
HAL Id: hal-00958748
https://hal.science/hal-00958748v1

Preprint submitted on 13 Mar 2014 (v1), last revised 17 Nov 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dirichlet eigenvalues of asymptotically flat triangles
Thomas Ourmières-Bonafos

To cite this version:
Thomas Ourmières-Bonafos. Dirichlet eigenvalues of asymptotically flat triangles. 2014. �hal-
00958748v1�

https://hal.science/hal-00958748v1
https://hal.archives-ouvertes.fr


DIRICHLET EIGENVALUES OF ASYMPTOTICALLY FLAT

TRIANGLES

THOMAS OURMIÈRES-BONAFOS*

Abstract

This paper is devoted to the study of the eigenpairs of the Dirichlet Laplacian on a family of

triangles where two vertices are fixed and the altitude associated with the third vertex goes to zero.

We investigate the dependence of the eigenvalues on this altitude. For the first eigenvalues and

eigenfunctions, we obtain an asymptotic expansion at any order at the scale cube root of this altitude

due to the influence of the Airy operator. Asymptotic expansions of the eigenpairs are provided,

exhibiting two distinct scales when the altitude tends to zero. In addition, we generalize our analysis

to the case of a shrinking symmetric polygon and we quantify the corresponding tunneling effect.

1 Introduction

1.1 Motivations and related questions

There are few planar domains for which we can have an explicit expression of the eigenpairs of the

Dirichlet Laplacian. Nevertheless there has been a recent interest about it on thin domains in R
2. In

this limit, asymptotic expansions of the eigenvalues and eigenfunctions can be provided, which informs

about the spectrum of the Dirichlet Laplacian.

In this spirit, Borisov and Freitas give in [3] a construction of quasimodes of the Dirichlet Laplacian

expanded at any order in the height paramater on thin smooth planar domains. In [10], Friedlander and

Solomyak overcome the smooth domain hypothesis: they provide a two-term asymptotics using the

convergence of resolvents.

The result of Friedlander and Solomyak applies to triangles but, before investigating triangles in the

thin limit, one can cite the work of McCartin [19] who gives an explicit expression of the first eigenvalue

of the Dirichlet Laplacian, say µ1, on an equilateral triangle of altitude H: µ1(H) = 4π2H−2. Hillairet

and Judge prove in [13] the simplicity of the eigenvalues for almost every Euclidean triangle of R
2.

The question of an asymptotic expansion for the Dirichlet Laplacian on thin triangles has already

been studied by Freitas in [9]. In this paper a finite asymptotic expansion of the first two eigenvalues is

provided for a family of near isosceles triangles. We also refer to the work of Dauge and Raymond [6]

in which an asymptotics at any order is given for the first eigenvalues of the Dirichlet Laplacian on a

right-angled thin triangle.
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The question of finding an asymptotic expansion at any order for the Dirichlet Laplacian eigenmodes

on a non-smooth thin domain is still open. We tackle the question in this paper for triangles of altitude

h in the regime h→ 0. In a first step we construct quasimodes involving simultaneously two scales:

h2/3 and h. The scale h2/3 is due to the singularity of type (x 7→ |x|). For smooth domains, in the case

of a non-degenerate maximum, the scale which plays the same role is h (see Theorem 1 in [3]). In

fact, in our case, there is also a boundary layer of scale h but this scale is not visible at first orders

in the eigenpair expansions. That is why in the eigenvalue expansions of [9] and [10] this scale does

not appear. Nevertheless it is present in the right-angled case exposed in [6] or in the case of a small

apertured cones (see [20]). One of the motivations for this paper is to understand this boudary layer. Is

it, for right-angled triangles or cones, induced by the Dirichlet boundary conditions ?

In a second step, we get the separation of eigenvalues thanks to the Feshbach method, the associated

eigenfunctions being localized near the altitude providing the most space. Unlike the resolvent

convergence method exposed in [10] we use Agmon localization estimates which allows to consider

cases with multiple peaks. For instance in the case of a symmetric mountain we can prove an exponential

decay of the eigenfunctions between the peaks which induces tunneling. This is reminiscent of the

case with symmetric electric potentials studied by Helffer [11] and Helffer and Sjöstrand [12]: In the

semiclassical limit h→ 0 there are pairs of eigenvalues exponentially close. The same method can be

applied to thin planar domains containing a finite number of peaks.

