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Abstract A new numerical method is proposed to simulate instabilities in thin
atomistic structures in quasi-static regime. In contrast with previous approaches
based on energy minimization or Newton-Raphson methods, the present technique
uses a series expansion of atomistic displacements with respect to a loading path
parameter, truncated at high orders. The nonlinear set of equations defined by
minimizing the potential energy of the discrete system with respect to nuclei po-
sitions is then transformed into a sequence of linear sets of equations, which can
be solved efficiently. The solution can be described along very large loading steps
without correction, resulting in a significant reduction of matrices to be inverted.
Finally, the treatment of limit points and snap-back/snap-through arising when
instabilities occur is simplified due to a continuous description with respect to
the loading path parameter. The method is applied to the analysis of single car-
bon atom layers nanostructures like graphene sheets or nanotubes in traction or
compression regimes. Accuracy and efficiency of the technique is demonstrated by
comparisons with iterative Newton procedures.
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Matériaux (LEM3), UMR CNRS 7239, Ile du Saulcy, 57045 Metz, France
Tel.: +33-387315358
Fax: +33-387315366
E-mail: yu.cong@univ-lorraine.fr

J. Yvonnet
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1 Introduction

Mechanics of thin nanostructures has recently attracted a tremendous attention
due to potential applications of graphene, nanotubes or other low-dimensional
nano objects in integrated electromechanical miniaturized systems. When dealing
with thin nanostructures, instabilities such as buckling [31,15,45] and wrinkling
[41,39,12] may occur even under moderate compressive loading conditions. It was
shown through simulations that buckling and wrinkles can affect mechanical prop-
erties of thin objects [49,4]. This motivated many theoretical and experimental
studies on the topic of instabilities in nanostructures. Modeling methods based on
continuum methods have been proposed to deal with thin nanostructures, employ-
ing e.g. shell or beam theories. An early contribution was proposed by Yakobson
[44], who analyzed the buckling of single-walled nanotubes using a thin elastic
shell model. A series of contributions was proposed by Ru et al [35,36,37,38,42]
who extended the approach to deal with multi-walled carbon nanotubes, for which
van der Waals forces were introduced to model interaction between layers. Other
classical continuum theories were employed by several authors, like Govindjee et
al [16], who modeled multi-walled nanotubes using a beam model.

However, It has been recognized that classical continuum methods do not nat-
urally include local effects due to the discrete atomistic structure [26] and that
atomistic methods are required to fully understand mechanisms at the nanoscale,
or to identity parameters for higher scales continuum models. In [31], buckling of
double graphene layers in compression interacting with van der Waals forces have
been studied by a theoretical model, validated by Molecular Dynamics (MD) simu-
lations. In [9], Chandra et al. investigated in-plane instabilities of bilayer graphene
using atomistic finite element approaches to determine the overall properties of the
sheet. In [17], instability patterns in nanomembranes containing gold nanoparti-
cles were observed under compressive stress by means of MD simulations. In [26],
Neek-Amal and Peeters examined instabilities occurring in circular monoloayer
graphene subjected to radial load using MD. In [49] Zheng et al. looked into mod-
ification of mechanical properties and critical wrinkling strain in graphene sheets
with respect to chemical functionalization. In [4] Arroyo and Belytschko studied
the effects of wrinkling modes on the effective bending stiffness of multiwall carbon
nanotubes. Wanga et al. [43] developed a hybrid-continuum mechanical and molec-
ular mechanics framework to predict the compressive buckling strain of armchair
and zigzag carbone nanotubes.

When dealing with simulation of quasi static loadings, several difficulties are
induced. First, when MD [32] methods are employed, an artificial strain rate must
be introduced, which can perturb the original problem. To avoid this issue, large
simulation durations must be employed. Stable time steps in MD are very small
(of the order of 10−15 s), and can lead to extremely high computational costs. For
instance, Lu and Bhattacharya [21] investigated the extension of a defected (6,6)
single-walled nanotube of 42 Å in length under tensile loading. Numerical exper-
iments showed that nearly 1.2 million time steps were needed to obtain a global
length variation of 4.2 Å. In addition, several tests must be performed to ana-
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lyze the effects of different loading rates, which further multiplies computational
efforts.

