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Abstract. In this paper we consider the problem of adaptive estimation of random-effects densities in
linear mixed-effects model. The linear mixed-effects model is defined as Yk,j = αk + βktj + εk,j where
Yk,j is the observed value for individual k at time tj for k = 1, . . . , N and j = 1, . . . , J . Random variables
(αk, βk) are known as random effects and stand for the individual random variables of entity k. We denote
their densities fα and fβ and assume that they are independent of the measurement errors (εk,j). We

introduce kernel estimators and present upper risk bounds. We also give rates of convergence. The focus of
this work lies on the optimal data driven choice of the smoothing parameter using a penalization strategy

in the particular case of fixed interval between times tj .

Keywords. Adaptive estimation. Nonparametric density estimation. Deconvolution. Linear mixed-effects
model. Random effect density. Mean square risk.

1. Introduction

Mixed models are models which bring together fixed effects and random effects. They allow analysis of
repeated measurements or longitudinal data. In this paper, we concentrate on linear mixed-effects models
defined as

Yk,j = αk + βktj + εk,j , k = 1, . . . , N and j = 1, . . . , J (1)

where Yk,j denotes the observed value for individual k at time tj and (αk, βk) represent the individual
random variables of entity k. They are known as random effects. (εk,j) are the measurement errors. We
denote their densities fα, fβ and fε. We do no assume that αk and βk are independent. We make the
following assumptions:

(A1) Times (tj)1≤j≤J are known and deterministic and ∆j = ∆ for all j, tj = j∆ and J ≥ 6.
(A2) (εk,j)k,j are i.i.d. with distribution fε and the Fourier transform of fε does not vanish on the real

line.
(A3) (αk, βk) are i.i.d. with respective distribution fα and fβ .
(A4) (αk, βk) are independent of (εk,j)k,j .

This aim of this paper is to recover the densities fα and fβ from the data (Yk,j) in a non-parametric setting.
Mixed models have been widely studied in a parametric context. For example, Pinheiro and Bates (2000)

have considered the problem assuming that both random effects and measurement errors are Gaussian,
which enables them to use a maximum likelihood approach. Nonetheless the normality assumption can be
too strong in some cases. In this way, Wu and Zhu (2010) relaxed the normality assumption estimating the
first four moments of the random-effects density. We can also cite previous works of Shen and Louis (1999)
who consider a smoothing method without any assumption on the error distribution fε, Zhang and Davidian
(2001) and Vock et al. (2011) who propose a semi-nonparametric approach based on the approximation of
the random-effects density by an Hermite series assuming that the error distribution is a Gaussian.

Here we consider an approach based on deconvolution methods. The convolution model a classical setting
in nonparametric statistics which has been widely studied. There exists a large amount of literature on the
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subject assuming first that the noise density is known. We can cite Carroll and Hall (1988), Stefanski
(1990), Stefanski and Carroll (1990), Fan (1991), Efromovich (1997) and Delaigle and Gijbels (2004) who
study rates of convergence and their optimality for kernel estimators or Butucea (2004), Butucea and
Tsybakov (2008a,b) for studies of rate optimality in the minimax sense. Yet the drawback of these methods
is that they all work under the assumption that the error distribution is known. However, the main goal of
this paper lies in an adaptive choice of a smoothing parameter. For the most part, the adaptive bandwidth
selection in deconvolution models has been addressed with a known error distribution, see for example Pensky
and Vidakovic (1999) for wavelet strategy, Comte et al. (2006), Butucea and Comte (2009) for projection
strategies, or Meister (2009) and references therein. Adaptive estimation in deconvolution problems with
unknown error density has been recently studied in a rigorous way. Several papers focus on that matter
as those of Comte and Lacour (2011), Johannes and Schwarz (2012), Dattner et al. (2013), Kappus (2014)
and Kappus and Mabon (2013). Rates of convergence have been presented in Neumann (1997) and, more
recently, in Johannes (2009), or Meister (2009) under the assumption that a preliminary sample of the noise
ε is observed.

More precisely, we follow an approach introduced in deconvolution literature but in this particular context
we apply a strategy based on repeated measurements in density estimation in deconvolution models. Rates
of convergence in a repeated observations model have been presented in Li and Vuong (1998), Neumann
(2007), Delaigle et al. (2008) and Comte et al. (2013). For the point of view of adaptive bandwidth selection,
we can cite Delaigle et al. (2008). More recently, Kappus and Mabon (2013) study deconvolution model
in the context of repeated measurements and achieve a new adaptive procedure. Their method has the
advantage of deriving a nearly optimal data driven choice of the smoothing parameter using a penalization
strategy under very weak assumptions: in particular no semi parametric assumptions on the shape of the
characteristic function of the noise is required. In this paper, we propose to adapt their method in the
context of mixed-effects model. For that we are aware of the work of Comte and Samson (2012) who
propose nonparametric and nonadaptive estimators of the random effects under several assumptions on the
noise, mainly assumed to be known and Dion (2013) who study nonparametric estimators based on Lepski’s
method and others based on a contrast penalization, but in another asymptotic framework.

This paper is organized as follows. In Section 2, we give the notations, specify the statistical model and
estimation procedure for fα and fβ . In Section 3, we present upper bounds for both densities and rates of
convergence for fβ . In Section 4, we introduce adaptive estimators and propose a new adaptive procedure
by penalization in the context of linear mixed-effects model under weak assumptions inspired by the work
of Kappus and Mabon (2013). Besides the theoretical properties of the adaptive estimators are studied. In
Section 5, we lead a study of the adaptive estimators through simulation experiments. Numerical results
are then presented. All the proofs are postponed to Section 6.

2. Statistical model and estimation procedure

2.1. Notations. For two real numbers a and b, we denote a ∨ b = max(a, b), a ∧ b = min(a, b) and
(a)+ = max(a, 0). For two functions ϕ, ψ : R → C belonging to L1(R) ∩ L2(R), we denote ‖ϕ‖ the
L2 norm of ϕ defined by ‖ϕ‖2 =

∫
R
|ϕ(x)|2 dx, 〈ϕ, ψ〉 the scalar product between ϕ and ψ defined by

〈ϕ, ψ〉 =
∫
R
ϕ(x)ψ(x) dx. The Fourier transform ϕ∗ is defined by

ϕ∗(x) =

∫
eixuϕ(u) du.

Besides, if ϕ∗ belongs to L1(R) ∩ L2(R), then the function ϕ is the inverse Fourier transform of ϕ∗ and
can be written ϕ(x) = 1/(2π)

∫
e−ixuϕ∗(u) du. Lastly the convolution product ∗ is defined as (ϕ ∗ ψ)(x) =∫

ϕ(x− u)ψ(u) du.

2.2. Estimation procedure.

2.2.1. Adaptive estimator of fα. If observations for t0 = 0 are available, then Model (1) writes

Yk,0 = αk + εk,0 and k = 1, . . . , N. (2)

This is a classical deconvolution model. Nonetheless this model has been widely studied when f∗ε is assumed
to be known, see Stefanski and Carroll (1990), Fan (1991), Pensky and Vidakovic (1999) and Comte et al.
(2006).

In this paper, we consider the context of unknown measurement errors. This problem has been studied
by Comte and Lacour (2011) when a preliminary sample of the error distribution is available. Yet this is not
the case we consider. In the context of repeated observations models, we can refer to the works of Li and
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Vuong (1998), Neumann (2007), Delaigle et al. (2008), Comte et al. (2013) and the recent work of Kappus
and Mabon (2013).

The density distribution of Yk,0 is noted fY . Under Model (2) and independence assumptions we have
clearly that

fY = fα ∗ fε
which implies that

f∗α =
f∗Y
f∗ε
.

In this case, we have that

fα,m(x) =
1

2π

∫ πm

−πm

e−iux f
∗
Y (u)

f∗ε (u)
du. (3)

If f∗ε were known, we could simply estimate f∗ with f̂∗Y /f
∗
ε where f̂∗Y is an estimator obtained directly

from the data with a simple empirical estimator. We should only apply the inverse Fourier transform to
get an estimate of f . Nevertheless, 1/f∗ε is not integrable over R because f∗ε decreases to 0 near infin-
ity. That is why we cannot compute the inverse Fourier transform over R. We need to regularize the
problem, for example, with a spectral cutoff parameter. In this particular case, the estimator of f would

be 1/(2π)
∫
|u|≤πm

e−iuxf̂∗Y (u)/f
∗
ε (u) du. We can notice that this estimator corresponds both to a kernel es-

timator built with a sinc kernel (Butucea (2004)) or to a projection type estimator as in Comte et al. (2006).

In this paper the error distribution is assumed to be unknown. To make the problem identifiable, some
additional information on the noise is required. When t0 = 0, linear mixed-effects models can be seen as
repeated observation models. Therefore we can recover an estimation of the error distribution from the
following data:

Uk = Yk,4 − Yk,3 − (Yk,2 − Yk,1) = εk,4 − εk,3 − εk,2 + εk,1

which imply have the following equality under (A2)

f∗U (x) = E
[
eixU

]
= |f∗ε (x)|4 .

For the estimation of fα, we add the following assumption:

(A5) ε is symmetric.

This latest assumption implies that f∗ε is real-valued and positive, so that f∗U (x) = (f∗ε (x))
4
. As a conse-

quence f∗4ε can be estimated as follows

f̂∗4ε (x) =

(
1

N

N∑

k=1

cos(xUk)

)

+

. (4)

Nevertheless we need to prevent f̂∗4ε to become too small. For that we introduce a regularization of the
Fourier transform by truncating the estimator following methods presented in Neumann (1997), Comte and
Lacour (2011), Kappus (2014) and Kappus and Mabon (2013). We define the following threshold

kN (x) = sN (x)N−1/2 (5)

where sN (x) ≥ 1 and sN (x) = O(N1/2) when N → ∞ for all x. Now we can introduce another estimator
of f∗ε .

f̌∗ε (x) =

{
(f̂∗4ε (x))1/4 if f̂∗4ε (x) ≥ kN (x),

(kN (x))1/4 otherwise.
(6)

So using the inverse Fourier transform, we can estimate fα,m as follows

f̂α,m(x) =
1

2π

∫ πm

−πm

e−ixu f̂
∗
Y (u)

f̌∗ε (u)
du (7)

where f̂∗Y (u) = 1/N
∑N

k=1 e
iuYk,0 .
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2.2.2. Adaptive estimator of fβ. For the estimation of fβ , we use another approach to see the problem as
a deconvolution problem. Without loss of generality we assume that J is even. So for 1 ≤ j ≤ J/2, we can
transform the data as follows

Zk,j =
Yk,2j − Yk,2j−1

∆
= βk +

εk,2j − εk,2j−1

∆
= βk +

ηk,j
∆

, ηk,j = εk,2j − εk,2j−1. (8)

Let us notice that for a fixed j, the (Zk,j) for k = 1, . . . , N are i.i.d. but Zk,j and Zk,l for j 6= l are not
independent. It means that we preserve the independence between individuals of the sample.

Since βk is independent of ηk,j under (A4), we can write the following equality

fZj
= fβ ∗ fηk,j

∆

which implies

f∗Zj
(x) = f∗β(x)

∣∣f∗ε
(
x
∆

)∣∣2 .
So under (A2) we have

f∗β(x) =
f∗Zj

(x)
∣∣f∗ε
(
x
∆

)∣∣2 .

Now using all the observations j we can write that

f∗β(x) =
2

J

J/2∑

j=1

f∗Zj
(x)

|f∗ε
(
x
∆

)
|2 .

Unlike in the estimation of fα, we do not need to estimate the Fourier transform of the error distribution
but only |f∗ε |2: that is why we do not assume here that the noise is symmetric. Let us notice the following
equality

Uk

∆
= Zk,2 − Zk,1 =

1

∆
(εk,4 − εk,3 − εk,2 + εk,1) .

Then we have

f∗U
∆

(x) = E

[
eixU/∆

]
=
∣∣f∗ε
(
x
∆

)∣∣4 . (9)

So |f∗ε |4 can be estimated as follows

|̂f∗4ε |
(
x
∆

)
=

(
1

N

N∑

k=1

cos(xUk

∆ )

)

+

. (10)

And to prevent the denominator from becoming too small, we regularize the Fourier transform of the
error distribution as follows

|f̃∗ε
(
x
∆

)
|2 =




|f̂∗ε
(
x
∆

)
|2 =

(
|̂f∗4ε |

(
x
∆

))1/2
if |̂f∗4ε |

(
x
∆

)
≥ kN

(
x
∆

)
,

(
kN
(
x
∆

))1/2
otherwise.

