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Abstract

High-content imaging is an emerging technology for the

analysis and quantification of biological phenomena. Thus,

classifying a huge number of cells or quantifying mark-

ers from large sets of images by experts is a very time-

consuming and poorly reproducible task. In order to over-

come such limitations, we propose a supervised method for

automatic cell classification. Our approach consists of two

steps: the first one is an indexing stage based on specific

bio-inspired features relying on the distribution of contrast

information on segmented cells. The second one is a super-

vised learning stage that selects the prototypical samples

best representing the cell categories. These prototypes are

used in a leveraged k-NN framework to predict the class of

unlabeled cells. In this paper we have tested our new learn-

ing algorithm on cellular images acquired for the analysis

of pathologies. In order to evaluate the automatic classifi-

cation performances, we tested our algorithm on the HEp-

2 Cells dataset of (Foggia et al, CBMS 2010). Results are

very promising, showing classification precision larger than

96% on average, thus suggesting our method as a valuable

decision-support tool in such cellular imaging applications.

1. Introduction

Pathologists establish their diagnostics by studying tis-

sue sections, blood samples or punctures. In general,

samples are stained with various dyes to visualize cell

cytoplasm and nucleus. In addition, immunohistochem-

istry is used to study specific protein expression. Using

these approaches, pathologists observe tissue damage or

cell dysfunction like for example, inflammation, neopla-

sia or necrosis. Abnormal nuclei allow determining can-

cer grades. Pathologists recognize aberrant shapes of whole

cells, organelles, nuclei or staining allowing the classifica-

tion of the cells. Quantification is based on visual count-

ing. Such analysis by one (or several) experimenter is time-

consuming and above all poorly reproducible. Furthermore,

visual counting is generally performed on a small portion

of the sample. A Computer Aided Diagnosis (CAD) system

will allow reliable quantification and therefore be a precious

tool in diagnostics. CAD will permit repetitive quantifica-

tion on larger parts of tissue or on many cell punctures and,

then, quantitative studies. In autoimmune diseases, targets

of autoantibodies are characterized by indirect Immunofluo-

rescence (IIF) on human cultured cells. Then, stained com-

partments of cells are identified by experts. A CAD of this

analysis should provide faster and more reliable IIF. We de-

veloped a new classification method for the analysis of the

staining morphology of thousands of cells. In this work, this

automatic classification was used on a dataset of IIF-stained

cells.

Our cell classification method consists of two steps:

the first one is an indexing process based on specific bio-

inspired features using contrast information distributions on

cell sub-regions. The second is a supervised learning pro-

cess to select prototypical samples (that best represent the

cell categories) which are used in a leveraged k-NN frame-

work to predict the class of unlabeled cells. Such classifi-

cation method has many applications in cell imaging in the

areas of research in basic biology and medicine but also in

clinical histology.

2. Classification method

Our classification process needs two major steps as

shown in Fig. 1: first we compute bio-inspired descrip-

tors, extracting contrast-based features in the segmented

cells. These descriptors are then used in a supervised learn-

ing framework where the most relevant prototypical sam-

ples are used to predict the class of unlabeled cells. We

split this section in two parts: the first describes our feature

extraction approach, whereas the latter is focused on our



prototype-based learning algorithm.

Figure 1. Block scheme of our cell classifica-

tion method.

2.1. Region based bio-inspired descriptor

For better understanding the image content, it can be use-

ful to get inspiration from the way our visual system oper-

ates to analyze the scene. The first transformation under-

gone by a visual input is performed by the retina.

In fact, ganglion cells, that are the final output of the

retina, are first simulated by the local changes of the illumi-

nation. This information is captured by their receptive fields

and transformed to luminance contrast intensities. Those

receptive fields are like center-surround models (see Fig. 2).

They react to the illumination of either the center or the sur-
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Figure 2. Top, receptive fields in the retina
modeled by DoGs for 4 scales. Bellow, the

model of the response of those retinal cells.

round of the ganglion cells and are disabled when illuminat-

ing the other one. Such behavior, similar to an edge detec-

tor, is modeled by a centered two-dimensional Difference of

Gaussians (1).

DoGσ(x, y) = Gσ(x, y)−Gα·σ(x, y) (1)

Moreover, ganglion cells react to the luminance in different

scales, thus adding multiscale aspect and allowing us to use

DoG filters in a scale space (Fig. 2).