Another option is to consider quasi-statics (QS) molecular simulations, by di-
rectly seeking the equilibrium positions of atoms under the action of external load
and nonlinear interatomic forces deriving from potentials. To solve the nonlin-
ear set of equations, conjugate gradients (CG) [13,14], or Newton-Raphson (NR)
methods can be used. Both represents respective drawbacks: on one hand, CG only
requires computing the matrix of potential first derivatives, but its convergence
is slow. On the other hand, Newton-like methods require computing the second
derivatives but converge much faster near local minima of potential energy. How-
ever, NR solvers face severe lack of robustness when dealing with instabilities in
general, and especially in the case of nanostructures, where local motion of atoms
can induce limit points and negative definite tangent matrix.

In the present work, we propose a new simulation approach for dealing with
quasi-static simulation of atomistic thin structures with instabilities. This tech-
nique extends a perturbation approach, called in the literature Asymptotic Nu-
merical Method (ANM) (see e.g. [48,25,47,46,1,19,6,7]), to molecular mechanics.
ANM is a high order perturbation method which allows solving a set of nonlin-
ear equations in an efficient manner. The displacement solution is expressed by
a series expansion with respect to a loading path parameter, and truncated at
high orders. As a consequence, the set of nonlinear equations is transformed into
a sequence of linear equations which can be solved numerically. Approximations
of the solution along large portions of the loading path are obtained continuously
without iterations, and the treatment of limit points is simplified. These features
motivate the choice of ANM for simulations of instabilities. The method has been
recently applied to analyze multiscale instabilities in composite materials [27,29].

The outline of the paper is as follows: in section 2, the equations of the atom-
istic quasi-static problem are formulated. In section 3, the Asymptotic Numerical
Method is briefly recalled and its extensions to atomistic simulation are intro-
duced in section 4. Finally, section 5 presents several numerical examples which
are selected to demonstrate the efficiency and robustness of the present approach.

2 Computational model for atomistic simulation

2.1 Problem formulation

An isolated system of atoms or molecules is considered. The total energy is the
sum of the kinetic and potential energies of the molecules. It is constant in time
and identified as the Hamiltonian H, given by

H(x1(t),x2(t), ...,p1(t),p2(t), ...)

=
∑
i

1

2mi
pi · pi + Etotal(x1(t),x2(t), ...) , (1)

where mi and xi denote mass and position of atom i, respectively, xi = Xi + di,
Xi is the original position of atom i, di the displacement of atom i, and pi is the
momentum defined by
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pi = miẋi = miḋi. (2)

In Eq. (2) the dot ˙(.) indicates derivative with respect to time and Etotal is the
potential energy defined as the sum of the energies due to any force fields, such
as pair-wise interaction of the atoms, three-body potentials or others. It can be
written as

Etotal(x1,x2, ...) =
∑
i

E1(xi) +
∑
i,j>i

E2(xi,xj) +
∑

i,j>i,k>j

E3(xi,xj ,xk) + ... .

(3)
In the context of quasi-static simulations, the kinetic energy and time depen-

dence are neglected in Eq. (1). Then the Hamiltonian reduces to the potential
energy and the solution of the problem is found by

{x1,x2, ...} = Argmin Etotal(x1,x2, ...). (4)

In the present work, investigated systems consist in single carbon atoms layers,
found in graphene or nanotubes. We adopt the modified Morse potential (see e.g.
et al [5]). Compared to the conventional Morse potential [24], an additional energy
contribution due to bond angle variation has been added to stabilize the numerical
model of nanostructures, for which total internal energy is computed by summing
up potentials evaluated at all atomic bonds. In that case we have

Einternal =
∑

i,j∈Γ1

Estretch(xi,xj) +
∑

i,j,k∈Γ2

Eangle(xi,xj ,xk) , (5)

where Γ1 and Γ2 are the set of indices related to pair and angular bonds, respec-
tively. Introducing an external force Fα applied to the atom α, the total energy
can be written as

Etotal =

 ∑
i,j∈Γ1

Estretch(xi,xj) +
∑

i,j,k∈Γ2

Eangle(xi,xj ,xk)

− λ
∑
α

Fα · xα ,

(6)
in which λ is a loading amplitude parameter. Applying (4) gives the following set
of nonlinear equations:

∂Etotal

∂xm
=

∑
i,j∈Γ1

[
Fs

i−j

]
m

+
∑

(i,j,k)∈Γ2

[
Fa

i−j−k

]
m

− λFm = 0, k = 1, 2, ..., Nat, (7)

which have to be solved numerically, Nat being the total number of atoms. In Eq.
(7),