(11)

Thus we can estimate f∗β as follows

f̂∗β(x) =
2

J − 4

J/2∑

j=3

f̂∗Zj
(x)

|f̃∗ε
(
x
∆

)
|2

with f̂∗Zj
(x) =

1

N

N∑

k=1

eixYk,j , j = 3, . . . , J/2.

We emphasize that the previous definition uses distinct observations for f̃∗ε and f̂∗Zj
, so that the numerator

and the denominator are independent. This is why (A1) requires J ≥ 6. We then define fβ,m as follows

fβ,m(x) =
1

2π

∫ πm

−πm

e−ixu 2

J − 4

J/2∑

j=3

f∗Zj
(u)

|f∗ε
(
u
∆

)
|2 du. (12)

Applying the inverse Fourier transform, we get an estimate of fβ,m

f̂β,m(x) =
1

2π

∫ πm

−πm

e−ixu 2

J − 4

J/2∑

j=3

f̂∗Zj
(u)

|f̃∗ε
(
u
∆

)
|2

du

=
1

2π

∫ πm

−πm

e−ixu f̂∗Z(u)

|f̃∗ε
(
u
∆

)
|2

du (13)

where f̂∗Z(x) =
2

J−4

∑J/2
j=3 f̂

∗
Zj
(x).
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3. Upper bound on the L2 risk

Before giving upper bounds for f̂α,m and f̂β,m, we need two key lemmas which are similar to Neu-
mann’s lemma but are derived for our particular estimators. These lemmas study the error induced by the
truncation.

3.1. Upper bound for fα.

Lemma 3.1. Let q ≥ 1, under assumption (A2) there exists a constant Cq such that

E

[∣∣∣∣
1

f̌∗ε (x)
− 1

f∗ε (x)

∣∣∣∣
2q
]
≤ Cq

(
1

|f∗ε (x)|2q
∧ k2qN (x)

|f∗ε (x)|10q

)
. (14)

Proposition 3.2. Under assumptions (A2)-(A5), for kN (x) defined by (5) assume that sN (x) = 1 and

for f̂α,m defined by (7) then there is a positive constant C such that

E

∥∥∥fα − f̂α,m

∥∥∥
2

≤ ‖fα − fα,m‖2 + C

N

(
1

2π

∫ πm

−πm

1

|f∗ε (u)|2
du+

1

2π

∫ πm

−πm

|f∗α(u)|2
|f∗ε (u)|8

du

)
, (15)

where fα,m is defined by (3) and C is a numerical constant.

Remark. The first two terms of the right-hand side of Equation (15) correspond to the usual terms when

the error distribution is known (see Comte et al. (2006)): a squared bias term (‖fα − fα,m‖2) and a bound
on the variance depending only on f∗ε . The last term is due to the estimation of f∗ε and in addition depends
on f∗α.

For the rates of convergence, we refer to Lacour (2006) for a complete study of the known-error case,
Comte and Lacour (2011) for unknown noise. We refer also to Delaigle et al. (2008) who show that in sta-
tistical deconvolution problems there is no first-order loss of performance when estimating the error density
with repeated data compared to the known-error case under the assumption that ”f is smoother than half
a derivative of fε”. Finally, in that model, we also refer to Comte et al. (2013) who complete the theoretical
study of Delaigle et al. (2008) by studying this time the integrated risk.

3.2. Upper bound for fβ.

Lemma 3.3. Let p ≥ 1, under assumption (A2) there exists a constant Cp such that

E

[∣∣∣∣
1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2
∣∣∣∣
2p
]
≤ Cp

(
1

|f∗ε (x)|4p
∧ k2pN (x)

|f∗ε (x)|12p

)
. (16)

Proposition 3.4. Under assumptions (A1)-(A4), for kN (x) defined by (5) assume that sN (x) = 1, then

f̂β,m defined by (13) satisfies

E

∥∥∥fβ − f̂β,m

∥∥∥
2

≤ ‖fβ − fβ,m‖2 + 6m

N
+

12

N(J − 4)

1

2π

∫ πm

−πm

du∣∣f∗ε
(
u
∆

)∣∣4 +
4C1

N

1

2π

∫ πm

−πm

|f∗β(u)|2∣∣f∗ε
(
u
∆

)∣∣8 du. (17)

where fβ,m is defined by (12) and C1 is defined in Lemma 3.3.

Remark. The first three terms of the right-hand side of Equation (17) correspond to the terms when the

error distribution f∗ε is known as found in Comte and Samson (2012): a squared bias term (‖fβ − fβ,m‖2)
and two terms of variance. The first term of variance with order m/N is the bound we would have if
we were in a direct density estimation context. The second term is a classical term appearing in density
deconvolution problems when the error distribution is known but the J − 4 factor is specific to the repeated
measurement framework. The last term of variance is due to the estimation of f∗ε .

3.3. Discussion about resulting rates. In order to derive the corresponding rates of convergence of the
estimator of fβ defined by (13) we assume that the density functions fβ and fε belong to some nonparametric
classes of functions. First, we introduce the following type of smoothness spaces

A(a, r, L) =

{
f ∈ L1 ∩ L2(R),

∫
|f∗(u)|2e2a|u|r du ≤ L

}
(18)

S(δ, L) =
{
f ∈ L1 ∩ L2(R),

∫
|f∗(u)|2(1 + u2)δ du ≤ L

}
(19)
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with r ≥ 0, a > 0, δ > 1/2 and L > 0. Then if fβ belongs to A(a, r, L), the bias term can be bounded as
follows

‖fβ − fβ,m‖2 ≤ L

2π
e−2a|πm|r ,

or if fβ belongs to S(δ, L)
‖fβ − fβ,m‖2 ≤ L

2π
((πm)2 + 1)−δ.

In order to derive the order of the bound on the variance in Equation (17), we need more information about
the regularity of fε. We add the following classical assumption:

(A6) There exist positive constants k0, k
′
0, γ, µ, and s such for any real x

k0(x
2 + 1)−γ/2e−µ|x|s ≤ |f∗ε (x)| ≤ k′0(x

2 + 1)−γ/2e−µ|x|s .

If s = 0, we say that f∗ε ∈ OS(γ) (for ordinary smooth) and if γ = 0 f∗ε ∈ SS(s) (for supersmooth).

We introduce the notation g(x) . h(x) if there exists a positive constant C such that for all x, g(x) ≤
Ch(x) and the notation g(x) ≍ h(x) if g(x) . h(x) and h(x) . g(x) .

Lemma 3.5. If f∗ε satisfies assumption (A6) then
∫ πm

−πm

du∣∣f∗ε
(
u
∆

)∣∣4 ≍ (πm)4γ+1−se4µ(πm)s ,

∫ πm

−πm

|f∗β(u)|2∣∣f∗ε
(
u
∆

)∣∣8 du . (πm)(4γ+1−s)∧2(2γ−δ)+e4µ(πm)s
1{s>r}

+ (πm)2(2γ−δ)+e2(2µ−a)(πm)s
1{r=s,2µ≥a} + 1{r>s}∪{2µ≤a}.

A proof can be found in Comte and Lacour (2011).

Proposition 3.6. Suppose that (A6) is fullfiled, f∗ε ∈ OS(a) and fβ ∈ S(δ, L) defined by (18), then

E

∥∥∥fβ − f̂β,m

∥∥∥
2

≤ Cm−2δ +
6m

N
+ C ′m

4γ+1−se4µ(πm)s

N(J − 4)
+ C ′′m

(4γ+1−s)∧2(2γ−δ)+e4µ(πm)s

N
(20)

where C,C ′ and C ′′ are positive constants independent of N or J .

Proposition 3.7. Suppose that (A6) is fullfiled, f∗ε ∈ SS(s) and fβ ∈ A(a, r, L) defined by (19), then

E

∥∥∥fβ − f̂β,m

∥∥∥
2

≤ Cm−2δe−2a(πm)r +
6m

N
+ C ′ m4γ+1

N(J − 4)
+
C ′′

N
(21)

where C,C ′ and C ′′ are positive constants independent of N or J .

The rates are reported in Table 1. We clearly see that the rates of convergence depend on unknown
quantities since they describe the regularity of the density function under estimation as well as the error
distribution. When J is considered as a constant, we find the usual rates of convergence corresponding to
density deconvolution already presented in the literature.

f ∈ A(a, r, L), f∗ε ∈ OS(γ) f ∈ S(δ, L), f∗ε ∈ SS(s) f ∈ A(a, r, L), f∗ε ∈ OS(γ)

r = 0 (NJ)
−2δ

2δ+4γ+1 +N−( 2δ
2δ+1∧ δ

2δ ) (logNJ)−2δ/s (logNJ)
4γ+1

r

NJ
+

(logN)
1
r

N

Table 1. Rates of convergence for the MISE

The idea now for the adaptive estimation is to find a penalty term which would have the same order as
the bound on the variance. Thus the adaptive estimator will reach automatically the rates of convergence
presented in Table 1. The following section will show that we can obtain an adaptive procedure under weak
assumptions.
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4. Model selection

In this section, we introduce an adaptive estimator of |f∗ε |2 which can be uniformly controlled on the real
line which brings a model selection procedure with very weak assumptions on the error distribution f∗ε . For
that we need to precise a sN (x) which will allow us to apply concentration inequalities of Talagrand type.
For δ > 0, let us introduce the weight function w defined as

∀x ∈ R, w(x) = (log(e+ |x|))−
1
2−δ

which has originally been proposed in Neumann and Reiß (2009). In this context, as from now, we set the
threshold kN as follows

kN (x) = κ (logN)
1/2

w(x)−1N−1/2 (22)

which means that we take sN (x) = κ (logN)
1/2

w(x)−1.

We want to propose an estimator f̂m̂ of f completely data driven. Following the model selection paradigm,
see Birgé (1999), Birgé and Massart (1997) or Massart (2003), we select m̂ as the minimizer of a penalized
criterion

m̂ = argmin
m∈Mn

{
−‖f̂m‖2 + p̂en(m)

}

where Mn describes the model collections.
The penalty term should be chosen large enough to counterbalance the fluctuation of f̂m around f̂ , but on

the other hand, should ideally not be much larger than the variance terms presented in Equation (17). Here
the penalty term is stochastic since the variance terms depend on the error distribution which is supposed
unknown.

4.1. Adaptive estimation procedure for fα. In this section, we adapt the results of Kappus and Mabon
(2013) who proposed a completely data driven procedure in the framework of density estimation in deconvo-
lution problems with unknown error distribution. In the present paper, Model (2) can be seen as a repeated
observation model, which is studied is their paper. The only difference lies in the fact that in Kappus and
Mabon (2013) f∗2ε can be estimated directly from the data with an empirical estimator whereas we can only
estimate f∗4ε which is due to our access of the ε-sample. This, in our case, implies that f∗ε is raised to a
greater power in the term specific to the unkown noise density.

We introduce the following notations

Θ(m) =
1

2π

∫ πm

−πm

w(u)−2

|f∗ε (u)|2
du and Θα(m) =

1

2π

∫ πm

−πm

w(u)−2|f∗α(u)|2
|f∗ε (u)|8

du

Θ̂(m) =
1

2π

∫ πm

−πm

w(u)−2

|f̌∗ε (u)|2
du and Θ̂α(m) =

1

2π

∫ πm

−πm

w(u)−2|f̂∗Y (u)|2
|f̌∗ε (u)|10

du.

This terms correspond to the deterministic and stochastic bounds on the variance appearing in Equa-
tion (15). The difference lies in the introduction of the function w essential for the adaptive procedure.
Thus, we define empirical penalty as

p̂en(m) = 12λ2(m, Θ̂(m))
Θ̂(m)

n
+ 16κ2 log(Nm)

Θ̂α(m)

N

where κ is defined in Equation (22), and a deterministic penalty

pen(m) = 12λ2(m,Θ(m))
Θ(m)

N
+ 16κ2 log(Nm)

Θα(m)

N
,

with

λ(m,D) = max

{
√

8 log (1 +Dm2),
16
√
2

3
√
N

log
(
1 +Dm2

)
}
.

