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Abstract

Post–collision space–times of the Cartesian product form M
′×M

′′,
where M

′ and M
′′ are 2–dimensional manifolds, are known with M

′

and M
′′ having constant curvatures of equal and opposite sign (for

the collision of electromagnetic shock waves) or of the same sign (for
the collision of gravitational shock waves). We construct here a new
explicit post–collision solution of the Einstein–Maxwell vacuum field
equations with a cosmological constant for which M

′ has constant
(non–zero) curvature and M

′′ has zero curvature.
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1 Introduction

The space–time following the head–on collision of two homogeneous, plane,
electromagnetic shock waves was found by Bell and Szekeres [1] and is a so-
lution of the vacuum Einstein–Maxwell field equations. The metric tensor is
that of a Cartesian product of two 2–dimensional manifolds of equal but op-
posite sign constant curvatures and is the Bertotti–Robinson ([2], [3]) space–
time. Recently we have shown ([5], [6]) that the Nariai–Bertotti ([2], [7])
space–time, with metric that of a Cartesian product of two 2–dimensional
manifolds of equal constant curvatures, coincides with the space–time fol-
lowing the head–on collision of two homogeneous, plane, gravitational shock
waves and is a solution of Einstein’s vacuum field equations with a cosmolog-
ical constant. We construct here a metric for a space–time which is a Carte-
sian product of two 2–dimensional manifolds, one having non–zero constant

curvature and one having zero curvature, and show that the metric is: (I)
that of the post collision region of space–time following the head–on collision
of two plane light–like signals each consisting of combined gravitational and
electromagnetic shock waves, one signal specified by a real parameter a and
the second signal specified by a real parameter b and (II) is a solution of
the vacuum Einstein–Maxwell field equations with a cosmological constant
Λ = 2ab. The appearance of a cosmological constant term on the left hand
side of the Einstein field equations is equivalent to the appearance of an
energy–momentum–stress tensor for a perfect fluid for which the sum of the
matter proper density and the isotropic pressure vanishes. Thus our space–
time consists of an anti–collision region which is vacuum and a post–collision
region which is non–vacuum in this sense. Vacuum and non–vacuum re-
gions of space–time are familiar from solving the field equations for so–called
interior and exterior solutions.

2 Cartesian Product Space–Time

We consider a pseudo–Riemannian space–time M of the form M = M ′×M ′′

where M ′ is a 2–dimensional manifold of non–zero constant curvature and
M ′′ is a 2–dimensional flat manifold. So that the 4–dimensional manifold M
has the correct Lorentzian signature we consider the two cases in which (i)
M ′ is pseudo–Riemannian and M ′′ is Riemannian and (ii) M ′ is Riemannian
and M ′′ is pseudo–Riemannian. In either case take ξ, x as local coordinates
on M ′ and η, y as local coordinates on M ′′. With a, b real constants we take
ab < 0 for case (i) and write the line element of M as

ds2 = dξ2 − cos2(2
√
−abξ) dx2 − dη2 − dy2 . (2.1)

2



In terms of the basis 1–forms ϑ1 = dξ and ϑ2 = cos(2
√
−abξ) dx the single

non–vanishing Riemann curvature tensor component on the dyad defined by
this basis, for the manifold M ′, is

R1212 = 4ab , (2.2)

indicating that the pseudo–Riemannian manifold M ′ has non–zero constant
Riemannian curvature (see, for example, [4]) −4ab > 0. Clearly the manifold
M ′′ is Riemannian and flat. For case (ii) we take ab > 0 and write the line
element of M as

ds2 = −dξ2 − cos2(2
√

abξ) dx2 + dη2 − dy2 . (2.3)

Now M ′ is Riemannian. In terms of the basis 1–forms ϑ1 = dξ and ϑ2 =
cos(2

√
abξ) dx the non–vanishing component of the Riemann curvature ten-

sor for M ′, on the dyad defined by the basis 1–forms, is

R1212 = −4ab , (2.4)

indicating that the Riemannian manifold M ′ has non–zero Gaussian curva-
ture K = −R1212 = 4ab > 0. In this case the manifold M ′′ is pseudo–
Riemannian and flat. Now for case (i) make the transformation