[
Fs

i−j

]
m

and
[
Fa

i−j−k

]
m

are the forces created by the stretching and bending
of the pair (i−j) and angular bounds (i−j−k) acting on the atom m, respectively,
identified as the derivative of the two corresponding potentials:[

Fs
i−j

]
k
=

∂

∂xk
(Estretch(xi,xj)) , (8)
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and [
Fa

i−j−k

]
l
=

∂

∂xl
(Eangle(xi,xj ,xk)) , (9)

[
Fa

j−i−k

]
l
=

∂

∂xl
(Eangle(xj ,xi,xk)) (10)

where equations (9) and (10) correspond to the cases described in figure 1 (a) and
1 (b), respectively.

Fig. 1 Two angle configurations to be distinguished for the calculation of
[
Fa

j−i−k

]

2.2 Modified Morse potential

The modified Morse potential takes into account the contributions of Estretch and
Eangle as

Estretch(xi,xj) = De

{[
1− e−β(r(xi,xj)−r0)

]2
− 1

}
, (11)

Eangle(xi,xj ,xk) =
1

2
Kθ (cos θ(xi,xj ,xk)− cos θ0)

2 , (12)

where

r(xi,xj) =
√
(xi − xj)2 (13)

and

cos(θ) =
(xi − xj) · (xk − xj)√
(xi − xj)2

√
(xk − xj)2

(14)

in the case (a) of figure 1 and

cos(θ) =
(xj − xi) · (xk − xi)√
(xj − xi)2

√
(xk − xi)2

(15)

for the case (b) of figure 1.
Numerical parameters of this model for graphene and nanotubes are provided

in Table 1.
Trigonometric form of Eangle has been adopted, where Eangle is function of

cos θ. This representation does not require computation of an Arccos term or their
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r0 1.39× 10−10 m
De 6.03105× 10−19 Nm
β 2.625× 1010m−1

θ0 2.094 rad
kθ 0.9× 10−18 Nm/rad2

Table 1 Parameters for the modified Morse potential [5] in carbon systems.

derivatives, which is computationally much more efficient. Both representations
coincide for angles close to θ0, which justifies the choice of the trigonometric one.

To solve the nonlinear equations (7) in an efficient and robust manner, ANM
is introduced in the following sections. This is the first time that ANM is applied
to deal with nanoscale problems. For reasons of clear illustration, we adopted in
this work the modified Morse potential since it offers a convenient and differen-
tiable mathematical form. It should be noted that ANM can also be implemented
on potential models such as the Tersoff [40]-Brenner [8] potential. However, these
potentials present numerical difficulties since they are discontinuous or present
singularities. To overcome these issues, regularization techniques have been devel-
oped in the framework of ANM, which initially aimed at problems involving severe
nonlinearities, such as contact problems [2,3] and plasticity problems [1]. To facil-
itate the computing of the asymptotic series coefficients, automatic differentiation
toolboxes [20] are also available, allowing us to consider complex but differentiable
potential functions. Certainly, most potential functions require appropriate adap-
tations using the aforementioned regularization techniques, which is the scope of
future works. As to the validity of the modified Morse potential compared to the
Brenner model, interested readers are invited to check [5].

3 Asymptotic numerical method

Asymptotic Numerical Method (ANM) has been proven to be an efficient method
to deal with nonlinear problems in fluid and solid mechanics [2,28,30]. The princi-
ple is to associate a perturbation technique with an appropriate numerical resolu-
tion scheme, such as the finite element method. This allows transforming a given
nonlinear problem into a sequence of linear problems to be solved successively,
leading to a numerical representation of the solution in the form of power series
truncated at relatively high orders. Once the series are fully determined, an accu-
rate approximation of the solution path is provided inside a determined validity
range. Unlike classical techniques, this method does not require iterative correc-
tions thanks to the high order predictor [2]. As series expansion is needed, appli-
cation of perturbation techniques requires the problem solution to be sufficiently
smooth. That is why for problems involving singularities, regularization procedures
must be used. Furthermore, for efficiency concerns, the governing equations are
systematically set into quadratic forms, which greatly simplifies the definition of
recurrence formulae and reduces computational time. Details of these procedures
can be found in [48,25,47,46,1,19,6,7]. Recent work [23] extended application of
ANM to large scale problems involving several millions of degrees of freedom.
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In this section, we recall the basics of ANM for solving nonlinear equations.
Attention is focused on the treatment of severe nonlinearities, which often occur
within atomistic systems due to the complex form of the interatomic potentials.