Then, we select the cutoff parameter m̂ as a minimizer of the following penalized criterium

m̂ = argmin
m∈Mn

{
−‖f̂α,m‖2 + p̂en(m)

}
(23)

where Mn = {1, . . . , n}. We can now state the following oracle inequality:
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Theorem 4.1. Under assumptions (A1)-(A4), let f̂m̂,α be defined by (7) and (23). Then there are positive
constants Cad and C such that

E‖fα − f̂α,m̂‖2 ≤ Cad inf
m∈Mn

{
‖fα − fα,m‖2 + pen(m)

}
+
C

N
. (24)

Remark. The latest result is an oracle inequality which means that the bias variance compromise is auto-
matically made and completely data driven in an almost non-asymptotic setting. So rates of convergence
are reached by themselves without being specified in the framework. This result is of high interest since in
deconvolution problems, rates of convergence are classically intricate and depend on the regularity types of
the function f under estimation and the error density f∗ε (see Section 3.3).

However the penalty term is not exactly the same as the upper bound terms shown in Equation (15). We
may wonder if a loss due to adaptation occurs. To answer that question, right-hand side of Equations (15)
and (24) have to be compared. More precisely, since the bias term ‖fα − fα,m‖2 is unchanged and N−1 is
a negligible term, it comes down to compare pen(m) with

1

N

(
1

2π

∫ πm

−πm

1

|f∗ε (u)|2
du+

1

2π

∫ πm

−πm

|f∗α(u)|2
|f∗ε (u)|8

du

)
.

Clearly the difference lies in the logarithmic terms, and thus, the loss is negligible.

4.2. Adaptive estimation procedure for fβ. As in the previous section, we start by defining the bound
appearing in the known-error case then the one appearing in the known-error case and introduce the function
w which is principal for the adaptive procedure.

Ξ(m) =
1

2π

∫ πm

−πm

w
(
u
∆

)−2

∣∣f∗ε
(
u
∆

)∣∣4 du and Ξβ(m) =
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f∗β(u)|2∣∣f∗ε
(
u
∆

)∣∣8 du.

Ξ̂(m) =
1

2π

∫ πm

−πm

w
(
u
∆

)−2

∣∣∣f̃∗ε
(
u
∆

)∣∣∣
4 du and Ξ̂β(m) =

1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗Z(u)|2∣∣∣f̃∗ε
(
u
∆

)∣∣∣
12 du.

We can now define the stochastic penalty associated to the adaptive procedure

q̂en(m) = qen1(m) + q̂en2(m) + q̂en3(m)

= 64
m

N
+ 16

µ2(m, Ξ̂(m))Ξ̂(m)

N(J − 4)
+ 16κ2 log(Nm)

Ξ̂β(m)

N

and the deterministic penalty

qen(m) = qen1(m) + qen2(m) + qen3(m)

= 64
m

N
+ 16µ2(m,Ξ(m))

Ξ(m)

N(J − 4)
+ 16κ2 log(Nm)

Ξβ(m)

N

with weight

µ(m,D) = max

{
√
8 log (1 +Dm2),

16
√
2

3
√
N(J − 4)

log
(
1 +Dm2

)
}
.

It is worth mentioning that the penalty takes into account the three terms of variance showed in Equa-
tion (17) which is consistent with the upper bound given in Proposition 3.4. So the penalty has the same
order as the bounds on the variance. As in Kappus and Mabon (2013), the model selection procedure has
the advantage of keeping track of the inverse Fourier transform of the target density fβ by estimating it by

f̂∗Z/f̃
∗
ε in the term Ξ̂β(m) which is a difficulty in deconvolution problems as showed in Section 6. Besides

we can also point out that the model collection Mn = {1, . . . , n} is a deterministic one.

Therefore we select the cutoff parameter m̂ as a minimizer of the following penalized criterium

m̂ = argmin
m∈Mn

{
−
∥∥∥f̂β,m

∥∥∥
2

+ q̂en(m)

}
. (25)

Theorem 4.2. Under assumptions (A1)-(A4), consider f̂β,m̂ defined by (13) and (25). Then there are
positive constants Cad and C such that

E

∥∥∥fβ − f̂β,m̂

∥∥∥
2

≤ Cad inf
m∈Mn

{
‖fβ − fβ,m‖2 + qen(m)

}
+

C

N(J − 4)
+
C

N
. (26)



ADAPTIVE ESTIMATION OF RANDOM-EFFECTS DENSITIES IN LINEAR MIXED-EFFECTS MODEL 9

Remark. The same kind of remarks as in Theorem 4.1 hold here. The latest result is an oracle inequality
which means that the bias variance compromise is automatically made and completely data driven in an
almost non-asymptotic setting. So rates of convergence are reached by themselves without being specified
in the framework. As far as we know this result is new in the literature.

5. Simulation

In this section, we only concentrate on a simulation study of fβ . Indeed, the proposed method for the
estimation of fα being mainly taken from Kappus and Mabon (2013), we refer to that paper for the perfor-
mance of the estimator.

The whole implementation is conducted using R software. The integrated squared error ‖f − f̂β,m̂‖2 is
computed via a standard approximation and discretization (over 300 points) of the integral on an interval of

R denoted by I. Then the mean integrated squared error (MISE) E‖f− f̂β,m̂‖2 is computed as the empirical
mean of the approximated ISE over 100 simulation samples.

Practical estimation procedure. The adaptive procedure is implemented as follows:

⊲ For m ∈ Mn = {m1, . . . ,mn}, compute −‖f̂β,m‖2 + q̂en(m).

⊲ Choose m̂ such as m̂ = argmin
m∈Mn

{
−‖f̂β,m‖2 + q̂en(m)

}
.

⊲ And compute f̂β,m̂(x) =

∫ πm̂

−πm̂

e−ixu f̂∗Z(u)

|f̃∗ε
(
u
∆

)
|2
du.

Riemann’s sums are used to approximate all the integrals. The penalties are chosen according to Theorem 4.2
and as in Comte et al. (2007) we consider that m can be fractional by taking the following model collection

Mn =

{
m =

k

10
, 1 ≤ k ≤ 25

}

associated with the following penalty

q̂en(m) = κ1

(
m

N
+

log(1 + Ξ̂(m)m2)Ξ̂(m)

N(J − 4)

)
+ κ2 log(Nm)

Ξ̂β(m)

N

Moreover the interval tj are chosen as tj = j∆ with ∆ = 2 and J = 6 as in Comte and Samson (2012). We
consider the four following distributions for β :

⊲ Standard Gaussian distribution, I = [−4, 4].
⊲ Cauchy distribution, f(x) = (π(1 + x2))−1, I = [−10, 10].
⊲ Gamma distribution : 5 · Γ(25, 1

25 ), I = [−1, 13].

⊲ Mixed Gamma distribution : X =W/
√
5.48, with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1), I = [−1.5, 26].

All the densities are normalized with unit variance except the Cauchy density. Unlike in Comte and Samson
(2012), we do not study the influence of the distribution of fα on the estimation of fβ . In all considered
cases, α is a standard gaussian distribution.

The results of the first and third distribution can be compared to those of Comte and Samson (2012)
and the first, second and third can be compared to Kappus and Mabon (2013).

We consider the two following noise densities with same variance σ2
ε . In the simulation the variance takes

the values 1/10 and 1/4. The first one is a gaussian density (supersmooth density) which means f∗ε ∈ SS(2).
The second one is a Laplace density (ordinary smooth density) which means f∗ε ∈ OS(2).

Gaussian noise : fε(x) =
1

σε
√
2π

exp

(
− x2

2σ2
ε

)
, f∗ε (x) = exp

(
−σ

2
εx

2

2

)
.

Laplace noise : fε(x) =
1

2σε
exp

(
−|x|
σε

)
, f∗ε (x) =

1

1 + σ2
εx

2
.

The calibration of the two constants are done with intensive preliminary simulations with a sample size
of 500. In the end, we choose κ1 = κ2 = 1. We can notice that in Kappus and Mabon (2013) the constant
are bigger. It seems that the greater the power of f∗ε is in the denominator, the smaller the constants are.
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Results. The results of the simulations are given in Tables 2 and 3. For both tables, the MISE is multiplied
by 100 and computed from 100 simulated data sets. We also give the medians of the MISE. A first remark:
estimating the Fourier transform of the noise f∗ε reduces the risk compared to knowing the density of the
noise, a fact already pointed in Comte and Lacour (2011). This can be explained by the fact that an
additional regularization of the characteristic function of the noise comes in. This regularization is not
applied in the procedure when the error distribution is known.

Table 2 corresponds to an estimation procedure where the error distribution is a Laplace density while
Table 3 corresponds to a Gaussian noise. We notice that increasing the sample size improves the estimation
and increasing the variances degrades the estimation but in an acceptable way. Concerning the medians of
the MISE, they are always lower than the means of the MISE.

For all the test densities, the results are very good. If we compare to Kappus and Mabon (2013) the
results are very close. It is quite remarkable that they have the same order since in this paper we have
access to an estimate of (f∗ε )

4 when they have access to an estimate of f∗ε or (f∗ε )
2. Still it proves that their

methodology is robust since it does not fail to estimate in that particular case. If we compare the results
to those of Comte and Samson (2012), we see that our procedure does not outdo theirs. But the results are
very close. Nonetheless our adaptive procedure has the advantage of being based on theoretical properties.

σ2
ε = 1

10 σ2
ε = 1

4

N 200 2000 200 2000

Gaussian fε known 0.344 0.054 0.514 0.129
(0.273) (0.045) (0.513) (0.105)

fε unknown 0.331 0.042 0.317 0.057
(0.251) (0.033) (0.236) (0.051)

Cauchy fε known 0.625 0.105 0.804 0.216
(0.573) (0.097) (0.765) (0.211)

fε unknown 0.507 0.075 0.657 0.090
(0.427) (0.071) (0.599) (0.079)

Gamma fε known 0.398 0.069 0.620 0.161
(0.360) (0.063) (0.517) (0.140)

fε unknown 0.381 0.051 0.506 0.066
(0.347) (0.044) (0.430) (0.051)

Mixed Gamma fε known 0.545 0.095 0.715 0.150
(0.480) (0.084) (0.620) (0.141)

fε unknown 0.506 0.082 0.518 0.092
(0.453) (0.080) (0.495) (0.084)

Table 2. Results of simulation as MISE E

(
‖f − f̂β,m̂‖2

)
×100 averaged over 100 samples.

In brackets we give the median of the MISE also averaged over 100 samples with a Laplace
noise.
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σ2
ε = 1

10 σ2
ε = 1

4

N 200 2000 200 2000

Gaussian fε known 0.349 0.054 0.650 0.142
(0.296) (0.045) (0.598) (0.128)

fε unknown 0.285 0.038 0.349 0.052
(0.239) (0.029) (0.273) (0.053)

Cauchy fε known 0.588 0.119 0.848 0.272
(0.532) (0.112) (0.791) (0.263)

fε unknown 0.481 0.076 0.680 0.089
(0.449) (0.070) (0.607) (0.084)

Gamma fε known 0.401 0.072 0.956 0.207
(0.332) (0.063) (0.910) (0.190)

fε unknown 0.402 0.049 0.461 0.067
(0.316) (0.041) (0.418) (0.055)

Mixed Gamma fε known 0.504 0.089 0.704 0.163
(0.454) (0.084) (0.639) (0.146)

fε unknown 0.504 0.079 0.552 0.101
(0.446) (0.072) (0.484) (0.093)

Table 3. Results of simulation as MISE E

(
‖f − f̂β,m̂‖2

)
×100 averaged over 100 samples.

In brackets we give the median of the MISE also averaged over 100 samples with a Gaussian
noise.