The basic idea is to compute features inspired from the

visual system model and specially from the main character-

istics of the retina processing. Such was the case in [1],

where we represented the image using features based on

contrast information on square blocs.

Such descriptor is well adapted in the case of our cells

images since the most discriminative visual feature between

categories is the luminance contrast in subcellular regions.

Thus, we define cell descriptors based on the local contrast

in the cell, that we call Bio-Inspired Features, BIF. The lo-

cal contrast is obtained by a filtering with Differences of

Gaussians (DoGs) centered at the origin. So that the con-

trast CIm for each position (x, y) and a given scale s in the

image Im is as follows:

CIm(x, y, s) =
∑

i

∑

j

(Im(i+ x, j + y) ·DoGσ(s)(i, j))

(2)

We use the DoG described by [2] where the larger Gaussian

has three times the standard deviation of the smaller one.

After computing these contrast coefficients in (2), we apply

a non-linear bounded transfer function, named neuron firing

rates, used in [10]. This function is written as:

R(C) = G · C/(1 +Ref ·G · C), (3)

where G is named the contrast gain and Ref is known as the

refractory period, a time interval during which a neuron cell

reacts. The values of those two parameters proposed in [10]

to best approximate the retinal system are G = 2000Hz ·
contrast−1 and Ref = 0.005 s.

Firing rate coefficients R(C) are encoded on an already

segmented cell region. Then, they are quantified into nor-

malized L1 histograms of n-bins for each scale and finally

concatenated. Thus our global descriptor’s dimension is a

multiple of n.

Note that state of the art classical methods such as SIFT

descriptors encode gradient directions on square blocks [4]

2.2. Prototype-based learning

We consider the multi-class problem of automatic cell

classification as multiple binary classification problems in

the common one-versus-all learning framework [8]. Thus,

for each class c, a query image is given a positive (negative)

membership with a certain confidence (classification score).

Then the label with the maximum score is assigned to the

query.

We suppose given a set S of m annotated images. Each

image is a training example (x,y), where x is the image



feature vector and y = {−1, 1}
C

the class vector that spec-

ifies the category membership of the image. In particular,

the sign of component yc gives the positive/negative mem-

bership of the example to class c (c = 1, 2, ..., C), such that

yc is negative iff the observation does not belong to class c,
positive otherwise.

In this paper, we propose to generalize the classic k-NN

rule to the following leveraged multiclass classifier hℓ =
{hℓ

c}:

hℓ
c(xq) =

T
∑

j=1

αjcK(xq,xj)yjc , (4)

where hℓ
c is the classification score for class c, xq denotes

the query image, αjc the leveraging coefficients, which pro-

vide a weighted voting rule instead of uniform voting, and

K(·, ·) is the k-NN indicator function:

K(xi,xj) =

{

1 , xj ∈ NNk(xi)
0 , otherwise

, (5)

with NNk(xi) denoting the set of the k-nearest neighbors

of xi.

Training our classifier essentially consists in selecting

the most relevant subset of training data, i.e., the so-called

prototypes, whose cardinality T is generally much smaller

than the original number m of annotated instances. The pro-

totypes are selected by first fitting the coefficients αj , and

then removing the examples with the smallest αj , which are

less relevant as prototypes.

In order to fit our leveraged classification rule (4) onto

training set S , we should try to directly minimize the mul-

ticlass surrogate1 (exponential) risk, which is defined as the

actual misclassification rate on the training data, as follows:

εexp
(

hℓ
c,S

) .
=

1

m

m
∑

i=1

exp
{

−ρ(hℓ
c, i)

}

, (6)

where:

ρ(hℓ
c, i) = yich

ℓ
c(xi) (7)

is the multiclass edge of classifier hℓ
c on training example

xi. This edge measures the “goodness of fit” of the classi-

fier on example (xi,yi) for class c, thus being positive iff

the prediction agrees with the example’s annotation.

In order to solve this optimization, we propose a

boosting-like procedure, i.e., an iterative strategy where the

classification rule is updated by adding a new prototype

(xj ,yj) (weak classifier) at each step t (t = 1, 2, . . . , T ),

thus updating the strong classifier (4) as follows:

h(t)
c (xi) = h(t−1)

c (xi) + δjK(xi,xj)yjc . (8)

1We call surrogate a function that upperbounds the risk functional we

should minimize, and thus can be used as a primer for its minimization.

