫
A(m,k)

|f∗ε
(
u
∆

)
|4E

∣∣∣∣∣ 1

N

N∑
k=1

(eiuβk − f∗β(u))

∣∣∣∣∣
2
E

∣∣∣∣∣ 1

|f̃∗ε
(
u
∆

)
|2
− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣
2
 du

≤ 8

π

∫
A(m,k)

|f∗ε
(
u
∆

)
|4 1

N
|f∗ε
(
u
∆

)
|−4 du ≤ 16(k −m)

N
:=

1

4
qen1(m, k).
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Lemma 6.3 implies that P [C(m, k)c] ≤ N−3(k −m)−3, we then get

E

∫
A(m,k)

|f̂∗Z(u)|2

∣∣∣|f̃∗ε ( u∆)2 − |f∗ε ( u∆) |2∣∣∣2
|f̃∗ε
(
u
∆

)
|8

1{|f̃∗ε ( u∆ )|≤|f∗ε ( u∆ )|} du1{C(m,k)c}


≤ 4E

[∫
A(m,k)

|f̂∗Z(u)|2
|f∗ε
(
u
∆

)
|4

k4
N

(
u
∆

) 1{|f̃∗ε ( u∆ )|≤|f∗ε ( u∆ )|} du1{C(m,k)c}

]

≤ 4E

[∫
A(m,k)

κ−4(logN)−2w
(
u
∆

)4
N2 du1{C(m,k)c}

]
≤ 4κ−4(logN)−2N2(k −m)P [C(m, k)c]

≤ 4κ−4(logN)−2N2(k −m)N−3(k −m)−3 ≤ 4κ−4N−1(k −m)−2.

Finally applying Lemma 6.5 and 6.6, we have

E

 sup
k≥m
k∈MN

{∥∥∥f̂β,k − f̂β,m∥∥∥2

− 4 ‖fβ,k − fβ,m‖2 −
1

2
q̂en(m, k)

}
+

 ≤ C ( 1

N
+

2

N(J − 4)

)
.

This completes the proof of Proposition 6.2. �
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Appendix A.

We remind, for the readers convenience, some useful results.

Lemma A.1. Let X1, . . . , Xn be i.i.d. random variables with Var[X1] ≤ v2 and suppose that almost surely
‖X1‖∞ ≤ B. Let Sn = 1/n

∑n
j=1(Xj − E[X1]). Let E|Sn| ≤ H. Then

E
[{
|Sn|2 −H2

}
+

]
≤ 32

v2

n
exp

(
−nH

2

8v2

)
+ 128

√
2
B2

n2
exp

(
−n H

16
√

2
3 B

)
.

Lemma A.2. (Talagrand’s inequality). Let I be some countable index set. For each i ∈ I, let X
(i)
1 , . . . , X

(i)
n

be centered i.i.d. random variables, defined on the same probability space, with ‖X(i)
1 ‖ ≤ B for some B <∞.

Let v2 := supi∈I VarX1. Then for arbitrary ε > 0, there are positive constants c1 and c2 = c2(ε) depending
only on ε such that for any κ > 0 :

P
[{

sup
i∈I
|S(i)
n | ≤ (1 + ε)E

[
sup
i∈I
|S(i)
n |
]

+ κ

}]
≤ 2 exp

(
−n
(
κ2

c1v2
∧ κ

c2B

))
.

A proof can be found, for example, on page 170 in Massart (2003).

Next we give some technical results which will be essential for the proofs.

Lemma A.3. In the definition of f̃∗ε , assume κ >
√
c1p. Let τ ≥ 2κ and x ≥ 1. Then for some positive

constant C

P
[
∃u ∈ R : |f̂∗ε (u)4 − f∗ε (u)4| > τ (log(Nx))

1/2
w(u)−1N−1/2

]
≤ Cx−pN−p.

See Lemma 5.5 in Kappus (2014) for the proof.

Lemma A.4 (Lemma 2 p.35 (Butucea and Tsybakov (2008a))). Let γ, µ, and s be positive constants then
for any m > 0 ∫ m

0

(x2 + 1)γe2µxsdx ≈ m2γ+1−se2µms .

We introduce the notation g(x) . h(x) if there exists a positive constant C such that for all x, g(x) ≤
Ch(x) and the notation g(x) � h(x) if g(x) . h(x) and h(x) . g(x) .
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Lemma A.5. If f∗ε satisfies assumption (A6) then∫ πm

−πm

du∣∣f∗ε ( u∆)∣∣4 � (πm)4γ+1−se4µ(πm)s ,

∫ πm

−πm

|f∗β(u)|2∣∣f∗ε ( u∆)∣∣8 du . (πm)(4γ+1−s)∧2(2γ−δ)+e4µ(πm)s1{s>r}

+ (πm)2(2γ−δ)+e2(2µ−a)(πm)s1{r=s,2µ≥a} + 1{r>s}∪{2µ≤a}.

