
HAL Id: hal-00958809
https://hal.science/hal-00958809

Submitted on 13 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gentle Nearest Neighbors Boosting over Proper Scoring
Rules

Richard Nock, Wafa Bel Haj Ali, Roberto d’Ambrosio, Franck Nielsen, Michel
Barlaud

To cite this version:
Richard Nock, Wafa Bel Haj Ali, Roberto d’Ambrosio, Franck Nielsen, Michel Barlaud. Gentle Nearest
Neighbors Boosting over Proper Scoring Rules. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2014, 99, pp.14. �10.1109/TPAMI.2014.2307877�. �hal-00958809�

https://hal.science/hal-00958809
https://hal.archives-ouvertes.fr

1

Gentle Nearest Neighbors Boosting
over Proper Scoring Rules

Richard Nock, Wafa Bel Haj Ali, Roberto D’Ambrosio, Frank Nielsen (Senior Member, IEEE), Michel
Barlaud (Fellow, IEEE)

✦

Abstract—Tailoring nearest neighbors algorithms to boosting is an
important problem. Recent papers study an approach, UNN, which
provably minimizes particular convex surrogates under weak as-
sumptions. However, numerical issues make it necessary to experi-
mentally tweak parts of the UNN algorithm, at the possible expense
of the algorithm’s convergence and performance. In this paper, we
propose a lightweight alternative algorithm optimizing proper scoring
rules from a very broad set, and establish formal convergence rates
under the boosting framework that surprisingly compete with those
known for UNN. It is an adaptive Newton-Raphson algorithm, which
belongs to the same lineage as the popular Gentle Adaboost. To
the best of our knowledge, no such boosting-compliant convergence
rates were previously known for these algorithms. We provide ex-
periments on a dozen domains, including the challenging Caltech
and SUN computer vision databases. They display that GNNB sig-
nificantly outperforms UNN, both in terms of convergence rate and
quality of the solution obtained, and GNNB provides a simple and
efficient contender to techniques that can be used on very large
domains, like stochastic gradient descent — for which little is known
to date. Experiments include a divide-and-conquer improvement of
GNNB which exploits the link with proper scoring rules optimization.

1 INTRODUCTION

Iterative approaches to learn classifiers have been
playing a major role in machine learning and statis-
tical learning for at least forty years [1]. The most
common high-level scheme consists in gradually com-
bining from scratch classifiers obtained at each it-
eration, with the objective to minimize throughout
iterations a convex differentiable risk called a surrogate
risk, sometimes amended with a structural part based
on data [2]. Unlike so-called greedy algorithms, that
repeatedly perform fine-grained optimization steps
[2], boosting algorithms rely on weak optimization
stages much less demanding from the statistical and

R. Nock (contact author) is with the Université Antilles-Guyane,
CEREGMIA-UFR DSE, Campus de Schoelcher, B.P. 7209, Schoelcher
97275, France. E-mail: rnock@martinique.univ-ag.fr
W. Bel Haj Ali is with CNRS - U. Nice, France. E-mail: belha-
jal@i3s.unice.fr
R. D’Ambrosio is with University Campus Bio-Medico of Rome, Rome,
Italy. E-mail: r.dambrosio@unicampus.it
F. Nielsen is with Sony Computer Science Laboratories, Inc., Tokyo, Japan.
E-mail: nielsen@lix.polytechnique.fr
M. Barlaud is with Institut Universitaire de France and CNRS - U. Nice,
France. E-mail: barlaud@i3s.unice.fr

computational standpoints [3], [4], [5], [6], [7]. In fact,
the boosting theory involves at each iteration weak
classifiers slightly different from pure random, but re-
quires that the final combination be probably as close
as required from the optimum, within polynomial
time.

Nearest neighbors (NN) rules are a non-trivial field
of choice for boosting algorithms [4], [5], as exam-
ples ideally play weak classifiers. In this case, we
treat the boosting problem in its simplest form: the
accurate leveraging of examples that vote among
nearest neighbors. In particular, we compute nearest
neighbors in the ambient space of data, i.e. as de-
scribed over their initial features. There have been
other approaches to boost nearest neighbors by learn-
ing features with (Ada)boosting algorithms, prior to
computing nearest neighbor rules on these new sets
of features [8] (and references therein). No boosting
results are known for these algorithms, and it is in fact
not known whether they achieve convergence to the
optimum of Adaboost’s exponential risk. A previous
approach in our line of works is algorithm UNN (for
“Universal Nearest Neighbors”), which brings boost-
ing guarantees for merely all strictly convex differen-
tiable surrogates relevant to classification [9], [5], [6].
For a wide subset of surrogates, it yields simple and
efficient estimators of posteriors [10].

There is, however, an analytical and computational
bottleneck in UNN, as the leveraging coefficients are
solutions to non-linear equations with no closed form
expression in the general case. Boosting compliant
approximations are possible, but in the context of
NN rules, they are computationally far too expensive
to be performed at each boosting iteration on large
datasets. Computationally affordable coarse-grained
approximations are also possible, that yield com-
pelling experimental results, but it is not known if
they always lie within the boosting regime [5].

In this paper, we propose a simple boosting compli-
ant solution to this computational bottleneck. Our al-
gorithm, GNNB for “Gentle Nearest Neighbors Boost-
ing”, performs adaptive Newton-Raphson steps to
minimize any balanced convex surrogate [11] with guar-

2

ψφ φ π∗ δj(1/2) weight update, f : wi ← f(wi)

A (1 − x)2 −x(1− x) 1
16

η(c,j)
2nj

wi − 2δjcyicyjc

B log2(1 + exp(−x)) x lnx

ln 2
8

4 ln(2)η(c,j)
nj

wi
wi ln 2+(1−wi ln 2)×exp(δjcyicyjc)+(1− x) ln(1 − x)

C log2(1 + 2−x)
x log2 x 4η(c,j)

ln(2)nj

wi

wi+(1−wi)×2
δjcyicyjc+(1 − x) log2(1− x)

D −x+
√

1 + x2 −
p

x(1 − x) 1
8

η(c,j)
nj

1− 1−wi+
√
wi(2−wi)δjcyicyjc

q

1+δ2
jc
wi(2−wi)+2(1−wi)

√
wi(2−wi)δjcyicyjc

E 1
2
x(sign(x)− 1) −min{x, 1− x} N/A

TABLE 1
From left to right: examples of balanced convex losses ψφ (A, B, C, D; we let ln denote the base-e logarithm,
and logz(x)

.
= ln(x)/ ln(z)); permissible functions φ; value of π∗ as defined in (43); expression of update δj in

(10) for ε = 1/2; expression of the weight update in (11) (See text for details).

anteed convergence rates. This class, which comprises
the popular logistic and squared surrogates [3], match
the set of even, twice differentiable proper scoring
rules [12]. This is a proof of generality of our ap-
proach as being “proper” is the bare minimum one
can request from a score — it roughly states that
forecasting the right output yields the optimal score.
Our main theoretical result establishes, for any of
these surrogates, convergence rates towards global
optimum that surprisingly compete with those known
for UNN [5] — thus proving that a complex, time
consuming leveraging procedure is not necessary for
fast convergence towards the optimum. To the best of
our knowledge, these are the first convergence rates
under the boosting framework for Newton-Raphson
approaches to general surrogate risk minimization,
a set whose most prominent member is Gentle Ad-
aboost [3]. The link with balanced convex surrogates
optimization allows to show that GNNB equivalently
fits class posteriors, and complies with weak universal
consistency requirements. Experiments are provided
on a dozen domains, including small domains from
the UCI repository of machine learning database
[13] and large computer vision domains: the Cal-
tech [14] and SUN domains [15]. They display that
GNNB outperforms UNN, both in terms of convergence
rate and quality of the solutions obtained. They also
display that, on large domains for which complex
learning approaches like non-linear support vector
machines or boosting with deep trees are ruled out for
computational considerations, GNNB offers a simple,
lightweight and competing alternative to heuristic
methods like stochastic gradient descent. Our exper-
iments come with an improvement of GNNB aimed
at reducing the weak point represented by the curse
of dimensionality for nearest neighbor algorithms on
large domains. We provide a low-cost divide-and-
conquer scheme which makes a partition of the de-
scription variables before running GNNB, and exploits
links with density estimation in proper scoring rules
to craft, out of all predictions, an aggregated score
which is shown experimentally to outperform very

significantly the vanilla approach without splitting.
The remaining of the paper is organized as fol-

lows: Section 2 provides definitions. Section 3 presents
GNNB. Section 4 and Section 5 respectively state and
discuss its theoretical properties. Section 6 presents
experiments, and Section 7 concludes the paper.

2 DEFINITIONS

2.1 General setting

Our setting is multiclass, multilabel classification [7].
We have access to an input set of m examples (or
prototypes), S

.
= {(xi,yi), i = 1, 2, ...,m}. Vector

yi ∈ {−1, 1}C encodes class memberships, assuming
yic = 1 means that observation xi belongs to class
c. We let H : O → R

C denote a classifier, O being
the observations domain to which all xi belong. The
cth coordinate of the output of H, hc

.
= Hc, is a

classifier which segregates observations according to
their membership to class c. The boosting framework
originating in the seminal works of Valiant, has con-
tributed to bring to the fore the interests in learning
H by the minimization of a total surrogate risk:

εψ
S
(H)

.
=

1

C

C∑

c=1

εψ
S
(hc, c) , (1)

where

εψ
S
(hc, c)

.
=

1

m

m∑

i=1

ψ(yichc(xi)) (2)

is a surrogate risk associated to class c, simply named
surrogate risk hereafter [3], [11], [16], [7] (and many
others). Quantity yichc(x) ∈ R is the edge of classifier
h on example (xi,yi), for class c.

2.2 Proper scoring rules and balanced convex
surrogates

There exists numerous choices for the (surrogate) loss
ψ. In this subsection, we motivate the analysis of a
subset of particular interest, called balanced convex
losses [11], [16]. For the sake of clarity, we assume in

3

-0.5

-0.25

 0

 0 0.5 1
 0

 0.5

 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 1. Plot of permissible φ of row D in Table 1 (left)
and its matching posterior estimate p̂φ,h as a function
of h ∈ R (right, see text).

this Subsection that we have two classes (C = 2), and
reduce the class vector to real y ∈ {−1, 1} encoding
membership to a so-called “positive” class (“1”). “−1”
means observation does not belong to the positive
class, or similarly belongs to a “negative” class. In
this case, a classifier h outputs a single real value.