6. Proofs

6.1. Proof of Lemma 3.3. We start by proving Lemma 3.3 since Lemma 3.1 is obtained as a consequence
of it. Let p ≥ 1 be. Using that 1/||f̃∗ε (x)|2 + |f∗ε (x)|2|2 ≤ 1/|f̃∗ε (x)|4, we have

E

∣∣∣∣
1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2
∣∣∣∣
2p

= E


1
{
|f̃∗ε (x)|4 < kN (x)

} ∣∣∣∣∣
1√
kN (x)

− 1

|f∗ε (x)|2

∣∣∣∣∣

2p



+ E

[
1

{
|f̃∗ε (x)|4 ≥ kN (x)

} ∣∣∣∣
1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2
∣∣∣∣
2p
]

≤ |f∗ε (x)|−4pP

[
|f̃∗ε (x)|4 < kN (x)

]
∣∣∣|f∗ε (x)|2 −

√
kN (x)

∣∣∣
2p

kN (x)p

+ E


1
{
|f̃∗ε (x)|4 ≥ kN (x)

}
∣∣∣|f̃∗ε (x)|4 − |f∗ε (x)|4

∣∣∣
2p

|f∗ε (x)|4p|f̃∗ε (x)|4p
∣∣∣|f̃∗ε (x)|2 + |f∗ε (x)|2

∣∣∣
2p




≤ |f∗ε (x)|−4p]

∣∣∣|f∗ε (x)|2 −
√
kN (x)

∣∣∣
2p

kN (x)p

+ E


1
{
|f̃∗ε (x)|4 ≥ kN (x)

}
∣∣∣|f̃∗ε (x)|4 − |f∗ε (x)|4

∣∣∣
2p

|f∗ε (x)|4p|f̃∗ε (x)|8p


 (27)
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• 1st case : |f∗ε (x)|4 < 2kN (x). In this case we have
1

|f∗ε (x)|4p
∧ k2pN (x)

|f∗ε (x)|12p
= |f∗ε (x)|−4p. Then starting

from (27), we get

E

∣∣∣∣
1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2
∣∣∣∣
2p

≤ 9p|f∗ε (x)|−4p + |f∗ε (x)|−4pE


1
{
|f̃∗ε (x)|4 ≥ kN (x)

}
∣∣∣|f̃∗ε (x)|4 − |f∗ε (x)|4

∣∣∣
2p

|f̃∗ε (x)|8p




≤ 9p|f∗ε (x)|−4p + |f∗ε (x)|−4pkN (x)−2pE

[∣∣∣|̂f∗4ε |(x)− |f∗ε (x)|4
∣∣∣
2p
]

≤ 9p|f∗ε (x)|−4p + |f∗ε (x)|−4pkN (x)−2pN−p

≤ 9p|f∗ε (x)|−4p + |f∗ε (x)|−4p(logN)−pw(x)2pNpN−p

≤ O(|f∗ε (x)|−4p).

• 2nd case : |f∗ε (x)|4 ≥ 2kN (x). In this case we have
1

|f∗ε (x)|4p
∧ k2pN (x)

|f∗ε (x)|12p
=

k2pN (x)

|f∗ε (x)|12p
. Now using the

Markov and Rosenthal inequalities.

P

[∣∣∣f̃∗ε (x)
∣∣∣
4

≤ kN (x)

]
= P

[
|̂f∗4ε |(x) ≤ kN (x)

]

≤ P

[∣∣∣|̂f∗4ε |(x)− |f∗ε (x)|4
∣∣∣ > |f∗ε (x)|4 − kN (x)

]

≤ P

[∣∣∣|̂f∗4ε |(x)− |f∗ε (x)|4
∣∣∣ > |f∗ε (x)|4/2

]

≤
E

∣∣∣|̂f∗4ε |(x)− |f∗ε (x)|4
∣∣∣
2p

(|f∗ε (x)|4/2)2p

≤ cpN
−p

|f∗ε (x)|8p

Then we can bound the first term of Equation (27) as follows

|f∗ε (x)|−4pP

[
|f̃∗ε (x)|4 < kN (x)

]
∣∣∣|f∗ε (x)|2 −

√
kN (x)

∣∣∣
2p

kN (x)p

≤ |f∗ε (x)|−4pP

[
|f̃∗ε (x)|4 < kN (x)

]
(
1 +

√
kN (x)

)2p

kN (x)p

≤ |f∗ε (x)|−4pP

[
|f̃∗ε (x)|4 < kN (x)

] CkN (x)p

kN (x)p

≤ O(N−p|f∗ε (x)|−12p)

≤ O(kN (x)2p|f∗ε (x)|−12p). (28)

Moreover using this time that 1/
∣∣∣|f̃∗ε (x)|2 + |f∗ε (x)|2

∣∣∣
2

≤ 1/|f∗ε (x)|4, we can bound the second term of

Equation (27) as follows

E

[
1

{
|f̃∗ε (x)|4 ≥ kN (x)

} ∣∣∣∣
1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2
∣∣∣∣
2p
]

= E


1
{
|f̃∗ε (x)|4 ≥ kN (x)

} ∣∣∣∣
1

|f∗ε (x)|2
∣∣∣∣
2p ∣∣∣∣

1

|f̃∗ε (x)|2

∣∣∣∣
2p
∣∣∣∣∣
|̂f∗4ε |(x)− |f∗ε (x)|4
|f̃∗ε (x)|2 + |f∗ε (x)|2

∣∣∣∣∣

2p



= |f∗ε (x)|−4p
E


1
{
|f̃∗ε (x)|4 ≥ kN (x)

} ∣∣∣∣
1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2
+

1

|f∗ε (x)|2
∣∣∣∣
2p
∣∣∣∣∣

|̂f∗4ε |(x)|f∗ε (x)|4
|f̃∗ε (x)|2 + |f∗ε (x)|2

∣∣∣∣∣

2p
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We then deduce the following bounds

E

[
1

{
|f̃∗ε (x)|4 ≥ kN (x)

} ∣∣∣∣
1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2
∣∣∣∣
2p
]

≤ 22p−1 |f∗ε (x)|−8p
E


1
{
|f̃∗ε (x)|4 ≥ kN (x)

} ∣∣∣∣∣
|̂f∗4ε |(x)− |f∗ε (x)|4
|f̃∗ε (x)|2 + |f∗ε (x)|2

∣∣∣∣∣

2p



+ 2 |f∗ε (x)|−8p
E


1
{
|f̃∗ε (x)|4 ≥ kN (x)

}
∣∣∣|̂f∗4ε |(x)− |f∗ε (x)|4

∣∣∣
4p

|f̃∗ε (x)




≤ 22p−1 |f∗ε (x)|−12p
E

[∣∣∣|̂f∗4ε |(x)− |f∗ε (x)|4
∣∣∣
2p
]

+ 2 |f∗ε (x)|
−12p

E


1
{
|f̃∗ε (x)|4 ≥ kN (x)

}
∣∣∣|̂f∗4ε |(x)|4 − |f∗ε (x)|4

∣∣∣
4p

|f̃∗ε (x)|4p




≤ 22p−1 |f∗ε (x)|−12p
N−p + 2 |f∗ε (x)|−12p

kN (x)−pN−2p

≤ 22p−1 |f∗ε (x)|−12p
N−p + 2 |f∗ε (x)|−12p

NpN−2p

≤ O
(
|f∗ε (x)|−12p

N−p
)

≤ O(kN (x)2p|f∗ε (x)|−12p). (29)

Then gathering Equations (28) and (29), we just proved that if |f∗ε (x)|4 ≥ 2kN (x) then

E

∣∣∣∣
1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2
∣∣∣∣
2p

≤ O(kN (x)2p|f∗ε (x)|−12p).

In the end

E

∣∣∣∣
1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2
∣∣∣∣
2p

≤ Cp

(
1

|f∗ε (x)|4p
∧ k2pN (x)

|f∗ε (x)|12p

)
.

�

6.2. Proof of Lemma 3.1. Under (A5) and applying Lemma 3.3, we have

E

[∣∣∣∣
1

f̃∗ε (x)
− 1

f∗ε (x)

∣∣∣∣
2p
]
= E

[∣∣∣∣
1

|f̃∗ε (x)|2
− 1

|f∗ε (x)|2
∣∣∣∣
2p
/∣∣∣∣

1

f̃∗ε (x)
+

1

f∗ε (x)

∣∣∣∣
2p
]

= E

[∣∣∣∣
1

(f̃∗ε (x))
2
− 1

(f∗ε (x))
2

∣∣∣∣
2p
/∣∣∣∣

1

f̃∗ε (x)
+

1

f∗ε (x)

∣∣∣∣
2p
]

= |f∗ε (x)|2pE
[∣∣∣∣

1

(f̃∗ε (x))
2
− 1

(f∗ε (x))
2

∣∣∣∣
2p
]

= |f∗ε (x)|2pCp

(
1

|f∗ε (x)|4p
∧ k2pN (x)

|f∗ε (x)|12p

)

= Cp

(
1

|f∗ε (x)|2p
∧ k2pN (x)

|f∗ε (x)|10p

)

�

We just proved the desired result.

6.3. Proof of Proposition 3.4. As aforementioned f̂β,m can be seen as a projection estimator. We can
then write the following equality using Pythagoras’ theorem

∥∥∥fβ − f̂β,m

∥∥∥
2

=
∥∥∥fβ − fβ,m

∥∥∥
2

+
∥∥∥fβ,m − f̂β,m

∥∥∥
2

.
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Now using Plancherel’s formula, we can write

∥∥∥fβ,m − f̂β,m

∥∥∥
2

=
1

2π

∫
|f∗β,m(u)− f̂∗β,m(u)|2 du

=
1

2π

∫ πm

−πm

∣∣∣∣∣
f̂∗Z(u)

f̃∗ε
(
u
∆

)2 − f∗Z(u)

f∗ε
(
u
∆

)2

∣∣∣∣∣

2

du

=
1

2π

∫ πm

−πm

∣∣∣∣∣
f̂∗Z(u)

f̃∗ε
(
u
∆

)2 − f̂∗Z(u)

f∗ε
(
u
∆

)2 +
f̂∗Z(u)

f∗ε
(
u
∆

)2 − f∗Z(u)

f∗ε
(
u
∆

)2

∣∣∣∣∣

2

du

=
1

2π

∫ πm

−πm

∣∣∣∣∣f̂
∗
Z(u)R

(
u
∆

)
+
f̂∗Z(u)− f∗Z(u)

f∗ε
(
u
∆

)2

∣∣∣∣∣

2

du

≤ 1

π

∫ πm

−πm

∣∣∣f̂∗Z(u)R
(
u
∆

)∣∣∣
2

du+
1

π

∫ πm

−πm

∣∣∣∣∣
f̂∗Z(u)− f∗Z(u)

f∗ε
(
u
∆

)2

∣∣∣∣∣

2

du (30)

with R
(
u
∆

)
=

1

f̃∗ε
(
u
∆

)2 − 1

f∗ε
(
u
∆

)2 . Taking the expectation, we get:

E

∥∥∥fβ,m − f̂β,m

∥∥∥
2

≤ 1

π

∫ πm

−πm

E

[∣∣∣f̂∗Z(u)R
(
u
∆

)∣∣∣
2
]
du+

1

π

∫ πm

−πm

∣∣f∗ε
(
u
∆

)∣∣−4
E

[∣∣∣f̂∗Z(u)− f∗Z(u)
∣∣∣
2
]
du.