1.2 The Dirichlet Laplacian

Let us denote by (x1, x2) the Cartesian coordinates of the space R
2 and by 0 = (0, 0) the origin. The

positive Laplace operator is given by −∂2
1 − ∂2

2 . Let s ∈ R and h > 0 we define T̂ri(s, h), the convex

hull of the points of coordinates A = (−1, 0), B = (1, 0) and C = (s, h). We are interested in the

eigenvalues of the Dirichlet Laplacian −∆Dir
cTri(s,h)

:= −∂2
1 − ∂2

2 on the triangle T̂ri(s, h) in the regime

h→ 0.
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Figure 1: The triangle T̂ri(s, h) in the acute and the obtuse configuration

The values of s define different configurations for the geometry of the triangle T̂ri(s, h):

s = 0 corresponds to isoscele triangles,

|s| < 1 corresponds to acute triangles (see Figure 1),

|s| = 1 corresponds to right-angled triangles,

|s| > 1 corresponds to obtuse triangles (see Figure 1).

Since T̂ri(s, h) is convex, the domain of the operator −∆Dir
cTri(s,h)

is the space of functions in

H2(T̂ri(s, h)) ∩ H1
0 (T̂ri(s, h)) (see [16]). Since T̂ri(s, h) is a bounded domain −∆Dir

cTri(s,h)
has com-

pact resolvent and its spectrum is a non-decreasing sequence of eigenvalues denoted (µn(s, h))n≥1.
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1.3 First properties of the eigenvalues

Before stating the main results of this paper, one can notice that in the obtuse configuration of Figure 1

if, instead of points A and B, we fix the points A and C, the regime h → 0 is equivalent to the one

where the altitude from B goes to zero. In fact, for s > 1, if we denote by

s̃ =
s√

(1 + s)2 + h2
; h̃ =

2h√
(1 + s)2 + h2

,

we have

0 < s̃ < 1, h̃ −→
h→0

0,

and we get

µn(s, h) =
(s+ 1)2 + h2

4
µn(s̃, h̃).

The same kind of computations can be done for s < −1, so that, we can take s ∈ (−1, 1).
At fixed h, the question of the regularity of µn(·, h) in |s| = 1 is considered in Section 2 but one

can see that thanks to a Dirichlet bracketing (see [21, Chap. XIII]) we have, for s in a left neighborhood

of 1:

µn

(
1,

2h

1 + s

)
≤ µn(s, h) ≤ 4

(1 + s)2
µn

(
1,

2h

1 + s

)
.

Since µn(1, ·) is continuous for all h > 0 we obtain the left continuity of µn(·, h) in s = 1. We can

apply the same reasoning for the right continuity and we obtain the continuity of µn(·, h) in s = 1.

We have the following lower bound for µn(s, h):

Proposition 1.1 For all s ∈ (−1, 1) and h > 0, we have:

π2

h2
+
π2

4
≤ µn(s, h).

Proof: The triangle T̂ri(s, h) is included in the rectangle (−1, 1) × (0, h) and the conclusion follows

by Dirichlet bracketing. �

1.4 Schrödinger operators in one dimension

In the analysis of −∆Dir
cTri(s,h)

a one dimensional operator, constructed in the spirit of the Born-Oppenheimer

approximation (see [4, 15, 18]), plays an important role: By replacing −∂2
x2

in the expression of

−∆Dir
cTri(s,h)

by its lowest eigenvalue on each slice of T̂ri(s, h) at fixed x1 we obtain an effective potential

vs and, on L2(−1, 1), we arrive to the operator :

−∂2
x1

+ h−2vs(x1), with vs(x1) =






(1 + s)2

(1 + x1)2
π2, for − 1 < x1 < s,

(1 − s)2

(1 − x1)2
π2, for s < x1 < 1.
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When h→ 0, we know that the minimum of the effective potential vs guides the behavior of the

ground eigenpairs of −∆Dir
cTri(s,h)

( see [5, Chap. 11], [7] and [22]). This minimum is attained at x1 = s.