Since nonlinear problems frequently lead to complex functionals for which di-
rect implementation of ANM is inconvenient, it is strongly recommended that the
problem equation be set into quadratic forms before applying the perturbation
procedure. For reasons of simplicity, we consider the following nonlinear equation
as example:

u3 = f, (16)

where u is the unknown variable and f a variable source term. This nonlinear
form involves a cubic function with respect to the unknown u. To obtain an equiv-
alent form of Eq. (16) containing only quadratic functions of u, we introduce an
additional variable v such that v = u2. We then reformulate Eq. (16) as:

{
uv = f

u2 = v
. (17)

The newly introduced v is computed and stored as an intermediate variable,
which together with u contributes to generate the recurrent formula of f . We
solve the problem by expressing f, u and v in the form of high order power series,
which are developed with respect to a path parameter ”a”:


u(a) = u0 + au1 + a2u2 + ...+ aNuN

v(a) = v0 + av1 + a2v2 + ...+ aNvN

f(a) = f0 + af1 + a2f2 + ...+ aNfN

, (18)

where N is the truncation order of the series. The key point of the method consists
in computing all the power series coefficients: once the series are determined, we
reconstruct the problem’s solution by evaluating the series Eq. (18) following the
parameter ”a” which varies from 0 to its limit amax which refers to the step length.
amax is computed considering that the relative difference between solutions of any
two consecutive orders remains sufficiently small [11]. The expression of amax will
be given at the end of this section. By substituting the series expansion Eq. (18)
into Eq. (17), we obtain the following linear problems for order 1:

{
u0v1 + u1v0 = f1

2u0u1 = v1 .
(19)

By substituting Eq. (19)-2 into Eq. (19)-1, Eq. (19) is transformed into the tangent
problem with respect to u1: {

3u3
0u1 = f1

2u0u1 = v1 .
(20)
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Similarly for order p, (2 6 p 6 N), the linear problem is found to be:
u0vp + upv0 +

p−1∑
r=1

urvp−r = fp

2u0up +

p−1∑
r=1

urup−r = vp.

(21)

Again, when we substitute Eq. (21)-2 into Eq. (21)-1, and we formulate f at order
p as:

3u2
0up + u0

p−1∑
r=1

urup−r +

p−1∑
r=1

urvp−r = fp. (22)

We note by comparing Eq. (20)-1 and Eq. (22), that the same (linear) tangent
operator is conserved for all orders, which allows representing Eq. (22) by:

fp = Lt(up) + fnl
p , (23)

valid for 1 6 p 6 N , where

Lt(.) = 3u2
0 (24)

and where

fnl
p = u0

p−1∑
r=1

urup−r +

p−1∑
r=1

urvp−r. (25)

For cases involving more complex problem expressions, for example:

eu = f, (26)

we seek its equivalent quadratic form by considering the differential of Eq. (26):

fdu = df, (27)

which defines the linear problem at order 1 as:

f0u1 = f1, (28)

and the linear problem at order p, (2 6 p 6 N) as

f0up +
1

p

p−1∑
r=1

frup−r = fp. (29)

A large class of problems involving more complex nonlinearities can be set into
quadratic form. The above framework applies to more general nonlinear differential
operators, such as the ones arising from discretized finite element equations of
mechanical problems (see the following references for more details [30,46,2,3,28]).

As the validity range of the series is limited, a continuation technique is used
to compute the whole solution branch in a step by step manner. The procedure
consists in determining the maximal value of the loading path parameter a by
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imposing that the relative difference between the solutions for two consecutive
orders must be small by comparison with an accuracy parameter δ [11]:

amax =

(
δ
‖ u1 ‖
‖ uN ‖

)1/(N−1)

. (30)

where ‖ . ‖ denotes the euclidean norm. Note that amax is computed a posteriori
by using the series coefficients already obtained from solving the N sets of linear
problems. As a consequence, the step length is auto-adaptive and completely auto-
matic, as opposed to classical iterative algorithms. In the next section, we present
how this technique can be applied to atomistic simulation.