Yet

E

[∣∣∣f̂∗Z(u)− f∗Z(u)
∣∣∣
2
]
=

4

N(J − 4)2

J/2∑

j=3

Var
(
eiuZ1,j

)
+

4

N(J − 4)2

∑

3≤j,j′≤J/2
j 6=j′

Cov
(
eiuZ1,j , eiuZ1,j′

)

≤ 4

N(J − 4)2

(
J − 4

2
+

(J − 4)2

4

(
1− |f∗β(u)|2

) ∣∣f∗ε
(
u
∆

)∣∣4
)

≤ 2

N(J − 4)

(
1 +

J − 4

2

∣∣f∗ε
(
u
∆

)∣∣4
)
,

hence

1

π

∫ πm

−πm

∣∣f∗ε
(
u
∆

)∣∣−4
E

[∣∣∣f̂∗Z(u)− f∗Z(u)
∣∣∣
2
]
du ≤ 1

π

2

N(J − 4)

∫ πm

−πm

∣∣f∗ε
(
u
∆

)∣∣−4
du+

2m

N
. (31)

Now noticing that |f̂∗Z(u)− f∗Z(u)| and |R
(
u
∆

)
| are independent and applying Lemma 3.3 for p = 1, we get

∫ πm

−πm

E

[∣∣∣f̂∗Z(u)R
(
u
∆

)∣∣∣
2
]
du =

∫ πm

−πm

E

[∣∣∣f̂∗Z(u)− f∗Z(u) + f∗Z(u)
∣∣∣
2 ∣∣R

(
u
∆

)∣∣2
]
du

≤ 2

∫ πm

−πm

|f∗Z(u)|2 E
∣∣R
(
u
∆

)∣∣2 du+ 2

∫ πm

−πm

E

[∣∣∣f̂∗Z(u)− f∗Z(u)
∣∣∣
2 ∣∣R

(
u
∆

)∣∣2
]
du

≤ 2

∫ πm

−πm

|f∗Z(u)|2 E
∣∣R
(
u
∆

)∣∣2 du+ 2

∫ πm

−πm

E

∣∣∣f̂∗Z(u)− f∗Z(u)
∣∣∣
2

E
∣∣R
(
u
∆

)∣∣2 du

≤ 2

∫ πm

−πm

|f∗Z(u)|2
k2N (u)∣∣f∗ε
(
u
∆

)∣∣12 du

+
2

π

∫ πm

−πm

∣∣f∗ε
(
u
∆

)∣∣−4 2

N(J − 4)

(
1 +

J − 4

2

∣∣f∗ε
(
u
∆

)∣∣2
)

du

≤ 2C1

∫ πm

−πm

|f∗Z(u)|
2 k2N (u)∣∣f∗ε

(
u
∆

)∣∣12 du+
4mπ

N
+

2

N(J − 4)

∫ πm

−πm

∣∣f∗ε
(
u
∆

)∣∣−4
du

(32)
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Plugging (31) and (32) into Equation (30) yields

E

∥∥∥fβ,m − f̂β,m

∥∥∥
2

≤ 6m

N
+

6

N(J − 4)

∫ πm

−πm

∣∣f∗ε
(
u
∆

)∣∣−4
du+

2C1

π

∫ πm

−πm

|f∗Z(u)|2
k2N (u)∣∣f∗ε
(
u
∆

)∣∣12 du

≤ 6m

N
+

12

N(J − 4)

1

2π

∫ πm

−πm

∣∣f∗ε
(
u
∆

)∣∣−4
du+

2C1

π

∫ πm

−πm

∣∣f∗β(u)
∣∣2 ∣∣f∗ε

(
u
∆

)∣∣4 k2N (u)∣∣f∗ε
(
u
∆

)∣∣12 du

≤ 6m

N
+

12

N(J − 4)

1

2π

∫ πm

−πm

∣∣f∗ε
(
u
∆

)∣∣−4
du+

2C1

π

∫ πm

−πm

∣∣f∗β(u)
∣∣2 k2N (u)∣∣f∗ε

(
u
∆

)∣∣8 du

≤ 6m

N
+

12

N(J − 4)

1

2π

∫ πm

−πm

∣∣f∗ε
(
u
∆

)∣∣−4
du+

2C1

π

1

N

∫ πm

−πm

|f∗β(u)|2∣∣f∗ε
(
u
∆

)∣∣8 du

In the end

E

∥∥∥fβ − f̂β,m

∥∥∥
2

≤ ‖fβ − fβ,m‖2 + 6m

N
+

12

N(J − 4)

1

2π

∫ πm

−πm

1∣∣f∗ε
(
u
∆

)∣∣4 du+
4C1

N

1

2π

∫ πm

−πm

|f∗β(u)|2∣∣f∗ε
(
u
∆

)∣∣8 du.

�

6.4. Proof of Theorem 4.1. The proof is similar to the proof of Theorem 4.2 and particularly of Theorem
3.1 in Kappus and Mabon (2013). For the last one, the only difference lies in Θ̂α since f̌∗ε is raised to a
greater power. Then the proof can be easily adapted.

6.5. Proof of Theorem 4.2. Before proving any result, let us introduce some notations: for k > m,

Ξ̂(m, k) = Ξ̂(k)− Ξ̂(m),

Ξ̂β(m, k) = Ξ̂β(k)− Ξ̂β(m).

Moreover,

q̂en(m, k) = qen1(m, k) + qen2(m, k) + qen3(m, k)

=
64(k −m)

N
+ 16

µ̂2(m, k)Ξ̂(m, k)

N(J − 4)
+ 16κ2 log(N(k −m))

Ξ̂β(m, k)

N

with

µ̂(m, k) = max

{√
8 log

(
1 + Ξ̂(m, k)m2

)
,

16
√
2

3
√
N(J − 4)

log
(
1 + Ξ̂(m, k)(k −m)2

)}
.

Now we can start the proof of Theorem 4.2. We denote by m⋆ the oracle cutoff defined by

m⋆ = argmin
m∈Mn

{
−‖fβ,m‖2 + qen(m)

}
.

We have ∥∥∥fβ − f̂β,m̂

∥∥∥
2

≤ 2
∥∥∥fβ − f̂β,m⋆

∥∥∥
2

+ 2
∥∥∥f̂β,m⋆ − f̂β,m̂

∥∥∥
2

.

• Let us notice on the set G = {m̂ ≤ m⋆} :
∥∥∥f̂β,m⋆ − f̂β,m̂

∥∥∥
2

1G =

(∥∥∥f̂β,m⋆

∥∥∥
2

−
∥∥∥f̂β,m̂

∥∥∥
2
)
1G.

Besides according to the definition of m̂, one has the following inequalities:

−
∥∥∥f̂β,m̂

∥∥∥
2

+ q̂en(m̂) ≤ −
∥∥∥f̂β,m⋆

∥∥∥
2

+ q̂en(m⋆) (33)

which implies

−
∥∥∥f̂β,m̂

∥∥∥
2

≤ −
∥∥∥f̂β,m⋆

∥∥∥
2

+ q̂en(m⋆).

Thus ∥∥∥f̂β,m⋆ − f̂β,m̂

∥∥∥
2

1G =

(∥∥∥f̂β,m⋆

∥∥∥
2

−
∥∥∥f̂β,m̂

∥∥∥
2
)
1G ≤ q̂en(m⋆).

Taking expectation, we apply the following Lemma
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Lemma 6.1. There is a positive constant C such that for any arbitrary m ∈ Mn

E [q̂en(m)] ≤ Cqen(m), (34)

It yields for some positive constant C

E

[∥∥∥fβ − f̂β,m̂

∥∥∥
2

1G

]
≤ 2E

[∥∥∥fβ − f̂β,m⋆

∥∥∥
2
]
+ 2E [q̂en(m⋆)]

≤ 2 ‖fβ − fβ,m⋆‖2 + 2Cqen(m⋆).

We just proved the desired result on G

E

[
‖fβ − f̂β,m̂‖21G

]
≤ C inf

m∈Mn

{
‖fβ − fβ,m‖2 + pen(m)

}
. (35)

• We now consider the set Gc = {m̂ > m⋆}.
∥∥∥f̂β,m̂ − f̂β,m⋆

∥∥∥
2

1Gc =

(∥∥∥f̂β,m̂ − f̂β,m⋆

∥∥∥
2

− 4 ‖fβ,m̂ − fβ,m⋆‖2 − 1

2
q̂en(m⋆, m̂)

)
1Gc

+

(
4 ‖fβ,m̂ − fβ,m⋆‖2 + 1

2
q̂en(m⋆, m̂)

)
1Gc

≤ sup
k≥m⋆

k∈Mn

{∥∥∥f̂β,k − f̂β,m⋆

∥∥∥
2

− 4 ‖fβ,k − fβ,m⋆‖2 − 1

2
q̂en(m⋆, k)

}

+

+ 4‖fβ,m̂ − fβ,m⋆‖2 + 1

2

∑

k≥m⋆

k∈Mn

q̂en(m∗, k)1 {m̂ = k} . (36)

Let us first notice the following inequality

∀k > m, q̂en(m, k) ≤ q̂en(k). (37)

Besides by definition of m̂ (see Equation (25)), on the set {m̂ = k} ∩ Gc and applying Equation (33), one
has

1

2
(q̂en(k)− q̂en(m⋆)) ≤

∥∥∥f̂β,m̂ − f̂m⋆

∥∥∥
2

− 1

2
q̂en(k) +

1

2
q̂en(m⋆)

1

2
q̂en(k) ≤

∥∥∥f̂β,m̂ − f̂β,m⋆

∥∥∥
2

− 1

2
q̂en(m⋆, k) +

1

2
q̂en(m⋆)

1

2
q̂en(k) ≤

(∥∥∥f̂β,m̂ − f̂β,m⋆

∥∥∥
2

− 4 ‖fβ,m̂ − fβ,m⋆‖2 − 1

2
q̂en(m⋆, k)

)
+ 4 ‖fβ,m̂ − fβ,m⋆‖2 + 1

2
q̂en(m⋆).

(38)

Now using Equations (37) and (38)

1

2

∑

k≥m⋆

k∈Mn

q̂en(m⋆, k) ≤ sup
k≥m⋆

k∈Mn

{∥∥∥f̂β,m̂ − f̂∗β,m⋆

∥∥∥
2

− 4 ‖fβ,m̂ − fβ,m⋆‖2 − 1

2
q̂en(m⋆, k)

}

+

+ 4 ‖fβ,m̂ − fβ,m⋆‖2 + 1

2
q̂en(m⋆).

From Equation (36), we now have
∥∥∥f̂β,m̂ − f̂β,m⋆

∥∥∥
2

1Gc ≤ 2 sup
k≥m⋆

k∈Mn

{∥∥∥f̂β,k − f̂β,m⋆

∥∥∥
2

− 4 ‖fβ,k − fβ,m⋆‖2 − 1

2
q̂en(m⋆, k)

}

+

+ 8 ‖fβ,m̂ − fβ,m⋆‖2 + 1

2
q̂en(m⋆). (39)

Taking expectation the first summand is negligible by applying the following Proposition.

Proposition 6.2. There is a positive constant C such that for any arbitrary m ∈ Mn

E


 sup

k≥m
k∈Mn

{∥∥∥f̂β,k − f̂β,m

∥∥∥
2

− 4 ‖fβ,k − fβ,m‖2 − 1

2
q̂en(m, k)

}

+


 ≤ C

N
. (40)
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Finally we have

E

[∥∥∥fβ − f̂β,m̂

∥∥∥
2

1Gc

]
≤ C

(
‖fβ − fβ,m⋆‖2 + qen(m⋆)

)
+

C ′

N(J − 4)
+
C ′

N
.

This combining with (35) complete the proof.

�

6.6. Proof of Lemma 6.1. • First consider q̂en2(m). For q = 1/2 or 1, using Cauchy-Schwarz’s inequality,
we have

E

[
logq

(
1 + Ξ̂(m)m2

)
Ξ̂(m)

]
≤
√
E

[
log2q

(
1 + Ξ̂(m)m2

)]
E

[
Ξ̂2(m)

]
.

Ξ̂2(m) =


 1

2π

∫ πm

−πm

w
(
u
∆

)−2

∣∣∣f̃∗ε
(
u
∆

)∣∣∣
4 du




2

≤ 1

4π2



∫ πm

−πm

w
(
u
∆

)−2

∣∣∣∣∣∣∣
1∣∣∣f̃∗ε
(
u
∆

)∣∣∣
2 − 1∣∣f∗ε

(
u
∆

)∣∣2 +
1∣∣f∗ε
(
u
∆

)∣∣2

∣∣∣∣∣∣∣

2

du




2

≤ 1

π2



∫ πm

−πm

w
(
u
∆

)−2

∣∣∣∣∣∣∣
1∣∣∣f̃∗ε
(
u
∆

)∣∣∣
2 − 1∣∣f∗ε

(
u
∆

)∣∣2

∣∣∣∣∣∣∣

2

+ w
(
u
∆

)−2

∣∣∣∣∣
1∣∣f∗ε
(
u
∆

)∣∣2

∣∣∣∣∣

2

du




2

≤ 2

π2



∫ πm

−πm

w
(
u
∆

)−2

∣∣∣∣∣
1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2

du




2

+ 8Ξ2(m).

Now noticing that we can write the first term of the lastest inequality, we have

E



∫ πm

−πm

w
(
u
∆

)−2

∣∣∣∣∣
1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2

du




2

= E

∫ πm

−πm

∫ πm

−πm

w
(
u
∆

)−2
w
(
v
∆

)−2

∣∣∣∣∣
1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2 ∣∣∣∣∣
1

|f̃∗ε
(
v
∆

)
|2

− 1

|f∗ε
(
v
∆

)
|2

∣∣∣∣∣

2

du dv

=

∫ πm

−πm

∫ πm

−πm

w
(
u
∆

)−2
w
(
v
∆

)−2
E



∣∣∣∣∣

1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2 ∣∣∣∣∣
1

|f̃∗ε
(
v
∆

)
|2

− 1

|f∗ε
(
v
∆

)
|2

∣∣∣∣∣

2

 du dv.