A proof can be found in Comte and Lacour (2011).
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Appendix B. Supplementary material

To prove Propositions 2.1 and 2.2, we need the two following technical lemma.

Lemma B.1. Let q ≥ 1, under Assumption (A2) there exists a constant Cq such that

E

[∣∣∣∣ 1

f̌∗ε (x)
− 1

f∗ε (x)

∣∣∣∣2q
]
≤ Cq

(
1

|f∗ε (x)|2q
∧

k2q
N (x)

|f∗ε (x)|10q

)
.

Lemma B.2. Let p ≥ 1, under assumption (A2) there exists a constant Cp such that

E

[∣∣∣∣ 1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2

∣∣∣∣2p
]
≤ Cp

(
1

|f∗ε (x)|4p
∧

k2p
N (x)

|f∗ε (x)|12p

)
.
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B.1. Proof of Lemma B.2. We start by proving Lemma B.2 since Lemma B.1 is obtained as a consequence
of it. Let p ≥ 1 be. Using that 1/||f̃∗ε (x)|2 + |f∗ε (x)|2|2 ≤ 1/|f̃∗ε (x)|4, we have

E
∣∣∣∣ 1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2

∣∣∣∣2p

= E

1{|f̃∗ε (x)|4<kN (x)}

∣∣∣∣∣ 1√
kN (x)

− 1

|f∗ε (x)|2

∣∣∣∣∣
2p
+ E

[
1{|f̃∗ε (x)|4≥kN (x)}

∣∣∣∣ 1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2

∣∣∣∣2p
]

≤ |f∗ε (x)|−4pP
[
|f̃∗ε (x)|4 < kN (x)

] ∣∣∣|f∗ε (x)|2 −
√
kN (x)

∣∣∣2p
kN (x)p

+ E

 1{|f̃∗ε (x)|4≥kN (x)}
∣∣∣|f̃∗ε (x)|4 − |f∗ε (x)|4

∣∣∣2p
|f∗ε (x)|4p|f̃∗ε (x)|4p

∣∣∣|f̃∗ε (x)|2 + |f∗ε (x)|2
∣∣∣2p


≤ |f∗ε (x)|−4p]

∣∣∣|f∗ε (x)|2 −
√
kN (x)

∣∣∣2p
kN (x)p

+ E

1{|f̃∗ε (x)|4≥kN (x)}
∣∣∣|f̃∗ε (x)|4 − |f∗ε (x)|4

∣∣∣2p
|f∗ε (x)|4p|f̃∗ε (x)|8p

 (32)

• 1st case : |f∗ε (x)|4 < 2kN (x). In this case we have
1

|f∗ε (x)|4p
∧

k2p
N (x)

|f∗ε (x)|12p
= |f∗ε (x)|−4p. Then starting

from (32), we get

E
∣∣∣∣ 1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2

∣∣∣∣2p ≤ 9p|f∗ε (x)|−4p + |f∗ε (x)|−4pE

1{|f̃∗ε (x)|4≥kN (x)}

∣∣∣|f̃∗ε (x)|4 − |f∗ε (x)|4
∣∣∣2p

|f̃∗ε (x)|8p


≤ 9p|f∗ε (x)|−4p + |f∗ε (x)|−4pkN (x)−2pE

[∣∣∣|̂f∗4ε |(x)− |f∗ε (x)|4
∣∣∣2p]

≤ 9p|f∗ε (x)|−4p + |f∗ε (x)|−4pkN (x)−2pN−p ≤ 9p|f∗ε (x)|−4p + |f∗ε (x)|−4p(logN)−pw(x)2pNpN−p ≤ O(|f∗ε (x)|−4p).

• 2nd case : |f∗ε (x)|4 ≥ 2kN (x). In this case we have
1

|f∗ε (x)|4p
∧

k2p
N (x)

|f∗ε (x)|12p
=

k2p
N (x)

|f∗ε (x)|12p
. Now using the

Markov and Rosenthal inequalities.