4 ANM formulation for atomistic simulations

Equilibrium configuration is achieved by minimizing the energy of the system.
Given that the motion of any atom within the system induces variations of the
total energy, seeking the state of minimum energy requires that the internal forces
be balanced by external loads. For a given atom i, interatomic forces are derived
from the total energy of the system, which is calculated taking into account all
bonded atom pairs and adjacent atom triples. As presented in section 2.1, the sum
of interatomic forces acting on the atom i due to bond stretch is written as:

Fs
k =

∂

∂xk

 ∑
(i,j)∈Γ1

Estretch(xi,xj)

. (31)

Stretching energy is calculated by considering all covalent bonds within the sys-
tem, but only those directly connected to the atom k lead to meaningful deriva-
tives, see Fig. 2. Similarly, forces due to bond angle bending are derived from
angular bond potential evaluated at all the atom triples, so:

Fa
l =

∂

∂xl

 ∑
(i,j,k)∈Γ2

Eangle(xi,xj ,xk) +
∑

(j,i,k)∈Γ2

Eangle(xj ,xi,xk)

. (32)

Derivative is zero for angular bonds unrelated to the atom l. By taking into ac-
count the two angle-configurations presented in Fig. 1, nine angular bonds Fig. 2
contribute to the computation of Fa

l .
Equilibrium at the atom i requires perfect balance between interatomic force

contributions respectively evaluated at three directly connected pair bonds and
nine related angular bonds, and possible external loads. Solving the problem de-
fined at atom i consists in applying the procedures presented in section 2 on each
of the force contributions.

In the following, we discuss in detail the ANM implementation of the bond
stretching force Fs

i defined at an atom pair (i − j) and acting on the atom i. Its
formulation has been presented in section 2.1 and 2.2. By condensing equations
Eq. (8) Eq. (11) Eq. (13), we obtain:

Fs
i = 2Deβ

xi − xj√
(xi − xj)2

e−β(

√
(xi − xj)2−r0)

[
1− e−β(

√
(xi − xj)2−r0)

]
, (33)
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Fig. 2 Calculation of Fa
i . At each atom i, Fa

i corresponds to the sum of angle forces evaluated
at angles 1 to 9. Derivation at other angles of the domain leads to 0.

where De, β and r0 are material constants. Application of ANM requires the
problem equation Eq. (33) be written in a convenient form so as to easily deduce
the recurrent formulae of the problem. Following the procedure described in section
3, additional intermediate variables are introduced: u, r, α, B and A, such that

u = xi − xj ,

r =
√
u · u,

α = e−β(r−r0),

B = α(1− α),

A =
u√
u · u

.

(34)

The given problem Eq. (33) can then be set in quadratic form by applying

Fs
i = 2DeβBA,

rA = u,

B = α(1− α),

−βαdr = dα,

r2 = u · u,
u = xi − xj .

. (35)

All the unknowns including the additional intermediate variables are now ex-
panded into power series with respect to the parameter ”a”:

λ(a) = λ0 + a1λ1 + a2λ2 + ...+ aNλN

u(a) = u0 + a1u1 + a2u2 + ...+ aNuN

r(a) = r0 + a1r1 + a2r2 + ...+ aNrN

α(a) = α0 + a1α1 + a2α2 + ...+ aNαN

A(a) = A0 + a1A1 + a2A2 + ...+ aNAN

B(a) = B0 + a1B1 + a2B2 + ...+ aNBN

, (36)

where λ is the external load parameter (Eq. (6)). In the practical implementation,
the order of truncation N is generally chosen between 10 and 20 in the interest of
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optimal efficiency. A numerical study has been proposed in [47] that investigated
the choice of the optimal truncation order as function of the problem size.