Now applying Cauchy-Schwarz’s inequality and Lemma 3.3 for p = 2

E



∣∣∣∣∣

1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2 ∣∣∣∣∣
1

|f̃∗ε
(
v
∆

)
|2

− 1

|f∗ε
(
v
∆

)
|2

∣∣∣∣∣

2



≤

√√√√
E

∣∣∣∣∣
1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

4

E

∣∣∣∣∣
1

|f̃∗ε
(
v
∆

)
|2

− 1

|f∗ε
(
v
∆

)
|2

∣∣∣∣∣

4

≤
√
C2|f∗ε

(
u
∆

)
|−8

√
C2|f∗ε

(
v
∆

)
|−8.

≤ C2|f∗ε
(
u
∆

)
|−4|f∗ε

(
v
∆

)
|−4

So we have

E

[
Ξ̂2(m)

]
≤ (8C2 + 8)Ξ2(m).
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Besides we have

Ξ̂(m) =
1

2π

∫ πm

−πm

w
(
u
∆

)−2

∣∣∣f̃∗ε
(
u
∆

)∣∣∣
4 du

≤ 1

π

∫ πm

−πm

w
(
u
∆

)−2

∣∣∣∣∣
1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2

du+ 2Ξ(m).

Once again applying Lemma 3.3 for p = 1

E



∫ πm

−πm

w
(
u
∆

)−2

∣∣∣∣∣
1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2

du


 ≤

∫ πm

−πm

w
(
u
∆

)−2
E



∣∣∣∣∣

1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2

 du

≤ C1

∫ πm

−πm

w
(
u
∆

)−2 |f∗ε
(
u
∆

)
|−4 du.

So we have

E

[
Ξ̂(m)

]
≤ (2C1 + 2)Ξ(m).

Now using Jensen’s inequality (since log is concave)

E

[
log2q

(
1 + Ξ̂(m)m2

)]
≤ log2q

(
E

[
1 + Ξ̂(m)m2

])

≤ log2q
(
1 + E

[
Ξ̂(m)

]
m2
)

≤ log2q
(
1 + CΞ(m)m2

)

≤ C log2q
(
1 + Ξ(m)m2

)
.

So

E

[
logq

(
1 + Ξ̂(m)m2

)
Ξ̂(m)

]
≤ C logq

(
1 + Ξ(m)m2

)
Ξ(m)

which means E[q̂en2(m)] ≤ Cqen2(m).

• Consider now q̂en3(m). Let Ap

(
u
∆

)
=

∣∣∣∣∣
1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2p/(
1

|f∗ε
(
u
∆

)
|4p ∧ k2pN

(
u
∆

)

|f∗ε
(
u
∆

)
|12p

)
. An-

other application of Lemma 3.3 yields

1

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗Z(u)|2

|f̃∗ε
(
u
∆

)
|12

du

]

≤ 2

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|12

du

]
+

2

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗Z(u)− f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|12

du

]

≤ 4

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f∗Z(u)|2
|f∗ε (u)

(
u
∆

)
|12 du

]
E

[
1 + sup

u∈R

A3

(
u
∆

)]
+

2

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗Z(u)− f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|12

du

]

≤ C

N
Ξβ(m) +

2

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗Z(u)− f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|12

du

]
.

Let us notice that

eiuZk,j − E
[
eiuZk,j

]
= eiuZk,j − f∗β(u)|f∗ε

(
u
∆

)
|2

= eiu(βk+ηk,j/∆) − f∗β(u)|f∗ε
(
u
∆

)
|2

= eiuβk

(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)
+
(
eiuβk − f∗β(u)

)
|f∗ε
(
u
∆

)
|2,

hence

f̂∗Z(u)− f∗Z(u) =
1

N

N∑

k=1

(
eiuβk − f∗β(u)

)
|f∗ε
(
u
∆

)
|2 + 2

N(J − 4)

N∑

k=1

J/2∑

j=3

(
eiuβk

(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
))

.

(41)
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Then

1

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗Z(u)− f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|12

du

]
(42)

≤ 2

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗β(u)− f∗β(u)|2|f∗ε
(
u
∆

)
|4

|f̃∗ε
(
u
∆

)
|12

du

]

+
2

N
E


 1

2π

∫ πm

−πm

w
(
u
∆

)−2 | 2
N(J−4)

∑N
k=1

∑J/2
j=3

(
eiuβk

(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
))

|2

|f̃∗ε
(
u
∆

)
|12

du


 . (43)

Let us consider the first term on the right-hand side of Equation (43). We use the fact that |f̃∗ε (u)|4 ≥
N−1/2(logN)1/2w(u)−1 as well as the independence of f̂∗β and f̃∗ε to find

1

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗β(u)− f∗β(u)|2|f∗ε
(
u
∆

)
|4

|f̃∗ε
(
u
∆

)
|12

du

]

≤ 1

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2
w(u)−2w(u)2|f̂∗β(u)− f∗β(u)|2|f∗ε

(
u
∆

)
|4

|f̃∗ε
(
u
∆

)
|4N−1(logN)w

(
u
∆

)−2 du

]

≤ E

[
sup
u∈R

|f̂∗β(u)− f∗β(u)|2w(u)2
]
E

[
1

2π

∫ πm

−πm

w(u)−2|f∗ε
(
u
∆

)
|4

|f̃∗ε (u)|4
du

]
.

Thanks to Theorem 5.1 in Neumann and Reiß (2009), for some positive constant C,

E

[
sup
u∈R

|f̂∗β(u)− f∗β(u)|2w(u)2
]
≤ C

N
.

Applying Lemma 3.3 for p = 1, we get

E

[
1

2π

∫ πm

−πm

w(u)−2|f∗ε
(
u
∆

)
|4

|f̃∗ε
(
u
∆

)
|4

du

]
≤ C

2π

∫ πm

−πm

w(u)−2|f∗ε
(
u
∆

)
|4

|f∗ε
(
u
∆

)
|4 du

≤ Cm.

which means that there exists C such that

1

N
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2 |f̂∗β(u)− f∗β(u)|2|f∗ε
(
u
∆

)
|4

|f̃∗ε
(
u
∆

)
|12

du

]
≤ C

m

N
.

Now let us consider the second term on the right-hand side of Equation (43) and let us notice that

E

∣∣∣∣∣∣
2

N(J − 4)

N∑

k=1

J/2∑

j=3

(
eiuβk

(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
))
∣∣∣∣∣∣

2

=
4

N2(J − 4)2
E




N∑

k,k′=1

J/2∑

j,j′=3

eiu(βk−βk′ )
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)(

eiuηk′,j′/∆ − |f∗ε
(
u
∆

)
|2
)



=
4

N2(J − 4)2

N∑

k,k′=1

J/2∑

j,j′=3

E

[
eiu(βk−βk′ )

]
E

[(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)(

eiuηk′,j′/∆ − |f∗ε
(
u
∆

)
|2
)]
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The term eiu(βk−βk′ ) is equal to 1 if k = k′ otherwise E[eiu(βk−βk′ )] = |f∗β(u)|2 ≤ 1. Moreover if k 6= k′ and

j 6= j′, E
[(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
) (
eiuηk′,j′/∆ − |f∗ε

(
u
∆

)
|2
)]

= 0, then

E

∣∣∣∣∣∣
2

N(J − 4)

N∑

k=1

J/2∑

j=3

(
eiuβk

(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
))
∣∣∣∣∣∣

2

≤ 4

N(J − 4)2

J/2∑

j=3

E

[(
eiuη1,j/∆ − |f∗ε

(
u
∆

)
|2
)(

eiuη1,j/∆ − |f∗ε
(
u
∆

)
|2
)]

≤ 4

N(J − 4)
(1− |f∗ε (u)|4)

≤ 4

N(J − 4)
.

Now noticing the independence between the numerator and the denominator, using that |f̃∗ε (u)|4 ≥ N−1/2(logN)1/2w(u)−1

and applying Lemma 3.3 for p = 1, we have

1

N
E


 1

2π

∫ πm

−πm

w
(
u
∆

)−2 | 2
N(J−4)

∑N
k=1

∑J/2
j=3

(
eiuβk

(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
))

|2

|f̃∗ε
(
u
∆

)
|12

du




≤ 4

N(J − 4)
E

[
1

2π

∫ πm

−πm

w
(
u
∆

)−2

|f̃∗ε
(
u
∆

)
|4

du

]

≤ C

N(J − 4)
Ξ(m).

This completes the proof.

�

6.7. Proof of Proposition 6.2. Before proving Proposition 6.2, we first to need prove two auxiliary
lemmas. In the sequel, C will always denote some universal positive constant, but the value may vary from
line to line. For k > m, let us introduce the following notation : A(m, k) := {u ∈ R, |u| ∈ [πm, πk]}. .

Lemma 6.3. For an estimator of f̃∗ε defined by (11), assume κ >
√
c1p. Let τ ≥ 2κ and x ≥ 1. Then for

some positive constant C

P

[
∃u ∈ R : |(f̃∗ε )4(u)− (f∗ε )

4(u)| > τ (log(Nx))
1/2

w(u)−1N−1/2
]
≤ Cx−pN−p

Proof.
∣∣∣(f̃∗ε )4(u)− (f∗ε )

4(u)
∣∣∣ ≤

∣∣∣(f̃∗ε )4(u)− (f̂∗ε )
4(u)

∣∣∣+
∣∣∣(f̂∗ε )4(u)− (f∗ε )

4(u)
∣∣∣ ≤ 2kN (u) +

∣∣∣(f̂∗ε )4(u)− (f∗ε )
4(u)

∣∣∣

By Lemma A.4, we have

P

[
∃u ∈ R : |(f̃∗ε )4(u)− (f∗ε )

4(u)| > τ (log(Nx))
1/2

w(u)−1N−1/2
]

≤ P

[
∃u ∈ R :

∣∣∣(f̂∗ε )4(u)− (f∗ε )
4(u)

∣∣∣+ 2kN (u) > τ (log(Nx))
1/2

w(u)−1N−1/2
]

≤ P

[
∃u ∈ R : |(f̃∗ε )4(u)− (f∗ε )

4(u)| > (τ − 2κ) (log(Nx))
1/2

w(u)−1N−1/2
]

≤ Cx−pN−p.

�

Lemma 6.4. In the situation of the preceding Lemma

P

[
∃u ∈ R :

∣∣∣|f̃∗ε (u)|2 − |f∗ε (u)|2
∣∣∣1
{
|f̃∗ε (u)| < |f∗ε (u)|

}
>
τ(log(Nx))1/2w(u)−1N−1/2

|f̃∗ε (u)|2

]
≤ Cx−pN−p

Proof. This is a direct consequence of Lemma 6.3 using the fact that for x, y ≥ 0, |√x − √
y| ≤ |x−y|

2
√
x∧y

holds. �
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Lemma 6.5. There is a positive constant C such that for any arbitrary m ∈ Mn

E


 sup

k≥m
k∈Mn





∫

A(m,k)

∣∣∣∣∣
1

N

N∑

k=1

(eiuβk − f∗β(u))

∣∣∣∣∣

2

du− 1

24
q̂en1(m, k)





+


 ≤ C

N
(44)

Proof.

E


 sup

k≥m
k∈Mn





1

2π

∫

A(m,k)

∣∣∣∣∣
1

N

N∑

k=1

(eiuβk − f∗β(u))

∣∣∣∣∣

2

du− 1

24
q̂en1(m, k)





+




≤ E



∑

k≥m
k∈Mn





1

2π

∫

A(m,k)

∣∣∣∣∣
1

N

N∑

k=1

(eiuβk − f∗β(u))

∣∣∣∣∣

2

du− 1

24
q̂en1(m, k)





+




≤
∑

k≥m
k∈Mn

E







1

2π

∫

A(m,k)

∣∣∣∣∣
1

N

N∑

k=1

(eiuβk − f∗β(u))

∣∣∣∣∣

2

du− 1

24
q̂en1(m, k)





+




≤
∑

k≥m
k∈Mn

E





 sup

t∈S(m,k)

∣∣∣∣∣
1

2π

∫

A(m,k)

t∗(u)
1

N

N∑

k=1

(eiuβk − f∗β(u)) du

∣∣∣∣∣

2

− π(k −m)

N





+


 .