More general than the problem of predicting labels
is the problem of estimating posteriors [12], [17]: let
p

.
= p̂[y = 1|x] define for short the unknown true

posterior for observation x. The discrepancy between
an estimator p̂ of p and p is measured by a loss
ℓ[0,1](p‖p̂). The interval [0, 1] in index recalls that its
arguments are probabilities, and “‖” means that it
is not assumed to be symmetric. There are three
requirements one can put on a loss to fit it to statistical
requirements of the estimation task while making it
suited to convenient algorithmic minimization. The
most important one, requirement R1, is fundamental
in estimation, as it states that ℓ[0,1] defines a (strictly)
proper scoring rule: 0 = ℓ[0,1](p‖p) < ℓ[0,1](p‖q), for any
q and p 6= q [12], [18], [16], [17]. This requirement is
fundamental in that it encourages reliable estimations.
Second, requirement R2 states that the loss is even
as ℓ[0,1](p‖p̂) = ℓ[0,1](1 − p‖1 − p̂), and thus there is
no class-dependent mis-estimation cost. For example,
predicting p̂ = 1 (observation always positive) while
p = 0 (observation always negative) incurs the same
loss as predicting p̂ = 0 while p = 1. This is a com-
mon assumption in machine learning or classification.
Third and last, requirement R3 states that ℓ[0,1] is twice
differentiable.

The following Theorem, whose proof can be found
in [11], [16], exhibits the true shape of ℓ[0,1].

Theorem 1: [11], [16] Any loss ℓ[0,1] satisfies require-
ments R1–R3 iff it is a Bregman divergence:

ℓ[0,1](p‖q) = Dφ(p‖q) ,

for some permissible φ.

Theorem 1 makes use of two important definitions:
a permissible φ satisfies: φ : [0, 1] → R

+, it is differ-
entiable on (0, 1), strictly convex, twice differentiable
on (0, 1) and symmetric around x = 1/2. Also, for any
strictly convex differentiable ψ, the Bregman divergence
of (strictly convex differentiable) generator ψ between

x and x′ is defined as:

Dψ(x′‖x)
.
= ψ(x′)− ψ(x) − (x′ − x)∇ψ(x) , (3)

where “∇” denotes first order derivative. We are now
in a position to define balanced convex losses and
relate them to proper scoring rules. Before, let us
define the Legendre convex conjugate of any strictly
convex differentiable function ψ as ψ⋆(x)

.
= x∇−1

ψ (x)−

ψ(∇−1
ψ (x)).

Definition 1: [16] Given some permissible φ, the bal-
anced convex loss (BCL) with signature φ, ψφ, is:

ψφ(x)
.
=

φ⋆(−x) + φ(0)

φ(0)− φ (1/2)
. (4)

We then have the following Theorem.
Theorem 2: [11], [16] The following identity holds

true for any permissible φ and any classifier h:

Dφ(p(y)‖p̂φ,h(x)) = (φ(0)− φ(1/2))ψφ(yh(x)) ,

where

p̂φ,h(x)
.
= ∇−1

φ (h(x)) ∈ [0, 1] , (5)

and

p(y)
.
= p[y = 1|x]

.
=

{
0 iff y = −1
1 otherwise

. (6)

Let us call p̂φ,h the matching posterior estimate for
classifier h, as it represents an estimate p̂φ,h[y = 1|x].
Figure 1 plots p̂φ,h[y = 1|x] for choice D in Table
1. It comes from Theorems 1 and 2 that balanced
convex losses (for real valued classification) match a
wide set of proper scoring rules (for estimation). Thus,
they characterize a very important set of losses and
we shall see in the following Section how to achieve
the optimum of the score through a gentle optimiza-
tion procedure with nearest neighbor classifiers, with
guaranteed rates of convergence.

Table 1 includes the most popular examples of BCLs:
squared loss (row A), (normalized) logistic loss (B),
binary logistic loss (C), Matsushita’s loss (D). Hinge
loss (E) is not a BCL, yet it defines the asymptotes of
any BCL [11], and its φ defines the usual empirical
loss [11]. Adaboost’s exponential loss is not a BCL [3],
[7].

We finish by stating some properties of φ and ψφ.
Let us assume that

min
[0,1]

Hφ(x) > 0 ; (7)

this is the case for all examples in Table 1. Otherwise,
we may replace φ by φ + φ2 where φ2 is permissi-
ble and meets assumption (7). Since permissibility is
closed by linear combinations, function φ+ φ2 is also
permissible and satisfies (7). Since

Hψφ
(x) =

1

(φ(0) − φ (1/2))×Hφ(∇
−1
φ (x))

,

4

Algorithm 1: Algorithm GENTLE NN BOOSTING,
GNNB(S, φ, ε, k)

Input: S = {(xi,yi), i = 1, 2, ...,m, xi ∈ O, yi ∈
{−1, 1}C}, permissible φ, ε ∈ (0, 1), k ∈ N∗;

Let αj ← 0,∀j = 1, 2, ...,m;
for c = 1, 2, ...,C do

Let w← 1
2(φ(0)−φ(1/2))

1;

for t = 1, 2, ..., T do
[I.0]//Choice of the example to leverage
Let j ← WIC(S,w);
[I.1]//Computation of the gentle leveraging coeffi-
cient update, δj
Let

η(c, j)←
X

i:j∼S,ki

wtiyicyjc ; (9)

δj ← 2(1− ε)η(c, j)
H∗

ψφ
nj

, with nj
.
= |{i : j ∼k i}| ;(10)

[I.2]//Weights update
∀i : j ∼k i, let

wi ←
∇−1
φ

`

−δjyicyjc +∇φ((φ(0) − φ(1/2))wi)
´

φ(0) − φ(1/2)
; (11)

// we have wi ∈
ˆ

0, (φ(0) − φ(1/2))−1
˜

[I.3]//Leveraging coefficient update
Let αjc ← αjc + δj ;

Output: H(x)
.
=

P

j∼kx
αj ◦ yj

assumption (7) implies:

H∗
ψφ

.
= sup

R

Hψφ
(x) ≪ ∞ , (8)

and in fact H∗
ψφ

= Hψφ
(0) for all examples in Table 1,

and is very small (Cf column π∗, (43) and Section 4).
The following Lemma states properties shown in [16].

Lemma 1: [16] For any permissible φ, the following
properties hold true: φ⋆(x) = φ⋆(−x)+x, ∀x; ∇ψφ

(0) <
0, ψφ(0) = 1, im(ψφ) ⊆ R

+.

2.3 Empirical risk and its minimization

Lemma 1 implies that surrogate risk minimization
may be used as an approximate primer to the min-
imization of the empirical risk, as indeed the total
surrogate risk (1) is an upperbound of the empirical
(Hamming) risk [7]:

εHS (H)
.
=

1

C

C∑

c=1

ε
0/1
S

(hc, c) ≤
1

ψ(0)
εψ
S
(H) , (12)

where

ε
0/1
S

(hc, c)
.
=

1

m

m∑

i=1

I[yichc(xi) < 0] (13)

is the usual empirical risk associated to class c. To
quantify the performance of the best possible classi-
fier, we respectively define:

(ε
ψφ

S
)∗c

.
= inf

h
ε
ψφ

S
(h, c) , (14)

(ε
0/1
S

)∗c
.
= inf

h
ε
0/1
S

(h, c) , (15)

w’

g(c,j)

w

 0

 0.5

 1

 1.5

 2

-2-1.5-1-0.5 0 0.5 1 1.5 2 0

 0.5

 1

 1.5

 2

w’

g(c,j)

w

 0

 0.5

 1

 1.5

 2

-2-1.5-1-0.5 0 0.5 1 1.5 2 0

 0.5

 1

 1.5

 2

w’

g(c,j)

w

 0

 0.5

 1

 1.5

 2

-2-1.5-1-0.5 0 0.5 1 1.5 2 0

 0.5

 1

 1.5

 2

w’

g(c,j)

w

 0

 0.25

 0.5

 0.75

 1

-1
-0.5

 0
 0.5

 1 0

 0.25

 0.5

 0.75

 1

w’

g(c,j)

w

 0

 0.25

 0.5

 0.75

 1

-1
-0.5

 0
 0.5

 1 0

 0.25

 0.5

 0.75

 1

w’

g(c,j)

w

 0

 0.25

 0.5

 0.75

 1

-1
-0.5

 0
 0.5

 1 0

 0.25

 0.5

 0.75

 1

Fig. 2. Weight update w′ computed as a function of w
and g(c, j)

.
= η(c, j)/nj , when yicyjc = 1 and ε = 1/2

(see Table 1). The corresponding BCLs are the binary
logistic loss (left) and Matsushita’s loss (right). The
black grid depicts the plane of equation w′ = w.

as the respective Bayes surrogate risks and Bayes
empirical risks for class c. Averaging these expressions

following (1) and (12), we respectively define (ε
ψφ

S
)∗

and (ε
0/1
S

)∗ as the optimal total surrogate risk and
empirical (Hamming) risk on S. As a last remark,
our minimization problems on the learning sample
may be useful as well to minimize the true (surrogate)
risks, that is, expectations of (1, 12) in generalization,
according to some unknown distribution from which
S is supposed i.i.d. sampled. We refer to [9], [19] and
the references therein for details, not needed here.

3 GENTLE BOOSTING FOR NN RULES

The nearest neighbors (NNs) rule belongs to the oldest,
simplest and still most widely studied classification
algorithms [20]. It relies on a non-negative real-valued
“distance” function. This function is defined on do-
main O and measures how much two observations
differ from each other. This dissimilarity function thus
may not necessarily satisfy the triangle inequality of
metrics. For the sake of readability, we let j ∼k x

denote the assertion that example (xj ,yj), or simply
example j, belongs to the k NNs of observation x. We
shall abbreviate j ∼k xi by j ∼k i — in this case, we
say that example i belongs to the inverse neighborhood
of example j. To classify an observation x ∈ O, the k-
NN rule H over S computes the sum of class vectors
of its nearest neighbors, that is: H(x) =

∑

j∼kx
1 ◦ yj ,

where ◦ is the Hadamard product1. H predicts that x

belongs to each class whose corresponding coordinate
in the final vector is positive. A leveraged k-NN rule
generalizes this to:

H(x) =
∑

j∼kx

αj ◦ yj , (16)

where αj ∈ R
C is a leveraging vector for the classes

in yj . Leveraging approaches to nearest neighbors are
not new [21], [22], yet to the best of our knowledge
no convergence rates were known, at least until the
algorithm UNN [5], [6]. Algorithm 1 presents our
gentle boosting algorithm for the nearest neighbor

1. Coordinate-wise.

5

rules, GNNB. It differs with UNN on the key part of
(16): the computation and update of the leveraging
vectors. Instead of the repetitive solving of nonlinear
equations — time consuming and with the risk, for
approximations, of lying outside the boosting regime
—, we prefer a simple scheme linear on the weighted
edge η(c, j) (see Algorithm 1). The scheme of UNN [5],
[6] is nonlinear in this parameter. Our updates also
depend on integer nj , the cardinality of the inverse
neighborhood of example j, where |.| denotes the
cardinality (see Algorithm 1). Table 1 gives the expres-
sions of the weight update (11) for various choices of
permissible functions φ, and the expression of δj for
the particular choice ε = 1/2. Figure 2 plots examples
of the weight update (11). The ranges of values, used
in Figure 2, are respectively

[

−
1

φ(0)− φ(1/2)
,

1

φ(0)− φ(1/2)

]

for g(c, j), and
[

0,
1

φ(0)− φ(1/2)

]

for w and w′. The two plots, similar, exemplify two
important remarks valid for any BCL. First, when
classes match for example i and j, the weight of
example i decreases iff δj > 0. This is a common
behavior for boosting algorithms. Second, the regime
of weight variations for extreme values of g(c, j)
appear to be very important, despite the fact that
leveraging update δj is linear in the weighted edge.
Thus, “gentle” updates do not prevent significant
variations in weights.