P
[∣∣∣f̃∗ε (x)

∣∣∣4 ≤ kN (x)

]
= P

[
|̂f∗4ε |(x) ≤ kN (x)

]
≤ P

[∣∣∣|̂f∗4ε |(x)− |f∗ε (x)|4
∣∣∣ > |f∗ε (x)|4 − kN (x)

]

≤ P
[∣∣∣|̂f∗4ε |(x)− |f∗ε (x)|4

∣∣∣ > |f∗ε (x)|4/2
]
≤

E
∣∣∣|̂f∗4ε |(x)− |f∗ε (x)|4

∣∣∣2p
(|f∗ε (x)|4/2)

2p ≤ cpN
−p

|f∗ε (x)|8p
.

Then we can bound the first term of Equation (32) as follows

|f∗ε (x)|−4pP
[
|f̃∗ε (x)|4 < kN (x)

] ∣∣∣|f∗ε (x)|2 −
√
kN (x)

∣∣∣2p
kN (x)p

≤ |f∗ε (x)|−4pP
[
|f̃∗ε (x)|4 < kN (x)

] (1 +
√
kN (x)

)2p

kN (x)p

≤ |f∗ε (x)|−4pP
[
|f̃∗ε (x)|4 < kN (x)

] CkN (x)p

kN (x)p
≤ O(N−p|f∗ε (x)|−12p) ≤ O(kN (x)2p|f∗ε (x)|−12p). (33)

Moreover using this time that 1/
∣∣∣|f̃∗ε (x)|2 + |f∗ε (x)|2

∣∣∣2 ≤ 1/|f∗ε (x)|4, we can bound the second term of

Equation (32) as follows
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|f∗ε (x)|2
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|f∗ε (x)|2
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∣∣∣∣∣
2p
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We then deduce the following bounds

E

[
1{|f̃∗ε (x)|4≥kN (x)}

∣∣∣∣ 1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2

∣∣∣∣2p
]

≤ 22p−1 |f∗ε (x)|−8p E

1{|f̃∗ε (x)|4≥kN (x)}

∣∣∣∣∣ |̂f∗4ε |(x)− |f∗ε (x)|4

|f̃∗ε (x)|2 + |f∗ε (x)|2

∣∣∣∣∣
2p


+ 2 |f∗ε (x)|−8p E

1{|f̃∗ε (x)|4≥kN (x)}

∣∣∣|̂f∗4ε |(x)− |f∗ε (x)|4
∣∣∣4p

|f̃∗ε (x)


≤ 22p−1 |f∗ε (x)|−12p E

[∣∣∣|̂f∗4ε |(x)− |f∗ε (x)|4
∣∣∣2p]

+ 2 |f∗ε (x)|−12p E

1{|f̃∗ε (x)|4≥kN (x)}

∣∣∣|̂f∗4ε |(x)|4 − |f∗ε (x)|4
∣∣∣4p

|f̃∗ε (x)|4p



which implies

E

[
1{|f̃∗ε (x)|4≥kN (x)}

∣∣∣∣ 1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2

∣∣∣∣2p
]
≤ 22p−1 |f∗ε (x)|−12p

N−p + 2 |f∗ε (x)|−12p
kN (x)−pN−2p

≤ 22p−1 |f∗ε (x)|−12p
N−p + 2 |f∗ε (x)|−12p

NpN−2p ≤ O
(
|f∗ε (x)|−12p

N−p
)
≤ O(kN (x)2p|f∗ε (x)|−12p). (34)

Then gathering Equations (33) and (34), we just proved that if |f∗ε (x)|4 ≥ 2kN (x) then

E
∣∣∣∣ 1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2

∣∣∣∣2p ≤ O(kN (x)2p|f∗ε (x)|−12p).

In the end: E
∣∣∣∣ 1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2

∣∣∣∣2p ≤ Cp
(

1

|f∗ε (x)|4p
∧

k2p
N (x)

|f∗ε (x)|12p

)
. �

B.2. Proof of Lemma B.1. Under (A5) and applying Lemma B.2, we have

E

[∣∣∣∣ 1

f̃∗ε (x)
− 1

f∗ε (x)

∣∣∣∣2p
]

= E

[∣∣∣∣ 1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2

∣∣∣∣2p
/∣∣∣∣ 1

f̃∗ε (x)
+

1

f∗ε (x)

∣∣∣∣2p
]

= |f∗ε (x)|2pE

[∣∣∣∣ 1

(f̃∗ε (x))2
− 1

(f∗ε (x))2

∣∣∣∣2p
]

= |f∗ε (x)|2pCp

(
1

|f∗ε (x)|4p
∧

k2p
N (x)

|f∗ε (x)|12p

)
= Cp

(
1

|f∗ε (x)|2p
∧

k2p
N (x)

|f∗ε (x)|10p

)
.