We then study the following empirical process

νN (t) =
1

N

N∑

k=1

(
1

2π

∫

A(m,k)

t∗(u)eiuβk du− E

[
1

2π

∫

A(m,k)

t∗(u)eiuβk du

])

and define the following space: S(m, k) = {t ∈ A(m, k), ‖t‖ = 1}. Then we can write

sup
t∈S(m,k)

|νN (t)|2 =

∣∣∣∣∣

∫

A(m,k)

1

2π
t∗(u)

(
1

N

N∑

k=1

eiuβk − f∗β(u)

)
du

∣∣∣∣∣

2

≤ sup
t∈S(m,k)

1

2π

∫

A(m,k)

|t∗(u)|2 du 1

2π

∫

A(m,k)

∣∣∣∣∣
1

N

N∑

k=1

eiuβk − f∗β(u)

∣∣∣∣∣

2

du

≤ 1

2π

∫

A(m,k)

∣∣∣∣∣
1

N

N∑

k=1

eiuβk − f∗β(u)

∣∣∣∣∣

2

du,

hence

E

[
sup

t∈S(m,k)

|νN (t)|2
]
≤ 1

2π

∫

A(m,k)

E

∣∣∣∣∣
1

N

N∑

k=1

eiuβk − f∗β(u)

∣∣∣∣∣

2

du

≤ (k −m)

N
:= H2.

Var

[∣∣∣∣∣
1

2π

∫

A(m,k)

t∗(u)eiuβ1 du

∣∣∣∣∣

]
≤ E



∣∣∣∣∣
1

2π

∫

A(m,k)

t∗(u)eiuβ1 du

∣∣∣∣∣

2



Let us notice that the expectation can be rewritten as follows

E



∣∣∣∣∣
1

2π

∫

A(m,k)

t∗(u)eiuβ1 du

∣∣∣∣∣

2

 = E

[
1

4π2

∫

A(m,k)

t∗(u)eiuβ1 du

∫

A(m,k)

t∗(v)e−ivβ1 du dv

]

=
1

4π2

∫∫∫

R×A(m,k)×A(m,k)

fβ(x)e
i(u−v)xt∗(u)t∗(v) du dv dx

=
1

4π2

∫∫

A(m,k)×A(m,k)

f∗β(u− v)t∗(u)t∗(v) du dv.
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Now applying Cauchy-Schwarz’s inequality

Var

[∣∣∣∣∣
1

2π

∫

A(m,k)

t∗(u)eiuβ1 du

∣∣∣∣∣

]
≤ 1

4π2

∫∫

A(m,k)×A(m,k)

∣∣f∗β(u− v)t∗(u)t∗(v)
∣∣ du dv

≤ 1

4π2

√∫∫

A(m,k)×A(m,k)

|f∗β(u− v)||t∗(u)|2 du dv

·
√∫∫

A(m,k)×A(m,k)

|f∗β(u− v)||t∗(v)|2 du dv

≤ 1

4π2

√∫∫

A(m,k)×R

|f∗β(w)||t∗(u)|2 du dw

·
√∫∫

R×A(m,k)

|f∗β(w)||t∗(v)|2 dw dv

≤ 1

4π2

∫∫

A(m,k)×A(m,k)

|f∗β(w)||t∗(u)|2 du dw

≤
‖f∗β‖1
2π

,

hence

sup
t∈S(m,k)

Var

[∣∣∣∣∣
1

2π

∫

A(m,k)

t∗(u)eiuβ1 du

∣∣∣∣∣

]
≤

‖f∗β‖1
2π

:= ν.

And
∣∣∣∣∣
1

2π

∫

A(m,k)

t∗(u)eiux du

∣∣∣∣∣

2

≤ k −m,

hence

sup
x∈R

∣∣∣∣∣
1

2π

∫

A(m,k)

t∗(u)eiux du

∣∣∣∣∣ ≤
√
k −m :=M1.

We can now apply Talagrand’s inequality

E


 sup

k≥m
k∈Mn





∫

A(m,k)

∣∣∣∣∣
1

N

N∑

k=1

(eiuβk − f∗β(u))

∣∣∣∣∣

2

du− 1

24
q̂en1(m, k)





+




≤
∑

k≥m
k∈Mn

K1

(‖f∗β‖1
N

e
−K2

k−m

‖f∗
β
‖1 +K2

k −m

N2
e
−K3

√
N(k−m)√

k−m

)
.

Finally

E


 sup

k≥m
k∈Mn





1

2π

∫

A(m,k)

∣∣∣∣∣
1

N

N∑

k=1

(eiuβk − f∗β(u))

∣∣∣∣∣

2

du− 1

24
q̂en1(m, k)





+


 ≤ C

N

�

Lemma 6.6. There is a positive constant C such that for any arbitrary m ∈ Mn

E


 sup

k≥m
k∈Mn





1

2π

∫

A(m,k)

∣∣∣ 2
N(J−4)

∑N
k=1

∑J/2
j=3 e

iuβk
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)∣∣∣

2

|f̃∗ε
(
u
∆

)
|4

du− 1

16
q̂en2(m, k)





+


 ≤ C

N(J − 4)

(45)
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Proof. We introduce the notation E

[
X|f̃∗ε , β

]
which corresponds to the conditional expectation of a random

variable X given β1, . . . , βN and εk,j for j = 1, 2 and k = 1, . . . , N .

E


 sup

k≥m
k∈Mn





1

2π

∫

A(m,k)

∣∣∣ 2
N(J−4)

∑N
k=1

∑J/2
j=3 e

iuβk
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)∣∣∣

2

|f̃∗ε
(
u
∆

)
|4

du− 1

16
q̂en2(m, k)





+




≤ E



∑

k≥m
k∈Mn





1

2π

∫

A(m,k)

∣∣∣ 2
N(J−4)

∑N
k=1

∑J/2
j=3 e

iuβk
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)∣∣∣

2

|f̃∗ε
(
u
∆

)
|4

du− µ̂2(m, k)Ξ̂(m, k)

N(J − 4)





+




≤ E



∑

k≥m
k∈Mn

1

2π

∫

A(m,k)

E








∣∣∣ 2
N(J−4)

∑N
k=1

∑J/2
j=3 e

iuβk
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)∣∣∣

2

|f̃∗ε
(
u
∆

)
|4

− µ̂2(m, k)

N(J − 4)|f̃∗ε
(
u
∆

)
|4





+

∣∣∣f̃∗ε , β


 du




Now
(

2
N(J−4)

∑N
k=1

∑J/2
j=3 e

iuβkeiuηk,j/∆
)
/|f̃∗ε

(
u
∆

)
|2 (conditional on f̃∗ε

(
u
∆

)
and β1, . . . , βN ) is the sum of

N(J − 4) independent and identically distributed random variables with variance v2 ≤ 1/|f̃∗ε
(
u
∆

)
|4 which

are surely bounded by 1/|f̃∗ε
(
u
∆

)
|2. Thus Lemma A.1 gives

E








∣∣∣ 2
N(J−4)

∑N
k=1

∑J/2
j=3 e

iuβk
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)∣∣∣

2

|f̃∗ε
(
u
∆

)
|4

− µ̂2(m, k)

N(J − 4)|f̃∗ε
(
u
∆

)
|4





+

∣∣∣f̃∗ε , β




≤ 32

N(J − 4)|f̃∗ε
(
u
∆

)
|4

exp

(
− µ̂

2(m, k)

8

)
+

128
√
2

N2(J − 4)2|f̃∗ε
(
u
∆

)
|4

exp

(
− 3

16
√
2

√
N(J − 4)µ̂(m, k)

)

≤ 32

N(J − 4)|f̃∗ε
(
u
∆

)
|4
(k −m)−2Ξ̂(m, k)−1 +

128
√
2

N2(J − 4)2|f̃∗ε
(
u
∆

)
|4
(k −m)−2Ξ̂(m, k)−1

where we used the fact that

µ̂(m, k) ≤ max

{√
8 log

(
1 + Ξ̂(m, k)(k −m)2

)
,

16
√
2

3
√
N(J − 4)

log
(
1 + Ξ̂(m, k)(k −m)2

)}
.

We have thus shown for a universal positive constant C that for any m, k ∈ Mn

∫

A(m,k)

E








∣∣∣ 2
N(J−4)

∑N
k=1

∑J/2
j=3 e

iuβk
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)∣∣∣

2

|f̃∗ε
(
u
∆

)
|4

− µ̂2(m, k)

N(J − 4)|f̃∗ε
(
u
∆

)
|4





+

∣∣∣f̃∗ε , β


 du

≤ C

N(J − 4)
(k −m)−2Ξ̂(m, k)−1

∫

A(m,k)

du

|f̃∗ε
(
u
∆

)
|4

≤ C

N(J − 4)
(k −m)−2.

Finally

E


 sup

k≥m
k∈Mn





1

2π

∫

A(m,k)

∣∣∣ 2
N(J−4)

∑N
k=1

∑J/2
j=3 e

iuβk
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)∣∣∣

2

|f̃∗ε
(
u
∆

)
|4

du− 1

16
q̂en2(m, k)





+


 ≤ C

N(J − 4)
.

�
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Proof of Proposition 6.2. Using Plancherel’s formula, we get

∥∥∥f̂β,k − f̂β,m

∥∥∥
2

=
1

2π

∫

A(m,k)

|f̂∗Z(u)|2
|f̃∗ε
(
u
∆

)
|4

du

=
1

2π

∫

A(m,k)

|f̂∗Z(u)|2
|f̃∗ε
(
u
∆

)
|4
1{|f̃∗

ε (
u
∆ )|>|f∗

ε (
u
∆ )|} du+

1

2π

∫

A(m,k)

|f̂∗Z(u)|2
|f̃∗ε
(
u
∆

)
|4
1{|f̃∗

ε (
u
∆ )|≤|f∗

ε (
u
∆ )|} du

≤ 1

π

∫

A(m,k)

(
|f̂∗Z(u)− f∗Z(u)|2

|f̃∗ε
(
u
∆

)
|4

+
|f∗Z(u)|2
|f̃∗ε
(
u
∆

)
|4

)
1{|f̃∗

ε (
u
∆ )|>|f∗

ε (
u
∆ )|} du

+
1

π

∫

A(m,k)


|f̂∗Z(u)|2

∣∣∣∣∣
1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2

+

∣∣∣f̂∗Z(u)
∣∣∣
2

∣∣f∗ε
(
u
∆

)∣∣4


1{|f̃∗

ε (
u
∆ )|≤|f∗

ε (
u
∆ )|} du.

Then it follows that

∥∥∥f̂β,k − f̂β,m

∥∥∥
2

≤ 1

π

∫

A(m,k)

|f̂∗Z(u)− f∗Z(u)|2
|f̃∗ε
(
u
∆

)
|4

1{|f̃∗
ε (

u
∆ )|>|f∗

ε (
u
∆ )|} du+

1

π

∫

A(m,k)

|f∗Z(u)|2
|f∗ε
(
u
∆

)
|41{|f̃∗

ε (
u
∆ )|>|f∗

ε (
u
∆ )|} du

+
1

π

∫

A(m,k)

|f̂∗Z(u)|2
∣∣∣|f̃∗ε

(
u
∆

)2 − |f∗ε
(
u
∆

)
|2
∣∣∣
2

|f̃∗ε
(
u
∆

)
|4|f∗ε

(
u
∆

)
|4

1{|f̃∗
ε (

u
∆ )|≤|f∗

ε (
u
∆ )|} du

+
2

π

∫

A(m,k)

|f̂∗Z(u)− f∗Z(u)|2
|f∗ε
(
u
∆

)
|4 1{|f̃∗

ε (
u
∆ )|≤|f∗

ε (
u
∆ )|} du+

2

π

∫

A(m,k)

|f∗Z(u)|2
|f∗ε
(
u
∆

)
|41{|f̃∗

ε (
u
∆ )|≤|f∗

ε (
u
∆ )|} du

≤ 2

π

∫

A(m,k)

|f̂∗Z(u)− f∗Z(u)|2
|f̃∗ε
(
u
∆

)
|4

du+
2

π

∫

A(m,k)

|f∗Z(u)|2
|f∗ε
(
u
∆

)
|4 du

+
1

π

∫

A(m,k)

|f̂∗Z(u)|2
∣∣∣|f̃∗ε

(
u
∆

)2 − |f∗ε
(
u
∆

)
|2
∣∣∣
2

|f̃∗ε
(
u
∆

)
|4|f∗ε

(
u
∆

)
|4

1{|f̃∗
ε (

u
∆ )|≤|f∗

ε (
u
∆ )|} du

≤ 2

π

∫

A(m,k)

|f̂∗Z(u)− f∗Z(u)|2
|f̃∗ε
(
u
∆

)
|4

du+ 4 ‖fβ,k − fβ,m‖2

+
1

π

∫

A(m,k)

|f̂∗Z(u)|2
∣∣∣|f̃∗ε

(
u
∆

)
|2 − |f∗ε

(
u
∆

)
|2
∣∣∣
2

|f̃∗ε
(
u
∆

)
|8

1{|f̃∗
ε (

u
∆ )|≤|f∗

ε (
u
∆ )|} du. (46)

To bound the second term on the right-hand-side of inequality (46), we introduce the following set

C(m, k) =

{
∀u ∈ R :

∣∣∣|f̃∗ε
(
u
∆

)
|2 − |f∗ε

(
u
∆

)
|2
∣∣∣
2

1

{
|f̃∗ε
(
u
∆

)
| ≤ |f∗ε

(
u
∆

)
|
}
≤ 4κ2 log (N(k −m))w

(
u
∆

)−2
N−1

|f̃∗ε
(
u
∆

)
|4

}
.