4 PROPERTIES OF GNNB

4.1 GNNB is Newton-Raphson

Our first result establishes that GNNB performs
Newton-Raphson updates to optimize its surrogate
risk, like Gentle Adaboost [3]. If we pick example i in
the inverse neighborhood of example j to be updated
for class c, we have ∂ψφ(yichc(xi))/∂δj = −wiyicyjc,
and ∂2ψφ(yichc(xi))/∂δ

2
j = Hψφ

(yichc(xi)), so that the
Newton-Raphson update for δj reads:

δj ← ρ×
η(c, j)

∑

i:j∼S,ki
Hψφ

(yichc(xi))
, (17)

for some small learning rate ρ, typically with 0 < ρ ≤
1. Comparing with (10), we get the following result.

Theorem 3: GNNB uses adaptive Newton-Raphson

steps to minimize the surrogate risk at hand, ε
ψφ

S
, with

adaptive learning rate ρ
.
= ρ(c, j, ε):

ρ(c, j, ε) =
2(1− ε)

∑

i:j∼S,ki
Hψφ

(yichc(xi))

H∗
ψφ
nj

.(18)

Furthermore,

0 < ρ(c, j, ε) < 2(1− ε) .

The Newton-Raphson flavor of GNNB might be useful
to prove its convergence to the optimum of the surro-

gate risk at hand (ε
ψφ

S
), yet the original boosting the-

ory is more demanding than “mere” convergence to
global optimum: it requires guaranteed convergence
rates under weak assumptions about each iteration.

4.2 GNNB boosts the surrogate risks

We consider the following Weak Learning Assumption
about GNNB:

(WLA) There exist constants ̺ > 0, ϑ > 0 such
that at any iterations c, t of GNNB, index j re-
turned by WIC is such that the following holds:

∑

i:j∼S,ki
wi

nj
≥

̺

φ(0)− φ(1/2)
; (i)

|p̂w[yjc 6= yic|j ∼S,k i]− 1/2| ≥ ϑ . (ii)

Requirement (ii) corresponds to the usual weak learn-
ing assumption of boosting [11], [16], [7]: it postulates
that the current normalized weights in the inverse
neighborhood of example j authorize a classification
different from random by at least ϑ. GNNB uses un-
normalized weights that satisfy (1/nj)

∑

i:j∼S,ki
wi ∈

[0, 1/(φ(0)− φ(1/2))]: requirement (i) thus implies that
the unnormalized weights in the inverse neighbor-
hood must not be too small. Intuitively, such a condi-
tion is necessary as unnormalized weights of minute
order would not necessarily prevent (ii) to be met,
but would impair the convergence of GNNB given the
linear dependence of δj in the unnormalized weights.
Notice also that unnormalized weights are all the
smaller as examples receive the right labels: the fact
that requirement (i) becomes harder to be met simply
means that GNNB approaches the optimum sought.
At the beginning of GNNB, the initialization with the
null leveraging vectors (αj = 0, ∀j) guarantees that
we can pick in (i) ̺ = 1/2 everywhere.

The analysis we carry out is a bit more precise
than usual boosting results: instead of giving, under
the WLA, a lowerbound on the number of iterations
needed to drive down the surrogate or empirical risks
down some user-fixed threshold τ , we rather provide
a lowerbound on the total number of weight updates,
for each class c. This number, ℓ(T, c), integrates the
total number of boosting iterations and the size of in-
verse neighborhoods used. It is important to integrate
these sizes since there is obviously a big difference for
convergence between leveraging an example which
votes for many others in “dense” parts of the data,
and leveraging one which votes for none. Our main
result is split in two. The first focuses on the surrogate
risk, the second on the empirical risk. Let us first

6

define:

φc(S)
.
=

∑

x

p̂S [x]φ(p̂S [yc = 1|x]) , (19)

∆φ(S, τ, c)
.
= φc(S) − ((1− τ)φ(1/2) + τφ(0)) ,(20)

∆′
φ(S, τ, c)

.
= φc(S) − φ

(
1− τ

2

)

. (21)

∆φ(S, τ, c) and ∆′
φ(S, τ, c) are differences between

average values of φ taking values within ±(φ(0) −
φ(1/2)). We are now ready to state our main result on
GNNB.

Theorem 4: Assume the WLA holds, and let τ ∈
[0, 1]. Suppose we run GNNB so that, ∀c, ℓ(T, c) meets:

ℓ(T, c) ≥
∆φ(S, τ, c)(φ(0) − φ(1/2))H∗

ψφ

8ε(1− ε)ϑ2̺2
×m .(22)

Then the leveraged k-NN H learned by GNNB satisfies:

ε
ψφ

S
(H) ≤ (ε

ψφ

S
)∗ + τ . (23)

Proof: Our main objective is to craft a negative
upperbound for the variation of the surrogate risk at
hand (2) between two successive iterations, say t and
t+ 1. To keep references clear, we replace the index j
of the example returned by WIC by e(t). We have:

ε
ψφ

S
(h(t+1)c, c)− ε

ψφ

S
(htc, c)

=
1

m

∑

i:e(t)∼S,ki

ψφ(yich(t+1)c(x))

−
1

m

∑

i:e(t)∼S,ki

ψφ(yichtc(x))

=
1

m







∑

i:e(t)∼S,ki

Dψ̃φ
(0‖∇−1

ψ̃φ

(−yich(t+1)c(x)))

−
∑

i:e(t)∼S,ki

Dψ̃φ
(0‖∇−1

ψ̃φ

(−yichtc(x)))






, (24)

where ψ̃φ(x)
.
= (ψφ)

⋆(−x) and (24) comes from
Lemma 1 in [16]. Now, we obtain ∇ψφ

(x) =
−∇−1

φ (−x)/(φ(0)− φ(1/2)), and so

∇−1
ψφ

(x) = ∇(ψφ)⋆(x)

= −∇φ((φ(1/2)− φ(0))x) ,

which yields

ψ̃φ(x) = −
φ ((φ(0)− φ(1/2))x)

φ(0)− φ(1/2)
. (25)

Furthermore,

∇−1

ψ̃φ

(−yich(t+1)c(xi))

=
1

φ(0)− φ(1/2)
∇−1
φ (−δe(t)yicye(t)c − yichtc(xi))

= w(t+1)i , (26)

and∇−1

ψ̃φ

(−yichtc(x)) = wti as well, so that, taking into

account (25) and (26), we obtain that we can simplify
(24) as follows:

ε
ψφ

S
(h(t+1)c, c)− ε

ψφ

S
(htc, c)

=
1

m







∑

i:e(t)∼S,ki

Dψ̃φ
(0‖w(t+1)i)

−
∑

i:e(t)∼S,ki

Dψ̃φ
(0‖wti)







= −
1

m

∑

i:e(t)∼S,ki

{

ψ̃φ(w(t+1)i)− ψ̃φ(wti)

−w(t+1)i∇ψ̃φ
(w(t+1)i) + wti∇ψ̃φ

(wti)
}

= −
1

m

∑

i:e(t)∼S,ki

{

ψ̃φ(w(t+1)i)− ψ̃φ(wti)

+w(t+1)i

[

δe(t)yicye(t)c −∇ψ̃φ
(wti)

]

+wti∇ψ̃φ
(wti)

}

= −
1

m

∑

i:e(t)∼S,ki

Dψ̃φ
(w(t+1)i‖wti)

−
δe(t)

m

∑

i:e(t)∼S,ki

w(t+1)iyicye(t)c . (27)

We now work on lowerbounding the divergence term
above. For this objective, we prove a simple but
crucial property for ψφ, of independent interest. Fol-
lowing [23], we say that a differentiable function ψ is
ω strongly smooth iff there exists some ω > 0 such that,

Dψ(x′‖x) ≤
ω

2
(x′ − x)2 , ∀x, x′ .

Lemma 2: For any permissible φ, ψφ is H∗
ψφ

strongly
smooth, where H∗

ψφ
is defined in (8).

Proof: Taylor-Lagrange remainder brings that
there exists some x′′ ∈ (x, x′) such that

Dψφ
(x′‖x) =

1

2
× (x− x′)2Hψφ

(x′′)

≤
1

2
× (x− x′)2H∗

ψφ
,

the inequality coming from (8). This ends the proof of
the Lemma.

It comes from [23] that (ψφ)
⋆ is (H∗

ψφ
)−1 strongly

convex, that is, (ψφ)
⋆(w) − (2H∗

ψφ
)−1w2 is convex.

Equivalently,

ψ̃φ(w) −
1

2H∗
ψφ

w2 is convex. (28)

Any convex function ϕ satisfies ϕ(w′) ≥ ϕ(w) +
∇ϕ(w)(w′−w), ∀w,w′. We apply this inequality taking
as ϕ the function in (28), w = wti and w′ = w(t+1)i.
After simplification, we sum for each i such that

7

e(t) ∼S,k i, and obtain:
∑

i:e(t)∼S,ki

Dψ̃φ

(
w(t+1)i||wti

)

≥
1

2H∗
ψφ

∑

i:e(t)∼S,ki

(
w(t+1)i − wti

)2
. (29)

Finally, Cauchy-Schwartz inequality yields:
∑

i:e(t)∼S,ki

(
yicye(t)c

)2 ∑

i:e(t)∼S,ki

(
w(t+1)i − wti

)2

≥




∑

i:e(t)∼S,ki

yicye(t)c(w(t+1)i − wti)





2

. (30)

Fix for short u
.
=
∑

i:e(t)∼S,ki
w(t+1)iyicye(t)c. Plugging

altogether (27), (29) and (30), we obtain the following

upperbound for ε
ψφ

S
(h(t+1)c, c)− ε

ψφ

S
(htc, c):

ε
ψφ

S
(h(t+1)c, c)− ε

ψφ

S
(htc, c)

≤ −

(

u−
∑

i:e(t)∼S,ki
wtiyicye(t)c

)2

2H∗
ψφ
m
∑

i:e(t)∼S,ki

(
yicye(t)c

)2 −
δe(t)

m
u

=
∆t(u)

m
. (31)

∆t(u) takes its maximum value for u = u∗
.
=

η(c, e(t))−H∗
ψφ
ne(t)δe(t), for which we have:

∆t(u
∗) =

H∗
ψφ
ne(t)δe(t)

2

(

δe(t) −
2η(c, e(t))

H∗
ψφ
ne(t)

)

.