�

B.3. Proof of Proposition 2.2. As aforementioned f̂β,m can be seen as a projection estimator. We can
then write the following equality using Pythagoras’ theorem∥∥∥fβ − f̂β,m∥∥∥2

=
∥∥∥fβ − fβ,m∥∥∥2

+
∥∥∥fβ,m − f̂β,m∥∥∥2

.

Now using Plancherel’s formula, we can write∥∥∥fβ,m − f̂β,m∥∥∥2

=
1

2π

∫
|f∗β,m(u)− f̂∗β,m(u)|2 du =

1

2π

∫ πm

−πm

∣∣∣∣∣ f̂∗Z(u)

f̃∗ε
(
u
∆

)2 − f∗Z(u)

f∗ε
(
u
∆

)2
∣∣∣∣∣
2

du

≤ 1

π

∫ πm

−πm

∣∣∣f̂∗Z(u)R
(
u
∆

)∣∣∣2 du+
1

π

∫ πm

−πm

∣∣∣∣∣ f̂∗Z(u)− f∗Z(u)

f∗ε
(
u
∆

)2
∣∣∣∣∣
2

du (35)
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with R
(
u
∆

)
= 1/f̃∗ε

(
u
∆

)2 − 1/f∗ε
(
u
∆

)2
. Taking the expectation, we get

E
∥∥∥fβ,m − f̂β,m∥∥∥2

≤ 1

π

∫ πm

−πm
E
[∣∣∣f̂∗Z(u)R

(
u
∆

)∣∣∣2] du+
1

π

∫ πm

−πm

∣∣f∗ε ( u∆)∣∣−4 E
[∣∣∣f̂∗Z(u)− f∗Z(u)

∣∣∣2] du.

Yet we can write

E
[∣∣∣f̂∗Z(u)− f∗Z(u)

∣∣∣2] =
4

N(J − 4)2

J/2∑
j=3

Var
(
eiuZ1,j

)
+

4

N(J − 4)2

∑
3≤j,j′≤J/2

j 6=j′

Cov
(
eiuZ1,j , eiuZ1,j′

)
,

which implies that

E
∣∣∣f̂∗Z(u)− f∗Z(u)

∣∣∣2 ≤ 4

N(J − 4)2

(
J − 4

2
+

(J − 4)2

4

(
1− |f∗β(u)|2

) ∣∣f∗ε ( u∆)∣∣4)
≤ 2

N(J − 4)

(
1 +

J − 4

2

∣∣f∗ε ( u∆)∣∣4) ,
hence

1

π

∫ πm

−πm

∣∣f∗ε ( u∆)∣∣−4 E
[∣∣∣f̂∗Z(u)− f∗Z(u)

∣∣∣2] du ≤ 1

π

2

N(J − 4)

∫ πm

−πm

∣∣f∗ε ( u∆)∣∣−4
du+

2m

N
. (36)

Now noticing that |f̂∗Z(u)− f∗Z(u)| and |R
(
u
∆

)
| are independent and applying Lemma B.2 for p = 1, we get∫ πm

−πm
E
[∣∣∣f̂∗Z(u)R

(
u
∆

)∣∣∣2] du =

∫ πm

−πm
E
[∣∣∣f̂∗Z(u)− f∗Z(u) + f∗Z(u)
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∣∣R ( u∆)∣∣2 du+ 2
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J − 4

2

∣∣f∗ε ( u∆)∣∣2) du

≤ 2C1

∫ πm
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4mπ

N
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(37)

Plugging (36) and (37) into Equation (35) yields

E
∥∥∥fβ,m − f̂β,m∥∥∥2

≤ 6m

N
+

6

πN(J − 4)

∫ πm
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2C1

π
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|f∗Z(u)|2 k2

N (u)∣∣f∗ε ( u∆)∣∣12 du

≤ 6m

N
+
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1

2π

∫ πm

−πm

∣∣f∗ε ( u∆)∣∣−4
du+

2C1

π

1

N

∫ πm

−πm
s2
N (u)

|f∗β(u)|2∣∣f∗ε ( u∆)∣∣8 du,

as |f∗Z(u)|2 = |f∗β(u)|2|f∗ε
(
u
∆

)
|4. In the end

E
∥∥∥fβ − f̂β,m∥∥∥2

≤ ‖fβ − fβ,m‖2 +
6m

N
+

12

N(J − 4)

1

2π

∫ πm

−πm

du∣∣f∗ε ( u∆)∣∣4 +
4C1

N

1

2π

∫ πm

−πm
s2
N (u)

|f∗β(u)|2∣∣f∗ε ( u∆)∣∣8 du.
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