(j is the index of the prototype chosen at iteration t.) Using

(8) into (7), and then plugging it into (6), turns the problem

of minimizing (6) to that of finding δj with the following

objective:

arg min
δj

m
∑

i=1

wi · exp {−δjrij} . (9)

In (9), we have defined rij as a pairwise term only depend-

ing on training data:

rij = K(xi,xj)yicyjc . (10)

and wi as the weighting factor, depending on the past weak

classifiers:

wi = exp
{

−yich
(t−1)
c (xi)

}

, (11)

Finally, taking the derivative of (9), the global minimization

of surrogate risk (6) gives the following expression of δj :

δj =
1

2
log

γ ·
∑

i:rc
ij
>0 wi

∑

i:rc
ij
<0 wi

, (12)

where γ is a coefficient that compensates for the imbalance

between positive and negative examples.

We provided theoretical details and properties of our

boosting algorithm in [7], as well as an extension of UNN

to inherent multiclass classification in [6].

We also tried a “soft” version of the UNN classification

rule, called UNNs, which considers a logistic estimator for

a Bernoulli prior that vanishes with the rank of the neigh-

bors, thus decreasing the importance of farther neighbors:

p̂(j) = βj =
1

1 + exp (λ(j − 1))
. (13)

This amounts to redefining (4) as follows:

hℓ
c(xq) =

T
∑

j=1

αjcβjK(xq,xj)yjc . (14)

(Notice that k-NN indexed by j are supposed to be sorted

from closer to farther.)

3. Experiments

We evaluated our classification approach on the HEp-

2 Cells dataset [3] provided by University of Salerno and

Campus Bio-Medico of Roma2. This database contains 721

images divided into six categories as shown in Fig. 3. Cells

2Data available at: http://mivia.unisa.it/hep2contest/

index.shtml



Centromere Coarse Speckled Cytoplasmatic

208 109 58

Fine Speckled Homogeneous Nucleolar

94 150 102

Figure 3. Sample images and the number of

elements for each category in the dataset.

are already segmented and both hole images and their cor-

responding masks are provided in the dataset.

In a first step, we extract Bio-Inspired features for each

segmented cell according to the cell mask. Some parame-

ters, such as scales and dimension of the descriptor, should

be tuned. For this purpose, we carried out an analysis of the

classification precision as a function of scales and descriptor

dimension, as reported in Tab. 1. Our global features are the

N of bins 32 64 128 256 512

1 scale 61.50 71.59 79.02 83.83 86.32

2 scales 87.51 91.01 91.84 92.90 92.81

3 scales 90.91 94.06 95.32 95.51 95.44

4 scales 93.69 95.53 96.04 96.08 96.03

5 scales 94.33 95.56 95.94 95.80 95.69

Table 1. UNN classification rate as a function

of the scale and the bin’s number of the de-
scriptor.

concatenation of histograms of n-bins for each scale. The

dimension is then equal to the number of scales multiplied

by n. The cross validation experiment in Tab. 1, obtained

with UNN algorithm, shows that using 4 scales with a bins

number equal to 256 or even 128 gives best performances.

Thus, next evaluations are performed using the global di-

mension equal to 1024 for descriptors.

We compare our descriptor to the state of the art SIFT

[4]. SIFT features encode gradient directions on small

square blocks of subcellular regions. However gradient di-

rections are not relevant features for such biologic cells,

thus using SIFT leads to poor classification rates compared

to those obtained using our approach. Next, we use Bag-

of-Words [9] (BoW) with a dimension equal to 1024 build

with dense SIFT of [11].

We evaluate performances using cross validation on 100

folds. For each fold we randomly choose 50% of the images

for training, while testing on the remaining ones. We use the

TP rate (True positive rate) and the AUC (Area under roc

curve) as measures of classification precision. Both of them

are computed by averaging over tests on the 100 random

folds.