Suppose we pick δe(t) as in (10), that is, δe(t) =
2(1−ε)η(c, e(t))(H∗

ψφ
ne(t))

−1, for ε ∈ (0, 1). This choice
yields:

∆t(u) ≤ ∆t(u
∗)

= −2ε(1− ε)
η2(c, e(t))

H∗
ψφ
ne(t)

. (32)

We now show that the WLA implies a strictly pos-
itive lowerbound on the absolute value of the edge
η(c, e(t)). Defining I[.] as the indicator function, We
have:

p̂wt
[ye(t)c 6= yic|e(t) ∼S,k i]

=

∑

i:e(t)∼S,ki
wtiI

[
yicye(t)c = −1

]

∑

i:e(t)∼S,ki
wti

=

∑

i:e(t)∼S,ki
wti
(
1− yicye(t)c

)

2
∑

i:e(t)∼S,ki
wti

=
1

2
−

η(c, e(t))

2
∑

i:e(t)∼S,ki
wti

.

Using statement (ii) in the WLA with this last equality
brings

|η(c, e(t))| ≥ 2ϑ
∑

i:e(t)∼S,ki

wti .

Using statement (i) in the WLA, we finally obtain:

|η(c, e(t))| ≥ 2
ϑ̺ne(j)

φ(0)− φ(1/2)
. (33)

Plugging (33) into (32), and the resulting inequality
into (31), we obtain:

ε
ψφ

S
(h(t+1)c, c)− ε

ψφ

S
(htc, c)

≤ −8ε(1− ε)
ne(t)ϑ

2̺2

mH∗
ψφ

(φ(0) − φ(1/2))2
. (34)

At the initialization, all leveraging coefficients αj

equal the null vector, and so the corresponding surro-

gate risk equals ψφ(0). To guarantee that ε
ψφ

S
(hTc, c) ≤

(ε
ψφ

S
)∗c + τ under the WLA, for some τ ∈ [0, ψφ(0)], it

is thus sufficient to have:

T∑

t=1

ne(t)

≥
(ψφ(0)− (ε

ψφ

S
)∗c − τ)H

∗
ψφ

(φ(0)− φ(1/2))2

8ε(1− ε)ϑ2̺2
×m .

This inequality leads to the statement of the Theo-
rem, provided we remark the three following facts.
The first one is proven in the following Lemma, of
independent interest.

Lemma 3: We have

(ε
ψφ

S
)∗c =

φ(0)− φc(S)

φ(0)− φ(1/2)
,

where φc(S) is defined in (19).
Proof: From Lemma 1, we have the property

∇−1
φ (x) = 1 − ∇−1

φ (−x), with which we obtain after
few derivations that:

argmin
h
ε
ψφ

Sx

(h, c) = ∇φ(p̂S [yc = 1|x]) , (35)

where Sx is the subset of S whose observations match
x. Then, we compute ε

ψφ

S
(h, c) with this value for h,

which, after simplification using Legendre conjugates,
brings

ESx
[ψφ(yich(x))] =

φ(0)− φ(p̂S [yc = 1|x])

φ(0)− φ(1/2)
.

Finally, we average this over all distinct observations
in S to obtain Lemma 3.
The last two facts that lead to the statement of the The-
orem are simpler: we indeed have

∑T
t=1 ne(t) = ℓ(T, c),

and ψφ(0) = (φ(0) − φ(∇−1
φ (0)))/(φ(0) − φ(1/2)) = 1.

This concludes the proof of Theorem 4.

4.3 GNNB boosts the empirical risk

The bound of Theorem 4 translates to a similar bound
for the empirical risk.

Corollary 1: Assume the WLA holds, and let τ ∈
[0, 1]. Suppose we run GNNB so that, ∀c, ℓ(T, c) meets:

ℓ(T, c) ≥
∆′
φ(S, τ, c)(φ(0) − φ(1/2))H∗

ψφ

8ε(1− ε)ϑ2̺2
×m .(36)

8

Then the leveraged k-NN H learned by GNNB satisfies:

εHS (H) ≤ (εHS)∗ + τ . (37)

Proof: Following [9], let us define

H(ǫ)
.
= inf

δ∈R

{ǫψφ(δ) + (1− ǫ)ψφ(−δ)} ,

ψBJM(ǫ′)
.
= ψφ(0)−H

(
1 + ǫ′

2

)

,

with ǫ ∈ [0, 1] and ǫ′ ∈ [−1, 1]. We have:

H(ǫ) = inf
δ∈R

{
ǫφ⋆(−δ) + (1− ǫ)φ⋆(δ) + φ(0)

φ(0)− φ(1/2)

}

= inf
δ∈R

{
φ⋆(δ) − ǫδ + φ(0)

φ(0)− φ(1/2)

}

(38)

=
φ⋆(∇φ(ǫ))− ǫ∇φ(ǫ) + φ(0)

φ(0)− φ(1/2)

=
−φ⋆⋆(ǫ) + φ(0)

φ(0)− φ(1/2)
=

φ(0)− φ(ǫ)

φ(0)− φ(1/2)
. (39)

Here, (38) follows from Lemma 1, and (39) follows
from the fact that φ is convex and lower semicontin-
uous. We thus have:

ψBJM(ǫ′) =
φ((1 − ǫ′)/2)− φ(1/2)

φ(0)− φ(1/2)
. (40)

It is proven in [9], Theorem 1, that:

ψBJM

(

ε
0/1
S

(hc, c)− (ε
0/1
S

)∗c

)

≤ ε
ψφ

S
(hc, c)− (ε

ψφ

S
)∗c .

The argument of ψBJM is in [0, 1]. On this interval, ψBJM

admits an inverse because φ admits an inverse on
[0, 1/2]. To ensure

ε
0/1
S

(hc, c) ≤ (ε
0/1
S

)∗c + τ ′ ,

it is thus equivalent to ensure

ε
ψφ

S
(hc, c)− (ε

ψφ

S
)∗c ≤ ψBJM(τ ′) .

There remains to combine (40) and (22) to obtain the
statement of Corollary 1.

4.4 GNNB is universally consistent

We analyze GNNB in the setting where WIC yields
the leveraging of a subset of m′ < m examples out
of the m available in S. This setting is interesting
because it covers the optimization of GNNB in which
we repeatedly leverage the most promising example,
for example from the standpoint of |δj |. We call GNNB∗

this variation of GNNB. We assume that S is sampled
i.i.d. according to some fixed density D. Let v be the
number of Voronoi cells in the k-NN rule built from
this subsample of m′ examples. The Voronoi cells, say
Vl for l = 1, 2, ..., v, partition Sm into subsets on which
the output h of GNNB is the same, say hl. We drop the
c index as we make the analysis for a single class and

its associated empirical risk ε
0/1
S

(h)
.
= ε

0/1
S

(hc, c), after
which the extension to the Hamming risk poses no
problem as it is the average of the per-class empirical

risks. The empirical minimization of surrogate BCL ψφ
in an NN approach amounts to a maximum likelihood
fitting of class posteriors. Indeed, the empirical risk

ε
0/1
S

(h) in (13) can be expressed as, letting ξ
.
= (φ(0)−

φ(1/2))−1:

ε
0/1
S

(h)
.
=
∑

Sm

p̂[(x, yc)]ψφ(ych(x))

=

v∑

l=1

∑

Sm∩Vl

p̂[(x, yc)]ψφ(ych(x))

=
v∑

l=1

p̂[Vl]
∑

Sm∩Vl

p̂[(x, yc)]

p̂[Vl]
ψφ(ych(x))

= ξ

v∑

l=1

p̂[Vl]
∑

Sm∩Vl

p̂[(x, yc)]

p̂[Vl]
Dφ(p(yc)‖p̂φ,h(x))

= ξ

v∑

l=1

p̂[Vl]
∑

Sm∩Vl

p̂[(x, yc)]

p̂[Vl]
Dφ(p(yc)‖p̂l)

︸ ︷︷ ︸

εl

. (41)

In these identities, all p̂ are estimates built from Sm
and p̂φ,h(x) is defined in (5). We have used notation
p̂[Vl]

.
=
∑

Sm∩Vl
p̂[(x, yc)] The penultimate identity

follows from Theorem 2 (and notations used therein).
The last identity exploits the fact that, in NN rules,
the estimate p̂φ,h(x) is constant over each voronoi
cell, so we write it p̂l for cell Vl. The leveraging
in GNNB minimizes (41) from Theorem 3 and the
fact that hl satisfies p̂φ,h(x) = ∇−1

φ (hl) from (5).
Finding the population minimizers p̂l in εl of (41)
is simple as the right-population minimizer of any
Bregman divergence is always the arithmetic average
[24] (Proposition 1); that is, at the minimum of each
εl in (41), p̂l = p̂∗l with:

p̂∗l
.
=

∑

Sm∩Vl

p̂[(x, yc)]

p̂[Vl]
p(yc) (42)

= p̂[yc = +1|Vl] .

Since each example in m′ may contribute to more than
one Voronoi cell, the achievable minimum of (41) may
not exactly satisfy p̂l = p̂∗l for each l if m′ ≪ ∞.
However, as m′ → ∞ and provided k/m′ → 0, the
distance between each point and all its k-NN vanishes
[20] (Lemma 5.1), which means, provided the class
posteriors are uniformly continuous, that each lever-
aged example will contribute to Voronoi cells in which
posteriors asymptotically converge to the same value,
ensuring this time p̂l → p̂∗l as m′/m→ 0. Corollary 6.2
in [20] makes that a sufficient condition for the (weak)
universal consistency of GNNB with respect to class c,
and by extension to all classes through the Hamming
risk, as stated in the following Lemma. We also note
that the Lemma applies without change to UNN [5].