In a neighborhood of x1 = s, vs can be approximated by its left and right tangents, it yields the operator

ltans (h) := −∂2
x1

+ h−2vtan
s (x1), with vtan

s = π2 + 2π2
( 1

1 + s
1x1<s(x1) +

1

1 − s
1x1>s(x1)

)
|x1 − s|

(1.1)

To arrive to a canonical form, we perform the scaling x1 =
h2/3

3
√

2π2
u+ s and we have:

ltans (h) ∼ h−2π2 + (2π2)2/3h−4/3lmod
s (u; ∂u),

where the model operator lmod
s is defined, on L2(R), as:

lmod
s (u; ∂u) := −∂2

u + vmod
s (u), with vmod

s (u) :=
( 1

1 + s
1R−

(u) +
1

1 − s
1R+

(u)
)
|u|. (1.2)

The parameter s introduces a skewness in the effective potential vmod
s . We will see in Section 2 that this

model operator is related to the Airy functions.

1.5 Asymptotic expansion of eigenvalues

We recall that µn(s, h) is the n−th eigenvalue of the Dirichlet Laplacian −∆Dir
cTri(s,h)

on the geometrical

domain T̂ri(s, h). The main result of this paper is an asymptotic expansion of the eigenvalues of µn(s, h)
as h→ 0. Indeed, the lowest eigenvalues of −∆Dir

cTri(s,h)
admit expansions at any order in power of h1/3.

In the proof we also provide the structure of the eigenfunctions associated with these eigenvalues: at

first order they are, up to some constants, almost a tensor product between the first eigenfunction of the

Dirichlet Laplacian in the transverse variable x2 and, up to normalization constants, the eigenfunctions

of the model operator lmod
s in the x1 variable. Moreover they are localized near the altitude from C.

Theorem 1.2 Let 0 < s0 < 1. For all s ∈ [−s0, s0], the eigenvalues of −∆Dir
cTri(s,h)

, denoted by µn(s, h),

admit the expansions:

µn(s, h) ∼
h→0

h−2
∑

j≥0

βj,n(s)hj/3,

uniformly in s (see Notation 1.3). The functions
(
s 7→ βj,n(s)

)
are analytic on (−1, 1) and we have:

β0,n = π2, β1,n = 0 and β2,n(s) = (2π2)2/3κn(s), where the κn(s) are the eigenvalues of the model

operator defined in (1.2). Moreover the eigenfunctions contains simultaneously the two scales h2/3 and

h as it can be seen in equation (3.8).

Notation 1.3 Let Λ(s, h) be a function of s and h and let θ > 0 . We say that Λ(s, h) ∼
h→0

∑

j≥0

Γj(s)h
jθ

if, for all J ∈ N, there exists CJ(s) > 0 and h0 > 0, such that for all h ∈ (0, h0)

∣∣Λ(s, h) −
J∑

j=0

Γj(s)h
θj

∣∣ ≤ CJ(s)hθ(J+1).

We say that the asymptotic expansion is uniform in s if CJ(s) does not depend on s.
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1.6 Tunneling in a symmetric mountain

Thanks to the structure of the proof of Theorem 1.2, we can understand tunneling for the Dirichlet

Laplacian on a thin shrinking symmetric polygon. Let us choose s ∈ (0, 1) and let h > 0, we consider

in R
2 the points A = (−1, 0), B = (1, 0), C1 = (s, h), C2 = (−s, h) and D = (0, h

2
). Let Ωrig(h) be

the open convex hull of 0, B, C1 and D. We define by Ωlef(h) the reflection of Ωrig(h) with respect to

the x2-axis. Then, we define Ω(h) (see Figure 2) by:

Ω(h) = Ωrig(h) ∪ Ωlef(h) ∪ [0, D].

−1

A

1

B
x1

x2

h

s

C1

D

C2

Ωlef(h) Ωrig(h)

0
•

Figure 2: The domain Ω(h)

Let (νn(h))n≥1 be the non-decreasing sequence of eigenvalues of −∆Dir
Ω(h), the Dirichlet realization

of the Laplacian on Ω(h).
We consider the Dirichlet realization of the Laplacian on Ωlef(h) and Ωrig(h), respectively denoted

−∆Dir
Ωlef(h)

and −∆Dir
Ωrig(h). For symmetry reasons, they are isospectral and we denote by (µn(h))n≥1 their

eigenvalues.

