Classification of biological cells using bio-inspired descriptors - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Classification of biological cells using bio-inspired descriptors

Résumé

This paper proposes a novel automated approach for the categorization of cells in fluorescence microscopy images. Our supervised classification method aims at recognizing patterns of unlabeled cells based on an annotated dataset. First, the cell images need to be indexed by encoding them in a feature space. For this purpose, we propose tailored bio-inspired features relying on the distribution of contrast information. Then, a supervised learning algorithm is proposed for classifying the cells. We carried out experiments on cellular images related to the diagnosis of autoimmune diseases, testing our classification method on the HEp-2 Cells dataset of Foggia et al (CBMS 2010). Results show classification precision larger than 96% on average, thus confirming promising application of our approach to the challenging application of cellular image classification for computer-aided diagnosis.
Fichier principal
Vignette du fichier
icpr_2012.pdf (732.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00958856 , version 1 (13-03-2014)

Identifiants

  • HAL Id : hal-00958856 , version 1

Citer

Wafa Bel Haj Ali, Dario Giampaglia, Michel Barlaud, Paolo Piro, Richard Nock, et al.. Classification of biological cells using bio-inspired descriptors. ICPR - 21st International Conference on Pattern Recognition, Nov 2012, Tsukuba, Japan. pp.3353-3357. ⟨hal-00958856⟩
375 Consultations
821 Téléchargements

Partager

More