Lemma 4: Provided T, k → ∞, k/m′ → 0, m′/m →
0, GNNB∗ is universally consistent: its expected Ham-
ming risk over i.i.d. size-m samples converges to the
Hamming risk of Bayes rule.

9

5 DISCUSSION

The fact that we do not normalize permissible func-
tions, i.e. typically ensuring φ(1/2) = 1 and φ(0) = 0,
is due to the fact that normalization would reduce
the number of BCL that can be generated. For ex-
ample, out of the two in rows B and C in Table
1, the classical form of the logistic loss in B would
disappear. The bounds in (22) and (36) advocate for
a very intuitive and computationally affordable im-
plementation of WIC: since the number of examples
leveraged equals, on average, ℓ(T, c)/k, we should put
emphasis on leveraging examples with large inverse
neighborhoods.

Our results call for several technical comparisons
between GNNB, UNN and mathematical greedy algo-
rithms [2]. Let us define:

π∗ .
=

(φ(0) − φ(1/2))2H∗
ψφ

2
, (43)

and let us respectively define π(ε) and π′(ε) the terms
factoring m(ϑ2̺2)−1 in (22) and (36). Because

∆φ(S, τ, c) ≤ ∆′
φ(S, τ, c) ≤ φ(0)− φ(1/2) ,

it comes π(1/2) ≤ π′(1/2) ≤ π∗. Table 1 provides
examples of values for π∗ for different choices of φ:
they are small, in [1/8, 1/16]. Hence, when ε = 1/2,
a sufficient number of weight updates to ensure (23)
and (37) is

ℓ∗(T, c) =
m

8
×

1

ϑ2̺2
.

This happens to be a very reasonable constraint, given
that the range of δj is of minute order compared to
that in UNN, where δj can take on infinite values.

There is more: let ℓGNNB(T, c) and ℓUNN(T, c) denote
the number of weight updates ensuring (37) (and
thus ensuring (23) as well), respectively for GNNB and
UNN. Inspecting Theorem 2.3 in [5] reveals that we
have

ℓGNNB(T, c) = Θ

(
ℓUNN(T, c)

ε(1− ε)

)

.

Hence, convergence rates of GNNB compete with those
known for UNN.

Mathematical greedy algorithms [2] have a very
wide scope, and they can be specialized to statistical
learning with a high-level scheme which is close to
the iterative scheme of boosting algorithms. Situat-
ing GNNB with respect to them is thus interesting
and reveals quite a favorable picture, from the com-
putational and convergence rate standpoints. These
greedy algorithms are indeed computationally expen-
sive, requiring at each iteration a local optimization of
the classifier that GNNB does not require. Regarding
convergence rates, the bound most relevant to our
setting can be stated as follows, omitting unnecessary
technical details and assumptions [2] (Theorem 3.1

category name m C ref.
small Liver 345 2 [13]

Ionosphere 351 2 [13]
Pima 768 2 [13]
Scene 2407 6 [25]
Satellite 6435 6 [13]
Segment 2310 7 [13]
Cardio 2126 10 [13]
OptDig 5620 10 [13]
Letter 2561 26 [13]

large Caltech 30607 256 [14]
SUN 108656 397 [15]

TABLE 2
Domains used in our experiments, ordered in

increasing number of classes, and then examples.

and its proof): after t iterations, the squared risk of
the greedy output is no more than

τ(t) = β

(
κ

t
+
t ln(m)

m

)

,

for some κ, β that meet in general κ≫ m, and β > 104.
This bound takes its minimum for some t∗ which is≫
m in general. Even for this large t∗, the corresponding
upperbound on the squared risk,

τ(t∗) = 2β

√

κ×
ln(m)

m
,

is significantly weaker than the guarantees of The-
orem 4 and Corollary 1. Obviously however, our
bounds rely on the WLA.

6 EXPERIMENTS

6.1 Domains

Experiments have been performed on a dozen do-
mains summarized in Table 2. We have split the
domains in small and large domains. Large domains
have a significantly larger number of examples and
classes. We refer the reader to the UCI machine learn-
ing repository for the related domains. We give a brief
description of the “large” domains.

The Caltech [14] domain is a collection of 30607 im-
ages of 256 object classes. We adopt the Fisher vectors
[26] encoding in order to describe these images as fea-
tures vector . Fisher Vector are computed over densely
extracted SIFT descriptors and local color features,
both projected with PCA in a sub space of dimension
64. Fisher Vectors are extracted using a vocabulary
of 16 Gaussian and normalized separately for both
channels and then combined by concatenating the
two features vectors. This approach leads to to a 4K
dimensional features vector.

Finally, the SUN [5], [15] domain is a collection of
108656 images divided into 397 scenes categories. The
number of images varies across categories, but there
are at least 100 images per category. Each observation
is represented as feature vector computed in the same
way as for Caltech.

10

top-1 accuracy (×100), Caltech
splits n

iteration t 8 16 32
1 19.21 20.11 21.14
10 28.47 30.08 31.45

100 30.02 30.89 31.66
1000 30.38 31.52 32.65

top-1 accuracy (×100), SUN
splits n

iteration t 8 16 32
1 23.63 26.40 29.46
10 23.85 26.63 29.62

100 25.64 27.98 30.54
1000 25.64 27.97 30.56

top-5 accuracy (×100), SUN
splits n

iteration t 8 16 32
1 49.36 52.67 55.59

10 49.52 52.72 55.62
100 50.34 53.17 55.91
1000 50.33 53.19 55.92

TABLE 3
Performance of our divide-and-conquer approach on large domains for GNNB(log), using top-1 and top-5

accuracies.

Experiments are performed on a classical five-fold
cross-validation basis, except for the large domains
Caltech and SUN for which we have adopted the
standardized approaches to use 30 random images
from each class to train classifiers and the remaining
for testing.

6.2 Metrics

We consider three types of metrics on small do-
mains: the accuracy, which is one minus the Ham-
ming risk (12, 13) and which is directly optimized
by GNNB (Corollary 1), the recall and the F-measure,
which is the harmonic average of precision and recall.

6.3 Algorithms

Because small domains do not raise the problem of ex-
ecution time that large domains raise, we have chosen,
on small domains, to perform an analysis as extensive
as possible of the performances of GNNB. We have
chosen twenty-two (22) algorithms that were tested
on all nine domains, with each of the three metrics.
The version of GNNB used is GNNB(log) (Row B in
Table 1) with values of k = 5, 10, 20, 50. Contenders of
GNNB can be put in five categories.

The first category consists of ordinary nearest
neighbors, NN, tested with k = 5, 10, 20, 50, to assess
what boosting in GNNB brings with respect to NN.
Second, we consider UNN(log) with k = 5, 10, 20, 50,
as another boosted NN contender, which performs,
for this choice of BCL, approximations to the optimal
boosted updates [5], that do not exist in closed form.
The number T of boosting iterations for GNNB and
UNN is fixed to be the size of the training sample.
Each example is boosted exactly once, and there is
thus no inner optimization in the boosting rounds
with respect to the weak learning assumption WLA.

For all nearest neighbors algorithms, we have made
the choice to test a range of values for k instead
of optimizations of its value to allow fine grained
observations on the behavior of these algorithms.

Third, we consider Stochastic Gradient Descent
(SGD) [26], [27], [28], with four varying number of
iterations. In the first, referred to as SGD1, the number
of iterations is equal to that of GNNB and UNN. In the
second, SGD2, number of iterations for SGD is fixed

to be the “equivalent” to that of UNN and GNNB.
Indeed, each iteration of SGD contributes to classify all
examples in the training sample, while each iteration
of UNN or GNNB contributes to classify θ(k) examples
only. Thus, we need to make θ(m/k) iterations on
UNN or GNNB for the classification of all examples
to be eventually impacted. For this reason, if T is
the total number of boosting iterations in UNN and
GNNB, then we perform T × k/m iterations of SGD.
The two last runs of SGD, hereafter noted SGD3 and
SGD4, consider a larger number of iterations, equal to
two times the size of the training set in SGD3 and three
times the size of the training set in SGD4. With those
runs, we wanted to capture “limit” performances of
stochastic gradient descent on small domains.

Fourth, we consider a popular boosting algo-
rithm: ADABOOST [7], with four different flavors. In
ADABOOSTc2, the weak learner is C4.5 [29] with depth-
2 threes; in ADABOOSTc3, the weak learner is C4.5 with
depth-3 threes. Notice that, in these two cases, the
inner boosting rounds are optimized to fit a classifier
that minimizes the expected criterion at hand (in C4.5,
it is −φ in row B of Table 1), which is, as discussed
above, not the case of GNNB. To have something com-
parable from the algorithmic standpoint in GNNB, we
should have e.g. chosen to leverage at each iteration
the example that maximizes ̺ and/or ϑ in the WLA.
For this reason, we have also tested ADABOOST with
a non-optimized weak learner, which returns random
trees. In ADABOOSTr3, these trees have depth 3, and
in ADABOOSTru, these trees have unbounded depth. In
all four flavors of ADABOOST, the number of boosting
rounds equals that of GNNB and UNN.

Fifth and last, we have considered two flavors of
support vector machines, the first of which is afford-
able on small domains (but out of reach on our largest
domains), non-linear SVM with radial basis function
kernel [30] in which the regularization parameter and
the bandwidth are further optimized by a five-fold
cross-validation on the training sample. We refer to
them as SVMRBF . The second flavor is linear SVM, SVML,
which remains the main SVM algorithm which can be
run on very large datasets.

On large domains, we have tested GNNB against the
contenders that scored top in the small domains or
were easily scalable to large domains: NN, UNN, SGD.

11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

S
V

M
R

B
F

G
N

N
B

5
G

N
N

B
10

G
N

N
B

20
A

da
c2

N
N

5
A

da
c3

U
N

N
5

G
N

N
B

50
U

N
N

10
N

N
10

U
N

N
20

N
N

20
U

N
N

50
N

N
50

S
V

M
L

S
G

D 1
S

G
D 3

S
G

D 4
S

G
D 2

A
da

r3
A

da
ru

A
cc

ur
ac

y

µ
µ ± σ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

S
V

M
R

B
F

G
N

N
B

5
G

N
N

B
10

G
N

N
B

20
A

da
c2

N
N

5
A

da
c3

U
N

N
5

G
N

N
B

50
N

N
10

U
N

N
10

U
N

N
20

U
N

N
50

N
N

20
S

G
D 1

S
V

M
L

S
G

D 3
S

G
D 4

N
N

50
S

G
D 2

A
da

r3
A

da
ru

F
−

m
ea

su
re

µ
µ ± σ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

S
V

M
R

B
F

G
N

N
B

5
G

N
N

B
10

G
N

N
B

20
A

da
c2

G
N

N
B

50
N

N
5

A
da

c3
U

N
N

5
U

N
N

10
U

N
N

20
N

N
10

U
N

N
50

N
N

20
S

G
D 1

S
G

D 4
S

V
M

L
S

G
D 3

S
G

D 2
N

N
50

A
da

r3
A

da
ru

R
ec

al
l

µ
µ ± σ

Fig. 3. Average (µ) ± Standard deviation (σ, in red) for the accuracy (left), F-measure (center) and recall (right)
over the 9 small domains for the 21 algorithms. In each plot, algorithms are ordered from left to right in decreasing
average of the metric at hand.