Let us define the operator D(h) := −∆Dir
Ωlef(h)

⊕−∆Dir
Ωrig(h). Its eigenvalues, denoted by (τn(h))n≥1 ,

verify τ2j−1(h) = τ2j(h) = µj(h) for all j ≥ 1. We will prove

Theorem 1.4 For all N ∈ N
∗ there exist h0 > 0, C0 > 0 and C > 0 such that for all h ∈ (0, h0) and

all j ∈ {1, . . . , N}:

|τj(h) − νj(h)| ≤ C0e
−C/h.

As explained for the triangle, in the regime h → 0 the eigenfunctions are localized near the altitude

providing the most space. Here they are localized simultaneously near the altitude from C1 and C2 and

they interact at a scale exponentially small.

1.7 Structure of the paper

In Section 2 we study the model operator defined in (1.2). We describe its eigenvalues and their

dependence on the parameter s. In Section 3, we perform a change of variables that transforms the

triangle into a rectangle. The operator is more complicated but we deal with a simpler geometrical

domain. Thanks to this change of variables and some lemmas derived from the Fredholm alternative

we can construct quasimodes. We finish the proof of Theorem 1.2 using a Feshbach-Grushin projection

which justifies that the model operator is an actual approximation of our problem. Then we get the

separation of the eigenvalues. In Section 4 we study the symmetric mountain Ω(h). We use properties

derived from Theorem 1.2 to discuss the tunneling effect between the peaks.

We conclude by Appendix A and B by providing with numerical experiments which agree with the

theoretical shape of the eigenfunctions.
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2 Model operator

To deal with −∆Dir
cTri(s,h)

we first need to study some basic properties of the model operator lmod
s . The

difference with the operator studied by Dauge and Raymond in [6, Sec. 3] is that the model operator

is not, up to a constant, the Airy reversed operator with Dirichlet boundary condition at u = 0. The

effective potential of lmod
s is a combination on R− of an Airy reversed operator and on R+ of an Airy

operator. The non-symmetry of this potential and the transmission conditions at u = 0 complicate

the study: we cannot have an explicit expression of the eigenvalues of lmod
s as zeros of an Airy function.

The behavior of the effective potential vmod
s when |u| → +∞ yields the

Proposition 2.1 For all s ∈ (−1, 1), the model operator lmod
s has compact resolvent.

Thus, the spectrum of the model operator lmod
s consists in a non-decreasing sequence of eigenvalues

denoted (κn(s))n≥1.

Remark 2.2 When s = 0, the model operator is lmod
0 (u; ∂u) = −∂2

u + |u| and its eigenvalues are, for

all n ≥ 0: {
κ2n+1(0) = z′A(n+ 1),
κ2n+2(0) = zA(n+ 1),

where, for all k ∈ N
∗, zA(k) and z′A(k) are respectively the zeros of the Airy reversed function and the

zeros of the first derivative of the Airy reversed function. △

Thanks to the theory about Sturm-Liouville operators, we get

Proposition 2.3 For all s ∈ (−1, 1), the eigenvalues of the model operator lmod
s are simple.

Now, we are interested in the regularity of these eigenvalues. The family (lmod
s )s∈(−1,1) is an analytic

family of type (A) (see [14]). Jointly with Proposition 2.3, we have the

Proposition 2.4 For all n ≥ 1, the functions (s → κn(s)) are analytic on (−1, 1). Moreover

for all n ∈ N
∗, there exists an eigenfunction Tn

s associated with κn(s), such that the functions(
s→ Tn

s ∈ Dom
(
lmod
s

))
are also analytic on (−1, 1).

Characterization of the eigenvalues (κn(s))n≥1 We have the

Proposition 2.5 The eigenvalues (κn(s))n≥1 of lmod
s satisfy the following implicit equation in (s, κ):

3
√

1 + s A(−(1 + s)2/3κ)A′(−(1 − s)2/3κ) + 3
√

1 − s A(−(1 − s)2/3κ)A′(−(1 + s)2/3κ) = 0, (2.1)

where A denotes the Airy reversed function defined by A(u) = Ai(−u).