We then substitute the series development Eq. (36) into the system Eq. (35),
transforming this nonlinear problem into N linear ones, represented by the follow-
ing system (for 1 6 k 6 N) :

(Fs
i )k = 2Deβ(A0Bk +AkB0) + 2Deβ

k−1∑
i=1

AiBk−i,

Ak =
1

r0
(uk −A0rk)−

1

r0

k−1∑
i=1

riAk−i,

Bk = αk − 2αkα0 −
k−1∑
i=1

αiαk−i,

αk = −βα0rk − β

k

k−1∑
i=1

(k − i)αirk−i,

rk =
1

r0
uk · u0 +

1

2r0

k−1∑
i=1

ui · uk−i,

, (37)

where each relation contains a summation term depending on the series coefficients
that have been calculated at previous orders. In other words, we fully determine
the series Eq. (36) once we are given the initial solution at order 0. The last four
equations are substituted into the first one, leading to a condensed formula of
(Fs

i )k with respect to the displacement vector uk:

(Fs
i )k = Ls0(uk) + Fsnl

k , (38)

in which Ls0(·) can be identified as a tangent operator only depending on initial
solutions and where Fsnl

k incorporates solutions previously obtained for orders
up to k − 1, representing the nonlinear contribution within (Fs

i )k. The above
formulation only takes into account the effect of bond stretch. As for the bond
angle bending (force (Fs

i )k), given the expressions Eq. (14) and Eq. (15), we apply
the similar procedure as presented so far and obtain a set of similar recurrent
formula (compared to Eq. (37).) for the respective series coefficients, leading to
the bond angle bending force Fa

i , also written as a function of the displacement
vector as

(Fa
i )k = La0(uk) + Fanl

k . (39)

To model the global structure incorporating every atomic interaction, the above
computing procedures should be repeated on every bonded atom pair and atom
triplets contained in the system. This requires evaluating Fs

i , Fs
nl, u and Ls0(·)

for each covalent pair bond, as well as Fa, Fanl, u and La0(·) for each atom
angular bond, all of which should be assembled into their respective global vector
or matrix systems, leading to the global system at order k:

Fint
k = L0(uk) + Fnl

k . (40)
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Taking into account the external load, which is conditioned by the prescribed
force vector F and governed by the parameter λ, equilibrium can be expressed by

L0(uk) = λkF+ Fnl
k , (41)

where the nonlinear force Fnl equals to 0 for order 1. Similarly to Ls0 and La0,
the global tangent operator L0 fully depends on the initial solutions and is the
same for all orders, thus only requires to be evaluated once.

Note that the problem is defined by the equilibrium equation Eq. (41), in which
both u and λ are unknowns. Solution of the system Eq. (41) under quasi-static
loading conditions are usually obtained by using continuation procedures based on
prescribed force, displacement or arc length. For these algorithms, an additional
constraint equation [11] is required. In the present work, we propose the following
arc-length type continuation condition:

a = 〈u− u0,u1〉+ (λ− λ0)λ1, (42)

in which 〈, 〉 indicates scalar product. The equilibrium equation Eq. (41) is solved
for each order successively by taking into account the above additional equation.
For order 1, the nonlinear force Fnl is 0, and the problem is found as:{

L0(u1) = λ1F

〈u1,u1〉+ λ2
1 = 1

. (43)

In order to solve this system, let’s introduce the notation û, such that u1 =
λ1û, which allows rewriting Eq. (43)-1 as:

L0(û) = F. (44)

û is obtained by solving Eq. (44). λ1 is then computed considering Eq. (43)-2,
which leads to:

λ1 =
±1√

〈û, û〉+ 1
. (45)

Inspired by the continuation procedure provided by the Riks’ method, we de-
termine the sign of λ by comparing the tangent vector calculated at the end of the
previous step with the one obtained at the beginning of the present step [11,2,27,
28].

For order k, (2 6 p 6 N), the problem is found to be:{
L0(uk) = λkF+ Fnl

k

〈uk,u1〉+ λkλ1 = 0
. (46)

We follow the same idea as for order 1 to solve the above system. Here, we
introduce the notation unl

k , such that uk = λkû+ unl
k , where û is the solution of

Eq. (44) and unl
k is the solution of the following linear problem:

L0(u
nl
k ) = Fnl

k . (47)

λk is then computed by considering Eq. (46)-2, which leads to:

λk = −λ1

〈
unl
k ,u1

〉
. (48)
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5 Numerical examples

In this section, three examples are provided to test the accuracy, efficiency and
robustness of the method. In order to compare the performances of ANM and
Newton-Raphson techniques on a fair basis, both procedures have been imple-
mented through the same programming language with similar code architectures.

5.1 Extension of a graphene sheet

In this first test, a graphene sheet is submitted to in-plane traction load. This
simple example is selected to show the efficiency of the present approach even in
absence of buckling. The model is composed of 306 atoms. Atoms on the lower
edge of the structure are fixed, and a force F is uniformly applied on those situated
on the opposite edge, as depicted in figure 3. Initial interatomic distance is 1.39
Å.