We have also tried SVMLLC , that is, linear SVM with
locality-constrained linear coding LLC [31]. LLC is
a coding scheme which puts emphasis on locality
constraints for representing data, and brings desirable
byproducts such as sparsity.

6.4 A divide-and-conquer optimization of GNNB

It is well known that NN classifiers suffer of the curse
of dimensionality [32], hubs [33], so that the accuracy
can decrease when increasing the size of descriptors.
This may also affect GNNB, in particular on large
domains like SUN and Caltech. Fisher vectors employ
powerful descriptors but they generate a space with
about 4K dimension for 32 gaussians, which could
impair GNNB performance. Our approach relies on a
property of classification-calibrated losses that one can
get simple posteriors estimators from the classifier’s
output, based on the matching posterior p̂φ,h in (5)
(see [10], [5], and the right plot Figure 1) . The
method we propose consists in (i) splitting the set
of descriptors, (ii) compute posteriors over each of
these sets, and finally (iii) average the posteriors over
all splits. The set of Fisher descriptors is split in a
regular set of n ∈ {8, 16, 32} sub-descriptors; each set
is normalized in L1 or L2 norm. Finally, posteriors are
combined linearly, with an arithmetic average.

Table 3 presents the results obtained on our large
domains. Results in Table 3 show that increasing n, the
number of splits, always improves the performances
of GNNB, in a range between 1% and 6%, the largest
improvements being obtained for the largest domain
(SUN). We have also checked that increasing the num-
ber of iterations still keeps this pattern, which is thus
robust to both variations in n and the total number of
boosting iterations t. We have witnessed in some cases
differences that become much more important with
the increase in t. For example, after 7650 iterations on
Caltech, GNNB’s top-1 accuracy becomes respectively
31.91%, 33.79% or 36.13% for n = 8, 16 and n = 32.

In the results of the following subsections, GNNB is
ran with n = 32 splits. To remain fair with UNN,
we have also carried out the same n = 32 splitting

strategy, after having checked that it improves the
performances of UNN as well.

6.5 Results on small domains

6.5.1 Results on average metrics

Figure 3 presents the average results obtained for the
22 algorithms on the 3 metrics: accuracy, F-measure
and recall. Over all three metrics, one can notice that
the algorithms cluster in three groups:

• the group of the best performing algorithms, with
non-linear and mostly optimized large margin
algorithms: SVMRBF , GNNB (all ks), UNN (all ks),
ADABOOST+C4.5, and NN with k = 5, 10, 20;

• a group of algorithms that perform not as well
as the first, with mostly linear classification al-
gorithms: SVML, all SGD algorithms and NN with
k = 50;

• the group of algorithms that perform the worst
of all, containing randomized large margin clas-
sification: ADABOOST with random trees.

Several observations come to mind. First, the
performances of all nearest neighbor methods
(GNNB, UNN,NN) decrease with k, in the range of
values selected. Second, boosting the nearest neigh-
bors (GNNB, UNN) dampens the degradation of per-
formances. Third, GNNB performs the best of all three
kinds of nearest neighbor methods, from the stand-
point of all three metrics.

In fact, GNNB performs on par with SVMRBF , for
a wide range of k (5, 10, 20). The comparison with
ADABOOSTr3 and ADABOOSTru is clear and final, as
regardless of k and for all metric, GNNB is better
by more than .2 points on average; finally, GNNB

performs also slightly better than ADABOOST + C4.5
(for k = 5, 10, 20). Since SVMRBF , ADABOOST+trees and
GNNB can all be viewed as large margin non-linear
methods, the fact that we do not optimize GNNB from
the standpoint of k, ϑ or ̺ (in the WLA) makes it the
method, out of the three, which is the easiest to scale,
and further optimize, to large domains.

12

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

S
V

M
R

B
F

G
N

N
B

5
G

N
N

B
10

G
N

N
B

20
A

da
c2

N
N

5
A

da
c3

U
N

N
5

G
N

N
B

50
U

N
N

10
N

N
10

U
N

N
20

N
N

20
U

N
N

50
N

N
50

S
V

M
L

S
G

D 1
S

G
D 3

S
G

D 4
S

G
D 2

A
da

r3
A

da
ru

A
cc

ur
ac

y

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

S
V

M
R

B
F

G
N

N
B

5
G

N
N

B
10

G
N

N
B

20
A

da
c2

N
N

5
A

da
c3

U
N

N
5

G
N

N
B

50
N

N
10

U
N

N
10

U
N

N
20

U
N

N
50

N
N

20
S

G
D 1

S
V

M
L

S
G

D 3
S

G
D 4

N
N

50
S

G
D 2

A
da

r3
A

da
ru

F
-m

ea
su

re

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

S
V

M
R

B
F

G
N

N
B

5
G

N
N

B
10

G
N

N
B

20
A

da
c2

G
N

N
B

50
N

N
5

A
da

c3
U

N
N

5
U

N
N

10
U

N
N

20
N

N
10

U
N

N
50

N
N

20
S

G
D 1

S
G

D 4
S

V
M

L
S

G
D 3

S
G

D 2
N

N
50

A
da

r3
A

da
ru

R
ec

al
l

Fig. 4. Ranking results: colors indicate the number of times an algorithm ranked among the top-tier (green),
second-tier (blue) and third-tier (red, depicting the worst 8 algorithms) among all 22 algorithms, over the 9 small
domains. For each color, the lighter the tone, the higher (and worse) the rank. For example, dark green refers to
to rank 1, the lightest green to rank 7 and dark blue to rank 8. In each plot, algorithms are ordered from left to
right in decreasing average of the metric at hand.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

S
V

M
R

B
F

G
N

N
B

5
G

N
N

B
10

G
N

N
B

20
A

da
c2

N
N

5
A

da
c3

U
N

N
5

G
N

N
B

50
U

N
N

10
N

N
10

U
N

N
20

N
N

20
U

N
N

50
N

N
50

S
V

M
L

S
G

D 1
S

G
D 3

S
G

D 4
S

G
D 2

A
da

r3
A

da
ru

A
cc

ur
ac

y

Sig. better
Sig. worse

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

S
V

M
R

B
F

G
N

N
B

5
G

N
N

B
10

G
N

N
B

20
A

da
c2

N
N

5
A

da
c3

U
N

N
5

G
N

N
B

50
N

N
10

U
N

N
10

U
N

N
20

U
N

N
50

N
N

20
S

G
D 1

S
V

M
L

S
G

D 3
S

G
D 4

N
N

50
S

G
D 2

A
da

r3
A

da
ru

F
-m

ea
su

re

Sig. better
Sig. worse

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

S
V

M
R

B
F

G
N

N
B

5
G

N
N

B
10

G
N

N
B

20
A

da
c2

G
N

N
B

50
N

N
5

A
da

c3
U

N
N

5
U

N
N

10
U

N
N

20
N

N
10

U
N

N
50

N
N

20
S

G
D 1

S
G

D 4
S

V
M

L
S

G
D 3

S
G

D 2
N

N
50

A
da

r3
A

da
ru

R
ec

al
l

Sig. better
Sig. worse

Fig. 5. Ranking results contd: number of times each algorithm performed significantly better than the others
(blue) or worse (red) according to a Student paired t-test (p = .1). In each plot, algorithms order follow Figures 3
and 4 (see text).

6.5.2 Ranking results

To drill down into these general results, we have
also computed the global ranking results of each
algorithm, recording the number of times each ranked
first, second, third and so on, on the 9 domains.
Figure 4 provides the global ranking results for all
22 algorithms and all 3 metrics. These plots allow
to nuance the results on average metrics, with the
following observations.

First, there is a subgroup in the group of the
best performing algorithms according to the aver-
age metrics, which is the best according to ranking:
SVMRBF and GNNB (k = 5, 10, 20). In this group, it
appears that GNNB tends to be ranked higher than
SVMRBF , for a wide range of k (5, 10, 20), and this is
particularly visible for F-measure and recall. From the
recall standpoint, GNNB is almost always in top-tier
results, while SVMRBF is more often in the second-tier.

Second, SGD performs poorly from the ranking
standpoint, as all flavors mostly score among the
third-tier results. We also observe that SGD perfor-
mances are not monotonous with the number of
iterations, as SGD1 performs the best of all, both from
the average and ranking standpoints. Linear classifi-
cation methods tend to perform poorly, as displayed
by SVML’s ranking results, very similar to those of

stochastic gradient descent. If we compare ranking
results with those of ADABOOST+random trees, which
is the worst of all algorithms from the expected met-
rics standpoint, then the ranking results display that
SGD is in fact more often in the third-tier of all 22
algorithms.

Finally, ADABOOST with random trees sometimes
scores very well among algorithms, and its ranking
patterns, along with average metrics’ results, clearly
display that the poor average results are essentially
due to some domains for which replacing the ran-
domized weak learner by an optimized one would
make a big difference, as a random trees weak learner
yields the worst performances of all 22 algorithms,
while C4.5 brings at least second-tier performances.

To bring statistical validation to these ranking re-
sults, we performed Student paired t-test comparison
for each algorithm against all others (22×21 = 462
comparisons), recording those for which we can reject
the null hypothesis (that the per-domain difference
has zero expectation) for level p = .1, and then
clustering the “significant” differences as to whether
they are in favor, or in disfavor, of the algorithm at
hand. Figure 5 summarizes the results obtained, for
all three metrics. They allow to cluster algorithms in
three: those that are never significantly outperformed

13

k
in

cr
ea

se
s

G
N

N
B

Adaboost with
random trees

large m
argin

k increases U
N

N

k increases NN

Accuracy

F-measure Recall

Fig. 6. Manifold classification patterns for the accuracy
(up, commented), F-measure (bottom left) and Recall
(bottom right), for all 22 algorithms (see text); colors
in hexagons cluster types of algorithms: red = GNNB,
yellow = SVM, pink = ADABOOST, cyan = SGD, blue =
UNN, green = NN (see text and [34] for details).