We compared performances of UNN with those of stan-

dard k-NN and SVM, using Bio-Inspired descriptors and

BoW with SIFT ones. The TP rates and AUC per cate-

gory and the average TP rate and AUC (last columns) are

reported respectively in Tab. 2 and Tab. 3. These results

display the high discriminative ability of the proposed Bio-

Inspired descriptor, which allows for classification preci-

sion generally larger than 90%, up to almost 100% (on the

“Coarse Speckled” and “Cytoplasmatic” classes). Contrast

based descriptors are more relevant features than gradient

based SIFT for biological cells classification. Our bioin-

spired descriptor outperforms classical SIFT state of the

art descriptor for all classification methods. Furthermore,

our UNN classification method improves the classic k-NN,

most significantly on the “Fine Speckled” and “Homoge-

neous” classes, with improvement larger than 2%. At the

same time, our learning method achieves performances al-

ways comparable with those of state-of-the-art SVM. For

instance, notice the improvement of UNN over SVM on

the “Coarse Speckled” class (2.5% gap on TP and 1.5%

on AUC) and the “Fine Speckled” one (2% gap on TP and

4% on AUC), while SVM is the best performing method on

the “Homogeneous” and “Nucleolar” classes. For further
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Centromere 96.33 0.50 0.91 0.82 0.50 0.91

Coarse Sp. 0.18 98.03 0.68 0.85 0.22 0.01

Cytoplasm. 0 0.20 99.55 0.10 0.10 0.03

Fine Sp. 0.78 0.42 0.12 95.36 3.29 0

Homogen. 0.65 2.50 0.60 5.32 90.84 0.08

Nucleolar 1.37 2.15 0 0 0.05 96.41

Table 4. Confusion table for UNN: the aver-
age classification rate (or mAP) is the mean

of the diagonal of this matrix.

details on the classification precision per category we give

as example the confusion matrix for UNN classification in

Tab. 4.

Besides comparing very favorably with state-of-the-art

approaches, our UNN method enables much faster classifi-

cation. Fig. 4, shows typical processing time for UNN and



Centromere Coarse Speckled Cytoplasmatic Fine Speckled Homogeneous Nucleolar TP rate

k-NN + BIF 94.88 98.77 98.44 86.65 83.88 94.11 92.79

UNN + BIF 96.33 98.03 99.55 95.36 90.84 96.41 96.08

SVM + BIF 96.38 95.68 99.86 93.36 93.90 97.92 96.18

k-NN + SIFT 86.09 45.35 100 41.61 94.78 71.49 73.22

UNN + SIFT 86.13 69.22 99.89 63.59 91.30 85.62 82.63

SVM + SIFT 88.22 70.87 98.41 62.36 87.52 90.47 82.97

Table 2. Performances of k-NN, UNN and SVM with BIF and SIFT descriptors in term of TP rate (true

positif rate) for each of the six classes.

Centromere Coarse Speckled Cytoplasmatic Fine Speckled Homogeneous Nucleolar AUC

k-NN + BIF 94.58 90.26 100 51.60 84.58 84.49 84.25

UNN + BIF 95.12 96.78 99.03 95.78 93.91 94.69 95.89

SVM + BIF 95.96 95.21 98.27 91.67 97.24 98.68 96.17

k-NN + SIFT 95.06 90.35 99.70 57.61 81.97 89.01 85.61

UNN + SIFT 92.46 87.23 98.21 66.11 90.00 91.09 87.52

SVM + SIFT 92.18 79.06 92.56 60.00 91.76 92.57 84.69

Table 3. Performances of k-NN, UNN and SVM with BIF and SIFT descriptors in term of AUC (area
under RoC curve) for each of the six classes.
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Figure 4. Processing time of the training step

for both UNN, SVM and multi-thread version
of UNN.

SVM and UNN achieves speedups of roughly 3 to 5 over

SVM. UNN benefits from straightforward multi-thread im-

plementation (UNNMT ) in addition to the fast and efficient

tool that we used for the k-NN search algorithm, provided in

the Yael toolbox3. This makes the processing furthermore

faster. Therefore our Bio-Inspired UNN approach provides

the best mAP/Time trade-off.

3Source code available at: https://gforge.inria.fr/

projects/yael

4. Conclusion

In this paper, we have presented a novel algorithm for

automatic supervised classification of cellular images. First

of all, our method relies on extracting highly discriminative

descriptors based on Bio-Inspired histograms of Difference-

of-Gaussians (DoG) coefficients on cellular regions. Then,

we propose a supervised classification algorithm, called

UNN, for learning the most relevant prototypical samples

that are to be used for predicting the class of unlabeled cel-

lular images according to a leveraged k-NN rule. We evalu-

ated UNN performances on the HEp-2 Cells dataset (manu-

ally segmented and annotated). Although being the early re-

sults of our methodology for such a challenging application,

performances are really satisfactory (average global preci-

sion of 96%).
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