On C(m, k), the following inequalities can be deduced

1

π

∫

A(m,k)

|f̂∗Z(u)|2
∣∣∣|f̃∗ε

(
u
∆

)2 − |f∗ε
(
u
∆

)
|2
∣∣∣
2

|f̃∗ε
(
u
∆

)
|8

1

{
|f̃∗ε
(
u
∆

)
| ≤ |f∗ε

(
u
∆

)
|
}

du

≤ 8κ2 log (N(k −m))N−1 1

2π

∫

A(m,k)

w
(
u
∆

)−2 |f̂∗Z(u)|2

|f̃∗ε
(
u
∆

)
|12

1

{
|f̃∗ε
(
u
∆

)
| ≤ |f∗ε

(
u
∆

)
|
}
du

≤ 8κ2 log (N(k −m))N−1Ξ̂β(m, k) :=
1

2
q̂en3(m, k).
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To bound the first term on the right-hand-side of inequality (46), we use Equation (41) and so we have

2

π

∫

A(m,k)

|f̂∗Z(u)− f∗Z(u)|2
|f̃∗ε (u)|2

du

≤ 4

π

∫

A(m,k)

∣∣∣ 1N
∑N

k=1 |f∗ε
(
u
∆

)
|2(eiuβk − f∗β(u))

∣∣∣
2

|f̃∗ε
(
u
∆

)
|4

du

+
4

π

∫

A(m,k)

∣∣∣ 2
N(J−4)

∑N
k=1

∑J/2
j=3 e

iuβk
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)∣∣∣

2

|f̃∗ε
(
u
∆

)
|4

du

≤ 8

π

∫

A(m,k)

∣∣∣ 1N
∑N

k=1 |f∗ε
(
u
∆

)
|2(eiuβk − f∗β(u))

∣∣∣
2

|f∗ε
(
u
∆

)
|4 du

+
4

π

∫

A(m,k)

∣∣∣ 2
N(J−4)

∑N
k=1

∑J/2
j=3 e

iuβk
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)∣∣∣

2

|f̃∗ε
(
u
∆

)
|4

du

+
8

π

∫

A(m,k)

∣∣∣∣∣
1

N

N∑

k=1

|f∗ε
(
u
∆

)
|2(eiuβk − f∗β(u))

∣∣∣∣∣

2 ∣∣∣∣∣
1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2

du

≤ 8

π

∫

A(m,k)

∣∣∣∣∣
1

N

N∑

k=1

(eiuβk − f∗β(u))

∣∣∣∣∣

2

du

+
4

π

∫

A(m,k)

∣∣∣ 2
N(J−4)

∑N
k=1

∑J/2
j=3 e

iuβk
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)∣∣∣

2

|f̃∗ε
(
u
∆

)
|4

du

+
8

π

∫

A(m,k)

|f∗ε
(
u
∆

)
|4
∣∣∣∣∣
1

N

N∑

k=1

(eiuβk − f∗β(u))

∣∣∣∣∣

2 ∣∣∣∣∣
1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2

du.

We can now write the following inequalities, using (46) and the above remarks

∥∥∥f̂k − f̂m

∥∥∥
2

− 4‖fk − fm‖2 − 1

2
q̂en(m, k)

≤ 8

π

∫

A(m,k)

∣∣∣∣∣
1

N

N∑

k=1

(eiuβk − f∗β(u))

∣∣∣∣∣

2

du− 1

4
qen1(m, k)

+
4

π

∫

A(m,k)

∣∣∣∣
2

N(J − 4)

∑N
k=1

∑J/2
j=3 e

iuβk
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)∣∣∣∣

2

|f̃∗ε
(
u
∆

)
|4

du− 1

2
q̂en2(m, k)

+
8

π

∫

A(m,k)

|f∗ε
(
u
∆

)
|4
∣∣∣∣∣
1

N

N∑

k=1

(eiuβk − f∗β(u))

∣∣∣∣∣

2 ∣∣∣∣∣
1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2

du− 1

4
qen1(m, k)

+
1

2
q̂en3(m, k)−

1

2
q̂en3(m, k)

+
1

π

∫

A(m,k)

|f̂∗Z(u)|2
∣∣∣|f̃∗ε

(
u
∆

)
|2 − |f∗ε

(
u
∆

)
|2
∣∣∣
2

|f̃∗ε
(
u
∆

)
|8

1

{
|f̃∗ε
(
u
∆

)
| ≤ |f∗ε

(
u
∆

)
|
}
du1{C(m,k)c}
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Taking expectation, we get

E


 sup

k≥m
k∈Mn

{∥∥∥f̂k − f̂m

∥∥∥
2

− 4 ‖fk − fm‖2 − 1

2
q̂en(m, k)

}

+




≤
∑

k≥m
k∈Mn

E

[{∥∥∥f̂k − f̂m

∥∥∥
2

− 4 ‖fk − fm‖2 − 1

2
q̂en(m, k)

}

+

]

≤ 16
∑

k≥m
k∈Mn

E







1

2π

∫

A(m,k)

∣∣∣∣∣
1

N

N∑

k=1

(eiuβk − f∗β(u))

∣∣∣∣∣

2

du− 1

64
qen1(m, k)





+




+
∑

k≥m
k∈Mn

E







8

π

∫

A(m,k)

|f∗ε
(
u
∆

)
|4
∣∣∣∣∣
1

N

N∑

k=1

(eiuβk − f∗β(u))

∣∣∣∣∣

2 ∣∣∣∣∣
1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2

du− 1

4
qen1(m, k)





+




+ 8
∑

k≥m
k∈Mn

E








1

2π

∫

A(m,k)

∣∣∣∣
2

N(J − 4)

∑N
k=1

∑J/2
j=3 e

iuβk
(
eiuηk,j/∆ − |f∗ε

(
u
∆

)
|2
)∣∣∣∣

2

|f̃∗ε
(
u
∆

)
|4

du− 1

16
q̂en2(m, k)





+




+
1

π

∑

k≥m
k∈Mn

E



∫

A(m,k)

|f̂∗Z(u)|2
∣∣∣|f̃∗ε

(
u
∆

)
|2 − |f∗ε

(
u
∆

)
|2
∣∣∣
2

|f̃∗ε
(
u
∆

)
|8

1

{
|f̃∗ε
(
u
∆

)
| ≤ |f∗ε

(
u
∆

)
|
}
du1{C(m,k)c}


 .

Now noticing that
∣∣∣ 1N
∑N

k=1(e
iuβk − f∗β(u))

∣∣∣
2

and

∣∣∣∣ 1

|f̃∗
ε (

u
∆ )|2

− 1

|f∗
ε (

u
∆ )|2

∣∣∣∣
2

are independent and applying

Lemma 3.3, we have

8

π
E



∫

A(m,k)

|f∗ε
(
u
∆

)
|4
∣∣∣∣∣
1

N

N∑

k=1

(eiuβk − f∗β(u))

∣∣∣∣∣

2 ∣∣∣∣∣
1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2

du




=
8

π

∫

A(m,k)

|f∗ε
(
u
∆

)
|4E



∣∣∣∣∣
1

N

N∑

k=1

(eiuβk − f∗β(u))

∣∣∣∣∣

2

E



∣∣∣∣∣

1

|f̃∗ε
(
u
∆

)
|2

− 1

|f∗ε
(
u
∆

)
|2

∣∣∣∣∣

2

 du

≤ 8

π

∫

A(m,k)

|f∗ε
(
u
∆

)
|4 1

N
|f∗ε
(
u
∆

)
|−4 du

≤ 16(k −m)

N
:=

1

4
qen1(m, k).

Lemma 6.3 implies that P [C(m, k)c] ≤ N−3(k −m)−3, we then get

E



∫

A(m,k)

|f̂∗Z(u)|2
∣∣∣|f̃∗ε

(
u
∆

)2 − |f∗ε
(
u
∆

)
|2
∣∣∣
2

|f̃∗ε
(
u
∆

)
|8

1{|f̃∗
ε (

u
∆ )|≤|f∗

ε (
u
∆ )|} du1{C(m,k)c}




≤ 4E

[∫

A(m,k)

|f̂∗Z(u)|2
|f∗ε
(
u
∆

)
|4

k4N
(
u
∆

) 1{|f̃∗
ε (

u
∆ )|≤|f∗

ε (
u
∆ )|} du1{C(m,k)c}

]

≤ 4E

[∫

A(m,k)

κ−4(logN)−2w
(
u
∆

)4
N2 du1{C(m,k)c}

]

≤ 4κ−4(logN)−2N2(k −m)P [C(m, k)c]

≤ 4κ−4(logN)−2N2(k −m)N−3(k −m)−3

≤ 4κ−4N−1(k −m)−2.
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Finally applying Lemma 6.5 and 6.6, we have

E


 sup

k≥m
k∈Mn

{∥∥∥f̂β,k − f̂β,m

∥∥∥
2

− 4 ‖fβ,k − fβ,m‖2 − 1

2
q̂en(m, k)

}

+


 ≤ C

(
1

N
+

2

N(J − 4)

)
.

This completes the proof of Proposition 6.2. �
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Appendix A.

We remind, for the readers convenience, some useful results.

Lemma A.1. Let X1, . . . , Xn be i.i.d. random variables with Var[X1] ≤ v2 and suppose that almost surely
‖X1‖∞ ≤ B. Let Sn = 1/n

∑n
j=1(Xj − E[X1]). Let E|Sn| ≤ H. Then

E

[{
|Sn|2 −H2

}
+

]
≤ 32

v2

n
exp

(
−nH

2

8v2

)
+ 128

√
2
B2

n2
exp

(
−n H

16
√
2

3 B

)
.

Lemma A.2. (Talagrand’s inequality). Let I be some countable index set. For each i ∈ I, let X
(i)
1 , . . . , X

(i)
n

be centered i.i.d. random variables, defined on the same probability space, with ‖X(i)
1 ‖ ≤ B for some B <∞.

Let v2 := supi∈I VarX1. Then for arbitrary ǫ > 0, there are positive constants c1 and c2 = c2(ǫ) depending
only on ǫ such that for any κ > 0 :

P

[{
sup
i∈I

|S(i)
n | ≤ (1 + ǫ)E

[
sup
i∈I

|S(i)
n |
]
+ κ

}]
≤ 2 exp

(
−n
(
κ2

c1v2
∧ κ

c2B

))
.

A proof can be found, for example, on page 170 in Massart (2003).

Next we give some technical results which will be essential for the proofs.

Lemma A.3 (Lemma 2 p.35 (Butucea and Tsybakov (2008a))). Let γ, µ, and s be positive constants then
for any m > 0 ∫ m

0

(x2 + 1)γe2µx
s

dx ≈ m2γ+1−se2µm
s

.

Lemma A.4. In the definition of f̃∗ε , assume κ >
√
c1p. Let τ ≥ 2κ and x ≥ 1. Then for some positive

constant C

P

[
∃u ∈ R : |f̂∗ε (u)4 − f∗ε (u)

4| > τ (log(Nx))
1/2

w(u)−1N−1/2
]
≤ Cx−pN−p.

See Lemma 5.5 in Kappus (2014) for the proof.
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