(GNNB for k = 5, 10, 20, SVMRBF , ADABOOST+C4.5,
NN for k = 5), those that never significantly out-
perform (SGD2, NN for k = 50, ADABOOST+random
trees), and the rest of the algorithms. They confirm
that GNNB performs on par with or better than op-
timized large margin non-linear algorithms (SVMRBF ,
ADABOOST+C4.5), and this pattern holds for a wide
range of values of k.

6.5.3 Classification patterns
The algorithms we have tested on small domains
are representative of major families of supervised
classification algorithms, ranging from linear to non-
linear, induced to non-induced, including large mar-
gin classification methods, stochastic algorithms, and
so on. To get a qualitative picture of the performances
of GNNB, we have learned a manifold on the algo-
rithms’ results, one for each of the three metrics, in
the following way.

To get rid of the quantitative differences, we have
normalized results to zero mean and unit standard de-
viation in each domain. Then, a manifold was learned
using a standard procedure, using the normalized
cosine similarity measure [35] to get a symmetric
similarity matrix, and computing the second and third
leading eigenvector of the Markov chain from that
similarity matrix [36], [35]. We checked that the cor-
responding eigenvalues were significantly larger than
the following ones.

The corresponding manifolds are displayed in Fig-
ure 6, using an information-geometric focus+context
display [34] in which the focus area is the center
of the square. To help the unfamiliar reader capture
the distortions of the display, plots also display in
the background the mapping of a regular equilateral
triangular tiling of the plane. The focus on data has
been chosen so as to zoom on the part of the manifold
with the largest number of algorithms.

The main observation from the plots, which can-
not be observed in the average metrics and ranking
experiments, is that the recall plot is much differ-
ent from the accuracy and F-measure plots, thereby
displaying that precision and recall have very dif-
ferent patterns among algorithms. The recall plot
clusters the algorithms in three categories: linear clas-
sification (top-left, SGD, SVML), randomized boost-
ing (ADABOOST+random trees, bottom left), and the
rest of the algorithms (center). The accuracy and F-
measure plot make a clear distinction between non-
linear large margin “optimized” (down-right), non-
linear large margin “random” (down-left) and lin-
ear (up). Looking at nearest neighbor algorithms as
k increases reveals that boosted nearest neighbor
algorithms (UNN, GNNB) tend to behave more and
more like large margin classification algorithms as
k increases, while vanilla NN tends to behave more
and more like linear classification algorithms as k
increases. This observation for NN is consistent with
the simple example that sampling two spherical Gaus-
sians with identical variance (one for each class)
makes a non-linear frontier for k,m ≪ +∞, which
tends to a linear one as both parameters tend to +∞.

6.5.4 Training times
We have computed the training times for GNNB (all
ks), SVMRBF and ADABOOST+C4.5 (depth-3 trees), that
represent the top-5 or top-6 algorithms in terms of
average metric performances. To summarize these
results, we have computed the ratio between train-
ing times for each domain and each value of k, for
SVMRBF to GNNB, and ADABOOST+C4.5 to GNNB. As
already displayed for UNN [5], the ratios are clearly in
favor of GNNB. We obtained a synthetic and accurate
picture of these advantages by regressing the ratio
against 1/k, that is, computing the regression coef-
ficients a, b for ρ = (a/k) + b, where ρ is e.g. the ratio
for the SVMRBF training time to GNNB training time,

14

averaged over all domains, and then computed for
each k. The results, that we give with the coefficient
of determination r2, are (t.t. = training time):

t.t.(SVMRBF)

t.t.(GNNB)
≈

851

k
+ 49 (r2 = 0.96) ,

t.t.(ADABOOST+C4.5)

t.t.(GNNB)
≈

9547

k
+ 398 (r2 = 0.97) .

These regressions mean that, regardless of the value
of k, SVMRBF ’s training time is at least roughly 50 times
that of GNNB, while ADABOOST+C4.5’s training time
is at least roughly 400 times that of GNNB. On testing,
the variation with k is clearly dampened, but SVMRBF ’s
testing time is still at least 300 times that of GNNB,
while ADABOOST+C4.5’s is at least 2000 times that
of GNNB. These ratios are in good agreement with
those observed in favor of UNN against SVMRBF and
ADABOOST+stumps [5].

6.5.5 Summary for small domains

The results obtained on the 9 small domains and
with the 3 metrics, for the 22 algorithms, as ob-
served from the qualitative and quantitative (aver-
ages, ranks, times) standpoints, bring the following
general observations. First, GNNB scores among the
top algorithms and performs on par with, or better
than, optimized machineries like non-linear SVM or
ADABOOST+trees, and it beats these latter approaches,
from the training/testing times standpoint, by factors
that range from tens to thousands of times. These
excellent performances go hand in hand with the
desirable property that results are remarkably stable
against reasonable variations of k, which appears to
be, in comparison, clearly not the case for UNN.

6.6 Results on large domains

We have used the instantiation of SGD that performed
the best on small domains, SGD1, and the number of
iterations of GNNB and SGD is 6000. For each large
domain, we split the analysis between the compari-
son of GNNB vs UNN, and GNNB vs the rest of the
algorithms.

6.6.1 Results on Caltech

The two left plots of Figure 7 display the results
of GNNB vs UNN on Caltech. We have chosen to
put emphasis on the relative variations of GNNB wrt
UNN, to get an immediate picture of which algorithm
performs the best and by what amount.

The plots of Figure 7 display that GNNB outper-
forms UNN, and this phenomenon is dampened as
k increases. This is quite in accordance with the
universal consistency of the algorithms (Lemma 4).
For k = 100, the improvement of GNNB from the
accuracy and recall standpoint exceed +20%, and it
is reduced to +10% for k = 200.

NN GNNB SGD1 SVMLLC

f 4K 4K 4K 4K 4×4K 5×4K
Acc. 25.50 36.40 36.00 27.99 35.18 36.76
F-m. 20.97 29.24 30.87 24.00 31.67 33.33
Rec. 17.13 31.47 31.35 22.00 28.66 30.41

TABLE 4
Results on Caltech (accuracy, F-measure and recall

are ×100). f is the number of features, and k = 200 for
NN, GNNB.

NN GNNB SGD1

Acc. 20.92 30.16 32.20
F-m. 17.39 27.02 30.96
Rec. 23.39 34.32 35.53

TABLE 5
Results on SUN according (accuracy, F-measure and

recall are ×100). k = 200 for NN, GNNB.

Table 4 compares GNNB to NN, SGD1 and LLC en-
coding for linear SVM using the same codebook as
[31]. LLC produces a very large number of descriptors
compared to the 4K Fisher vectors used in the other
approaches, and a significant part of the improvement
is in fact due to this very large description space [37].
In order to make fair comparisons with the other
techniques that rely on the 4K descriptors, we have
extracted the two first layers of descriptors of LLC,
of size 4K and 4×4K, to analyze SVMLLC over 4K
descriptors, 4×4K descriptors and 4K+4×4K = 5K
descriptors.

The accuracy results show that GNNB tops NN and
SGD1, and beats SVMLLC until 16K descriptors. It is
only when SVMLLC uses five times the number of
descriptors of GNNB that it beats GNNB. In fact, when
using the same description size as the other algo-
rithms, LLC encoding is beaten from the standpoint
of all metrics by GNNB and SGD1. SGD1 performs well
from the standpoint of the F-measure, and performs
on par with GNNB from the recall standpoint.

6.6.2 Results on SUN

The comparison between GNNB and UNN (Figure 7,
right plots) displays the same patterns as for Cal-
tech: as k increases, the improvements of GNNB wrt
UNN are dampened, yet they stay this time always
in favor of GNNB, and the improvements are more
pronounced: they range in between 10% and 30% for
k = 100, for each metric. We conjecture that this comes
from the fact that SUN is significantly larger than Cal-
tech: to reduce further the improvement of GNNB with
respect to UNN, one should probably test much larger
ks — a tricky and time-consuming task, as the varia-
tions in improvements are not monotonous with k —,
at the obvious expense of larger training times and
storage space (or memory) requirements.

15

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 2000 4000 6000

R
el

at
iv

e
va

ria
tio

n
(G

N
N

B
/U

N
N

, %
)

Accuracy
F-measure

Recall

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 2000 4000 6000

R
el

at
iv

e
va

ria
tio

n
(G

N
N

B
/U

N
N

, %
)

Accuracy
F-measure

Recall

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 2000 4000 6000

R
el

at
iv

e
va

ria
tio

n
(G

N
N

B
/U

N
N

, %
)

Accuracy
F-measure

Recall

 6

 8

 10

 12

 14

 16

 18

 20

 22

 2000 4000 6000

R
el

at
iv

e
va

ria
tio

n
(G

N
N

B
/U

N
N

, %
)

Accuracy
F-measure

Recall

Caltech, k = 100 Caltech, k = 200 SUN, k = 100 SUN, k = 200

Fig. 7. Relative variation (in %) of GNNB vs UNN, for large domains and for each metric, expressed as a function
of the number of boosting rounds t. Positive values indicate better results for GNNB; a dashed rectangle indicates
the zone of negative values.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.2 0.4 0.6 0.8 1

P
ro

po
rt

io
n

of
 c

as
es

-10

-5

 0

 5

 10

 15

 20

 25

 2000 4000 6000

R
el

at
iv

e
va

ria
tio

n
(G

N
N

B
/S

G
D 1,

 %
)

Accuracy
F-measure

Recall

Fig. 8. Left: frequency of cases among classes for the
proportion of examples used per class by GNNB; Right:
GNNB∗ (k = 200) vs SGD1 (conventions follow Fig. 7).

Table 5 compares the performances of GNNB vs
NN and SGD1. This time, SGD1 beats GNNB from the
standpoint of all metrics. This observation has to be
taken with a pinch of salt, as the experimental setting
for large domains disfavors GNNB. Indeed, GNNB, like
NN, is a local classifier, and for such kinds of methods,
the random sampling setting adopted is a random
prototype selection method which filters out more
than 80% of the dataset, increasing significantly the
distances between nearest neighbors and impairing
the estimators quality. Furthermore, GNNB as used
so far does not carry out any optimization on the
learning examples: it iterates through each of them,
leveraging each of them exactly once. On the other
hand, the effects of subsampling can be quite minor
on linear separators: for example, provided a linear
separator exists with minimal margin γ, sampling
Ω̃(γ−2) examples (the tilde notation hides depen-
dences in other parameters) at random still guarantees
with high probability the existence of a linear separa-
tor with Ω(γ) margin and small true risk [38].