ξ =
au − bv√
−2ab

, η =
au + bv√
−2ab

, (2.5)

while for case (ii) make the transformation

ξ =
au − bv√

2ab
, η =

au + bv√
2ab

. (2.6)

In both cases the line elements (2.1) and (2.3) become

ds2 = − cos2{
√

2(au − bv)}dx2 − dy2 + 2 du dv . (2.7)

We can write this line element in the form

ds2 = −(ϑ1)2 − (ϑ2)2 + 2 ϑ3ϑ4 = gabϑ
aϑb , (2.8)

with the basis 1–forms given, for example, by ϑ1 = cos{
√

2(au−bv)}dx, ϑ2 =
dy, ϑ3 = dv, ϑ4 = du. Thus the constants gab are the components of the
metric tensor on the half–null tetrad defined via the basis 1–forms. The
components Rab of the Ricci tensor on this tetrad vanish except for

R11 = −4ab , R33 = −2b2 , R34 = 2ab , R44 = −2a2 . (2.9)
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With

F =
1

2
Fabϑ

a ∧ ϑb = a ϑ1 ∧ ϑ4 + b ϑ3 ∧ ϑ1 , (2.10)

and Λ = 2ab we have here a solution of the Einstein–Maxwell vacuum field
equations with a cosmological constant:

Rab = Λ gab + 2Eab , (2.11)

and
dF = 0 = d∗F , (2.12)

where d denotes the exterior derivative, ∗F = a ϑ2 ∧ ϑ4 + b ϑ2 ∧ ϑ3 is the
Hodge dual of the Maxwell 2–form (2.10) with components Fab on the tetrad
given by (2.10) and Eab = FacFb

c− 1

4
gab FcdF

cd is the electromagnetic energy–
momentum tensor. Tetrad indices are raised with gab where gabgbc = δa

c
. In

Newman–Penrose [8] notation, the Weyl tensor has components

Ψ0 = b2 , Ψ1 = 0 , Ψ2 =
1

3
ab , Ψ3 = 0 , Ψ4 = a2 , (2.13)

which is type D in the Petrov classification and the Maxwell tensor, given by
(2.10), has components

Φ0 = b , Φ1 = 0 , Φ2 = a . (2.14)

3 Collision of Light–Like Signals

To demonstrate that the space–time with line element (2.7) and the Maxwell
field (2.10) describe the gravitational and electromagnetic fields following
the head–on collision of two homogeneous, plane, light–like signals, each
composed of an electromagnetic shock wave accompanied by a gravitational
shock wave, we replace u, v in the argument of the cosine in (2.7) by u+ =
uϑ(u), v+ = vϑ(v) where ϑ(u) is the Heaviside step function which is equal
to unity for u > 0 and is zero for u < 0 (and similarly for ϑ(v)) so that the
line element we now consider reads

ds2 = − cos2{
√

2(au+ − bv+)}dx2 − dy2 + 2 du dv . (3.1)

Writing this line element in the form (2.8) with basis 1–forms now given by
ϑ1 = cos{

√
2(au+ − bv+)}dx, ϑ2 = dy, ϑ3 = dv, ϑ4 = du we find that the

components Rab of the Ricci tensor on the tetrad defined by this basis of
1–forms vanish except for

R11 = −4ab ϑ(u)ϑ(v) , R33 = b
√

2 δ(v) tan(
√

2 au+) − 2b2ϑ(v) ,

R34 = 2ab ϑ(u)ϑ(v) , R44 = a
√

2 δ(u) tan(
√

2 bv+) − 2a2ϑ(u) . (3.2)
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This Ricci tensor can be written in the form

Rab = Λ gab + 2Eab + Sab , (3.3)

with Λ = 2 abϑ(u)ϑ(v), Eab the tetrad components of the electromagnetic
energy–momentum tensor calculated with the Maxwell field given by the
2–form

F = b ϑ(v)ϑ3 ∧ ϑ1 + a ϑ(u)ϑ1 ∧ ϑ4 , (3.4)

and Sab are the components of the surface stress–energy tensor [11] concen-
trated on the portions of the null hypersurfaces u = 0, v > 0 and v = 0, u > 0
and given by

Sab = b
√

2 δ(v) tan(
√

2 au+)δ3

a
δ3

b
+ a

√
2 δ(u) tan(

√
2 bv+)δ4

a
δ4

b
. (3.5)

We emphasize that in the post collision domain (u > 0, v > 0) the field
equations (3.3) can be written in the form

Rab −
1

2
gab R = Tab + 2 Eab with Tab = −2 a b gab , (3.6)

where R denotes the Ricci scalar.While the term Tab on the right hand side
here has the form of a cosmological constant term it is equivalent to the
energy–momentum–stress tensor for a perfect fluid for which the sum of the
matter proper density and the isotropic pressure vanishes.