The main parameters of the ANM algorithm are the truncation order N and
the accuracy parameter δ. A large value of N significantly improves the asymp-
totic step length, thus reduces the number of steps necessary to obtain the whole
solution branch. However, this also requires large CPU time for computing the
series coefficients. Several works have shown that the optimum value of the trun-
cation order is situated between 10 and 20 for moderately large size problems. For
example, Zahrouni et al. [47] showed that for a buckling shell problem involving
104 degrees of freedom, the optimum truncation order is about 15 and a similar
study in the framework of plasticity analysis showed that N = 10 seems to be
optimum [1]. Recall as well that within ANM procedure, no correction phases are
needed thanks to the high order prediction. The accuracy parameter δ also affects
the step length. If δ is chosen to be very small, large number of steps is necessary
to achieve the whole computation but with very high accuracy along the solution
branch. A large value of δ may lead to poor accuracy regarding residuals. The
optimum value of δ is not easy to choose by the user. For this reason and to make
the ANM algorithm less dependent on the choice of the accuracy parameter δ, a
high order predictor has been associated to a high order corrector in the frame-
work of ANM [22,19,2,3]. In the proposed study, we focus our attention on the
applicability of ANM to nanostructures, the truncation order for the series and
the accuracy parameter are chosen as N = 20 and δ = 10−4.

The displacement evolution is analyzed as function of the external load. A New-
ton Raphson solution with arc-length control (Riks’ method [33,34]) is computed
for comparison. Both solutions are presented in figure 4.

We can note a very good agreement between both solutions. In figure 4, each
dot corresponds to a Newton step and circle dots correspond to ANM step ends. As
a comparison, the ANM solution was obtained with only 4 steps, corresponding to
4 matrices inversions. The total number of matrices inversions and computational
times are compared in Table 2. Note that in a geometric nonlinear framework, NR
procedure requires updating the tangent matrix for each corrective iteration, which
increases the number of tangent matrix inversion, while the ANM does not require
any correction step. The evolution of residual during the simulation is plotted in
figure 5. It can be shown that the norm of the residual remains small during all
the simulation.
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Fig. 3 Extension of graphene subjected to tensile traction force F .

Fig. 4 Comparison betwenn ANM and Newton-Raphson solutions for the tensile traction of
the graphene sheet. We note that the ANM solution is found in 4 steps, against 98 for NR.

Both NR and ANM are implemented using the same Matlab code, to provide
comparable results regarding computational costs. Room for further improvement
is then left regarding the use of a compiled programming language. All computa-
tions have been performed on a common PC equipped with a dual-core 2.40 GHz
processor and 2 GB memory.
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Fig. 5 Accuracy of the ANM results: evolution of the relative residual norm during the sim-
ulation for the traction test on a graphene sheet.

NR ANM

Number of step 98 4

Number of tangent matrix inversion 196 4

Computation time 1 min 10 s 5.6 s

Table 2 Comparison of computational cost for ANM and NR solutions for the graphene sheet
traction example.

5.2 Buckling of a nanotube

In this second example, a slender nanotube (NT) is submitted to axial compression,
inducing global buckling. We consider a (10, 0) zigzag nanotube clamped at one
end and subjected to a compression force F uniformly applied on atoms at one free
end, where the horizontal displacement is eliminated (see fig 6). The dimensions
of the NT are L = 11 nm and R = 0.2 nm with the initial interatomic distance
chosen as 1.39 Å. This example is selected to assess the validity of the method
when dealing with problems involving instabilities. The following ANM parameters
have been chosen: N = 20 and δ = 10−5.

As in the previous example, we investigate the displacement at the free end
of the structure as function of the loading force. To trigger the buckling, a small
perturbation compressive radial force f is applied at the middle of the structure.
Here, two cases are studied: the first one with f = F/100, and the other with
f = F/10, F being the axial compressive force. Solutions obtained with ANM and
NR are compared in figure 7. An arc-length control method is employed for the
NR algorithm, as well as an adaptive step-length strategy to deal with the high
nonlinearity involved.



16 Y. Cong et al.

Fig. 6 Compression of nanotube: under force control F.

Fig. 7 Buckling of a nanotube subjected to a compressive force F .