To get a more reliable picture of the performances of
GNNB on our largest domain, we thus have considered
a naive optimization of the weak index chooser WIC

in GNNB, and tested it in an experimental setting com-
putationally affordable for GNNB and less in disfavor
than the former one. The new WIC in GNNB returns
the index of the example with the largest current
|δj |. This version of GNNB was denoted GNNB∗ in
Subsection 4.4. To alleviate the discrepancies due to
the experimental setting, we have tested GNNB∗ on
a 50% holdout of the SUN database, recording for

each class the percentage of examples actually used
in training, i.e. leveraged or reweigthted. Then, we
run SGD1 using the same former experimental setting
(since the new one for GNNB was computationally too
heavy), replacing however the number of examples
used in the former setting (30) by the number of
examples corresponding to the average frequency of
the whole domain used by GNNB∗ (capped by the
class size for the smallest ones), to ensure that the
data available to SGD was not smaller than for GNNB.
The left plot in Figure 8 provides the histogram of
the proportion of data used to learn each class. The
expectation in x is roughly 33%, and thus we ran SGD1

using at each iteration roughly 46 examples per class,
which is the average of 33% of the 50% of each class.
The right plot in Figure 8 summarizes the improve-
ments of GNNB∗ with respect to SGD1. One sees this
time that even when the recall of GNNB∗ is smaller
than that of SGD1, the accuracy is now comparatively
significantly better. While optimizing WIC in GNNB,
or GNNB itself, was not the purpose of this paper,
this simple experiment displays that there may be
significant room for further improvement of GNNB,
in particular for large scale learning. This is interest-
ing as GNNB belongs to the small set of algorithms
that would require comparatively little computational
tuning to be affordable on domains even larger.

7 CONCLUSION

We proposed in this paper a simple Newton-Raphson
leveraging scheme for nearest neighbors to optimize
any even, twice differentiable proper scoring rule.
This scheme has guaranteed convergence rates un-
der the boosting framework that compete with those
known for non-gentle approaches like UNN [6]. To
the best of our knowledge, those convergence rates
in the boosting framework are knew for Gentle
Newton-Raphson boosting approaches [3]. We also
show that our algorithm, GNNB, complies with weak
universal consistency. Experiments tend to display
that GNNB significantly outperforms UNN by con-
verging faster to better solutions. Experiments on
small domains display that GNNBperforms on par
with or better than powerful non-linear large margin

16

approaches like non-linear SVM and Adaboost+C4.5.
Experiments on large domains, on which these pow-
erful approaches are ruled out because of their com-
putational costs, display that GNNB provides a simple
and competitive alternative to stochastic gradient al-
gorithms. We have shown that real-valued classifica-
tion in GNNB goes hand in hand with a universally
consistent posteriors estimation throughout balanced
convex losses, and we have shown how to exploit
this link experimentally for a divide-and-conquer
scheme which demonstrates superior performances
over vanilla GNNB. This scheme averages the poste-
riors independently of the choice of the permissible
function, and we believe that further improvements of
the scheme could be obtained by tuning the average.
Finally, we have tested manifold learning approaches
to assess global qualitative comparisons of large num-
bers of algorithms from observed performances. As
learning algorithms are rapidly becoming more nu-
merous and complex, we believe that such techniques
may be interesting for large-scale comparisons, and
help the design of new algorithms.

8 ACKNOWLEDGMENTS

The authors would like to thank the reviewers for in-
sightful comments that helped to improve this work.
The code used (GNNB and manifold learning) are
available upon request to M. Barlaud and R. Nock.

REFERENCES

[1] L. Breiman, J. H. Freidman, R. A. Olshen, and C. J. Stone,
Classification and regression trees, Wadsworth, 1984.

[2] A.-R. Barron, A. Cohen, W. Dahmen, and R.-A. DeVore, “Ap-
proximation and learning by greedy algorithms,” Ann. of Stat.,
vol. 26, pp. 64–94, 2008.

[3] J. Friedman, T. Hastie, and R. Tibshirani, “Additive Logistic
Regression : a Statistical View of Boosting,” Ann. of Stat., vol.
28, pp. 337–374, 2000.

[4] L. Cucala, J.-M. Marin, C.-P. Robert, and D.-M. Titterington,
“A Bayesian reassessment of nearest-neighbor classification,”
J. of the Am. Stat. Association, vol. 104, pp. 263–273, 2009.

[5] R. Nock, P. Piro, F. Nielsen, W. Bel Haj Ali, and M. Barlaud,
“Boosting k-NN for categorization of natural scenes,” Interna-
tional J. of Computer Vision, vol. 100, pp. 294–314, 2012.

[6] P. Piro, R. Nock, F. Nielsen, and M. Barlaud, “Leveraging k-
NN for generic classification boosting,” Neurocomputing, vol.
80, pp. 3–9, 2012.

[7] R. E. Schapire and Y. Singer, “Improved boosting algorithms
using confidence-rated predictions,” Mach. Learning, vol. 37,
pp. 297–336, 1999.

[8] N. Garcı́a-Pedrajas and D. Ortiz-Boyer, “Boosting k-nearest
neighbor classifier by means of input space projection,” Expert
Systems with Applications, vol. 36, no. 7, pp. 10570–10582, 2009.

[9] P. Bartlett, M. Jordan, and J. D. McAuliffe, “Convexity,
classification, and risk bounds,” J. of the Am. Stat. Association,
vol. 101, pp. 138–156, 2006.

[10] R. D’Ambrosio, R. Nock, W. Bel Haj Ali, F. Nielsen, and
M. Barlaud, “Boosting nearest neighbors for the efficient
estimation of posteriors,” in Proc. of the 23 rd ECML-PKDD,
2012, pp. 314–329.

[11] R. Nock and F. Nielsen, “Bregman divergences and surrogates
for learning,” IEEE PAMI, vol. 31, no. 11, pp. 2048–2059, 2009.

[12] T. Gneiting and A. Raftery, “Strictly proper scoring rules,
prediction, and estimation,” J. of the Am. Stat. Association, vol.
102, pp. 359–378, 2007.

[13] K. Bache and M. Lichman, “UCI machine learning repository,”
2013.

[14] Gregory Griffin, Alex Holub, and Pietro Perona, “Caltech-256
object category dataset,” 2007.

[15] J. Xiao, J. Hays, K.-A. Ehinger, A. Oliva, and A. Torralba, “Sun
database: Large-scale scene recognition from abbey to zoo,” in
Proc. of IEEE CVPR, 2010, pp. 3485–3492.

[16] R. Nock and F. Nielsen, “On the efficient minimization of
classification-calibrated surrogates,” in NIPS*21, 2008, pp.
1201–1208.

[17] E. Vernet, R.-C. Williamson, and M.-D. Reid, “Composite
multiclass losses,” in NIPS*24, 2011, pp. 1224–1232.

[18] P. Grünwald and P. Dawid, “Game theory, maximum entropy,
minimum discrepancy and robust Bayesian decision theory,”
Ann. of Stat., vol. 32, pp. 1367–1433, 2004.

[19] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting
the margin : a new explanation for the effectiveness of voting
methods,” Ann. of Stat., vol. 26, pp. 1651–1686, 1998.

[20] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of
Pattern Recognition, Springer, 1996.

[21] M. Sebban, R. Nock, and S. Lallich, “Boosting Neighborhood-
Based Classifiers,” in Proc. of the 18 th ICML, 2001, pp. 505–512.

[22] M. Sebban, R. Nock, and S. Lallich, “Stopping criterion
for boosting-based data reduction techniques: from binary to
multiclass problems,” JMLR, vol. 3, pp. 863–885, 2003.

[23] S. Kakade, S. Shalev-Shwartz, and A. Tewari, “Applications of
strong convexity–strong smoothness duality to learning with
matrices,” Tech. Rep. CoRR abs/0910.0610, CoRR, 2009.

[24] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh, “Clustering
with Bregman divergences,” JMLR, vol. 6, pp. 1705–1749, 2005.

[25] Matthew R Boutell, Jiebo Luo, Xipeng Shen, and Christo-
pher M Brown, “Learning multi-label scene classification,”
Pattern recognition, vol. 37, no. 9, pp. 1757–1771, 2004.

[26] F. Perronnin, Z. Akata, Z. Harchaoui, and C. Schmid, “To-
wards good practice in large-scale learning for image classifi-
cation,” in Proc. of IEEE CVPR, 2012 (to appear).

[27] Léon Bottou, “Large-scale machine learning with stochas-
tic gradient descent,” in Proc. of COMPSTAT, pp. 177–186.
Springer, 2010.

[28] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro, “Pe-
gasos: Primal estimated sub-gradient solver for svm,” in
ICML’07. ACM, 2007, pp. 807–814.

[29] J. R. Quinlan, C4.5 : programs for machine learning, Morgan
Kaufmann, 1993.

[30] C. J. C. Burges, “A tutorial on support vector machines for
pattern recognition,” Data Mining and Knowledge Discovery,
vol. 2, pp. 121–167, 1998.

[31] J. Wang, J. Yand, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-
constrained linear coding for image classification,” in Proc. of
IEEE CVPR, 2010, pp. 3360–3367.

[32] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and
Uri Shaft, “When is nearest neighbor meaningful?,” Proc. of
the 7th ICDT, pp. 217–235, 1999.

[33] Miloš Radovanović, Alexandros Nanopoulos, and Mirjana
Ivanović, “Hubs in space: Popular nearest neighbors in high-
dimensional data,” JMLR, vol. 9999, pp. 2487–2531, 2010.

[34] R. Nock and F. Nielsen, “Information-Geometric Lenses for
multiple Foci+Contexts interfaces,” in 6 th SIGGRAPH Asia
— Technical Briefs, 2013, p. accepted.

[35] R. Nock, F. Nielsen, and E. Briys, “Non-linear book manifolds:
learning from associations the dynamic geometry of digital
libraries,” in Proc. of the 13th ACM/IEEE JCDL, 2013, pp. 313–
322.

[36] M. Meilă and J. Shi, “Learning segmentation by random
walks,” in NIPS*14, T. G. Dietterich, S. Becker, and Z. Ghahra-
mani, Eds. 2001, MIT Press.

[37] K. Chatfield, V.-S. Lempitsky, A. Vedaldi, and A. Zisserman,
“The devil is in the details: an evaluation of recent feature
encoding methods,” in Proc. of the 20 th British Machine Vision
Conference, 2011, pp. 1–12.

[38] A. Blum, “Random projection, margins, kernels, and feature-
selection,” in Subspace, Latent Structure and Feature Selection,
Craig Saunders, Marko Grobelnik, Steve Gunn, and John
Shawe-Taylor, Eds., vol. 3940 of Lecture Notes in Computer
Science, pp. 52–68. Springer Verlag, 2006.