The Newman–Penrose components of the Maxwell field (3.4) are thus

Φ0 = b ϑ(v) , Φ1 = 0 , Φ2 = a ϑ(u) , (3.7)

while the Newman–Penrose components of the Weyl tensor are

Ψ0 = − 1√
2
b δ(v) tan(

√
2 au+) + b2ϑ(v) , Ψ1 = 0 ,

Ψ2 =
1

3
ab ϑ(u)ϑ(v) , (3.8)

Ψ3 = 0 , Ψ4 = − 1√
2
a δ(u) tan(

√
2 bv+) + a2ϑ(u) .

On account of the appearance of the trigonometric functions in (3.5) and (3.8)
we see that the coordinate u has the range 0 ≤ u < π/2

√
2 a on v = 0 and

the coordinate v has the range 0 ≤ v < π/2
√

2 b on u = 0. Such restrictions
are also exhibited in the Bell–Szekeres [1] solution and are discussed in [9].

We are now in a position to interpret physically what these equations
are describing. First we consider the region of space–time corresponding
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to v < 0. Now Rab = 2Eab with Eab constructed from the Maxwell field
a ϑ(u)ϑ1 ∧ ϑ4. All Newman–Penrose components of the Weyl tensor vanish
except Ψ4 = a2ϑ(u). We have here a solution of the vacuum Einstein–
Maxwell field equations for u > 0 corresponding to an electromagnetic shock
wave accompanied by a gravitational shock wave, each having propagation
direction ∂/∂v in the space–time with line element

ds2 = − cos2{
√

2au+}dx2 − dy2 + 2 du dv . (3.9)

The wave amplitudes are simply related via the parameter a, which could
be thought of as a form of “fine tuning”. We note that the space–time is
flat and the fields vanish if, in addition to v < 0, we have u < 0. A similar
situation arises in the region of space–time corresponding to u < 0 with the
gravitational shock wave described by Ψ0 = b2 ϑ(v) and the electromagnetic
shock wave described by b ϑ(v)ϑ3∧ϑ1, each having now propagation direction
∂/∂u in the space–time with line element

ds2 = − cos2{
√

2bv+}dx2 − dy2 + 2 du dv . (3.10)

The wave amplitudes are again “fine tuned” via the parameter b. The elec-
tromagnetic and gravitational fields are non–vanishing in the region v > 0
and vanish in the flat region v < 0. After these two light–like signals collide
at u = v = 0 we obtain the post–collision region of space–time u ≥ 0, v ≥ 0.
Clearly the subset u > 0, v > 0 is given by the Cartesian product space–time
described in Section 2. This space–time includes a cosmological constant
which has been considered in some works [10] as a possible candidate for dark
energy and appears here as a consequence of the collision. On the boundary
u = 0, v > 0 of this region we see from (3.5) that there is a light–like shell
of matter with this boundary as history in space–time (a 2–plane of matter
traveling with the speed of light, for example [11]) and from the last equation
in (3.8) there is an impulsive gravitational wave with this boundary as history
in space–time. Similarly the boundary v = 0, u > 0 is the history in space–
time of a light–like shell of matter following from (3.5) and of an impulsive
gravitational wave following from the first equation in (3.8). These products
of the collision, the light–like shells, the impulsive gravitational waves, the
cosmological constant, can be thought of as a complicated redistribution of
the energy in the incoming light–like signals. Such phenomena occur in most
collisions involving thin shells, impulsive waves and shock waves, and are a
consequence of the interactions between matter and the electromagnetic and
gravitational fields [11]. Additionally one can have black hole production
from the collision of two ultra–relativistic particles [12], the mass inflation
phenomenon inside a black hole [13], [14] and the production of radiation
from the collision of shock waves [15], [16].
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