It can be noted from figure 7 that when the perturbation force is small (f =
F/100), the response curve shows stiffer behaviours of the structure compared
with the case where f = F/10. A good agreement between NR and ANM can be
noticed. However, for the most severe case (f = F/100), the NR diverges, even
though arc-length and adaptive step length strategies have been employed. On the
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other hand, ANM is able to provide the solution for the whole loading range in a
few steps. Figure 8 shows the residual norm evolution during the simulation for
the ANM solution. A comparison of performance for both methods is provided in
Table 3 only for the case where f = F/10, which was completed for both methods.

Fig. 8 Evolution of relative residual for each ANM step end. Residual globally remains small,
confirming the accuracy of the solution.

NR ANM

Number of steps 20 5

Number of tangent matrix inversions 50 5

Computation time 4 min 7 s 39 s

Table 3 Comparison of computational costs for NR and ANM methods in the case of the
nanotube buckling test, f = F/10.

Beside accuracy and computational efficiency, the present example demon-
strates the robustness of ANM for dealing with problems involving non-linearities.
Based on high order prediction, the method does not require corrective iterations
and avoids convergence issues which represent a challenge for conventional meth-
ods.

5.3 Radial compression of a nanotube

In this last example, we considered a (18, 0) zigzag nanotube clamped at both ends
as shown in figure 9. The dimensions of the NT are L = 9.5 nm, R = 0.35 nm and
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the initial interatomic distance is 1.39 Å. A horizontal displacement is prescribed
on one of the atoms situated in the middle of the structure. As the structure is
clamped at both ends, the loading conditions simply induce extension to all atomic
bonds within the structure but those around the loading area, where local buckling
occur. ANM parameters are chosen as N = 10 and δ = 10−4. Results are provided
in figure 10.

Fig. 9 Local deformation of a nanotube.

At the beginning of the load, many instabilities locally occur near the com-
pressive loading point. This yields a transitional zone where fine oscillations can
be observed (see the zooming figure 11). This phenomenon is challenging for both
methods. In the case of ANM, it induces small step lengths in the transition region.
We recall that in the context of ANM, the length of each step is automatically
determined according to Eq. (30). In the case of the Newton method, very small
steps are required to guarantee the convergence. However, the NR was not able
to converge for the whole loading range. On the other hand, the ANM was able
to complete the simulation in 29 steps, to be compared with 49 for the NR, cor-
responding to 100 matrices inversion, only for the region where the solution can
be computed. In the region where both simulations could be achieved, excellent
agreement is observed between both methods. This test demonstrates the high
robustness and efficiency of the proposed method.

6 Conclusion

A new method has been proposed to compute the quasi-static response of atom-
istic structures with possible instabilities. The technique extends for the first time
a perturbation method called Asymptotic Numerical Method (ANM) to atomistic



Simulation of instabilities in thin nanostructures by a perturbation approach 19

Fig. 10 Comparison between ANM and Newton solutions in the case of local compression of
a nanotube. A first transition zone is observed, where local instabilities occur. The NR method
diverges and is not able to provide the solution for the whole simulation.

Fig. 11 Detail of the transition region: comparison between NR and ANM solutions.

simulations. In that context, a continuous representation of the atomic displace-
ments with respect to the load evolution can be obtained, by means of a high order
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series expansion. Introducing this expansion into the set of nonlinear equations re-
lated to minimizing the potential energy results in a series of linear problems
which have to be solved successively to provide the different terms of the series.
Large loading steps can then be obtained, as opposed to first-order methods like
Newton-Raphson procedures. Furthermore, issues related to limit points and insta-
bilities are naturally avoided in this context. The results presented in this work,
involving thin carbon structures like graphene and nanotubes, demonstrate the
high efficiency and robustness of the present approach, as compared to Newton
Raphson method. In the most severe cases involving global or local buckling, the
NR solution diverged, even using an arc-length control and adaptive step length
procedures, while the ANM was able to provide the solution for the whole load-
ing range. In the case where no instability occurs, the ANM provides the whole
solution within a few steps only. An interesting extension of this work consists
in applying an automatic differentiation procedure [18,10], which provides all for-
mulations and series coefficients in an automatic manner. Efforts in this direction
have been initiated and will be proposed in a forthcoming study.
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numérique typée : l’approche diamant. Comptes Rendus Mécanique 336, 336–340 (2008)
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