Proof: Let (κ,Ψ) be an eigenpair of lmod
s . We define:

Ψ± := Ψ1R±
.

In order to solve

lmod
s Ψ = κΨ, (2.2)
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we consider this equation for both u < 0 and u > 0. For u < 0 equation (2.2) writes

(
− ∂2

u −
1

1 + s
u− κ

)
Ψ− = 0.

It is an Airy reversed equation. For integrability reasons the Airy function of second kind not appear in

the expression of Ψ− and we have:

Ψ−(u) = α−A
(
(1 + s)−1/3(u+ κ(1 + s))

)
, (2.3)

where α− ∈ R.

For u > 0, the same reasoning yields:

Ψ+(u) = α+Ai
(
(1 − s)−1/3(u− κ(1 − s))

)
, (2.4)

where α+ ∈ R.

If we denote by Dom(lmod
s ) the domain of the model operator lmod

s , the eigenfunction Ψ belongs to

Dom(lmod
s ). In particular, Ψ ∈ H2(R) and we have the transmission conditions

{
Ψ−(0) = Ψ+(0),
∂uΨ

−(0) = ∂uΨ
+(0),

which becomes
{

α−A
(
(1 + s)2/3κ

)
− α+A

(
(1 − s)2/3κ

)
= 0,

α−(1 − s)1/3 A′
(
− (1 + s)2/3κ

)
+ α+(1 + s)1/3 A′

(
− (1 − s)2/3κ

)
= 0.

The κn(s) are the values for which this system is linked and we get the implicit equation (2.1). �

Thanks to the explicit equations (2.3) and (2.4) and the properties of the Airy function of first kind

we have the

Proposition 2.6 For all n ∈ N
∗ the eigenfunction Tn

s belongs to H2
exp(R) (see Notation 2.7 below).

Notation 2.7 For k ∈ N, we define the spaces

Hk
exp(D) =

{
f ∈ L2(D) : ∃ θ > 0, eθ|u|3/2

f ∈ Hk(D)
}
,

where D ⊂ R
d (d = 1, 2) and is unbounded in the u direction.

To understand the regularity of (s 7→ κn(s)) near s = 1, we perform the change of variables

σ = (1 − s)1/3 in equation (2.1). It becomes:

(2 − σ3)1/3A
(
(2 − σ3)2/3κ

)
A′(σ2κ) + σA(σ2κ)A′

(
(2 − σ3)2/3κ

)
= 0,

which is smooth near σ = 0.

The same study for s > 1 gives the implicit equation

41/6
A

( 4

(s+ 1)4/3
κ
)
A
′

((4(s− 1)

(s+ 1)2

)2/3
κ

)
+(1+s)1/3(s−1)1/3

A

((4(s− 1)

(s+ 1)2

)2/3
κ

)
A
′
( 4

(s+ 1)4/3
κ
)

= 0

which shows the same behavior of κn(s) for s > 1. We see that κn is continuous at s = 1 with

κn(1) = 2−2/3zA(n). Nevertheless κn has a cubic singularity on the left and on the right of s = 1.

Thanks to the implicit expressions (both for s < 1 and s > 1) we illustrated on Figure 2 the dependence

on s of κn(s) for n = 1, 2, 3. It shows the cubic singularity at s = 1.
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Figure 3: This figure represents the dependence of κn(s) on s for n = 1, 2, 3. The black dots represent

the values 2−2/3zA(n) for n = 1, 2, 3.

3 Proof of the main theorem

The aim of this section is to prove Theorem 1.2. We first perform the following change of variables to

transfer the dependence on h of −∆cTri(s,h) into the coefficient of the operator:

x = x1 − s; y =
1

h
x2.

The triangle T̂ri(s, h) is transformed into Tri(s) := T̂ri(s, 1). The operator −h2∆Dir
cTri(s,h)

becomes

Ls(h) := −h2∂2
x − ∂2

y . (3.1)

It also has compact resolvent and we denote by (λn(s, h))n≥1 its eigenvalues. They satisfy

λn(s, h) = µn(s, h)h2. (3.2)

The operator Ls(h) defined in (3.1) is partially semiclassical in x. Its investigation follows the lines of

the papers [8, 11, 12].

The proof is divided into two main steps: a construction of quasimodes and the use of the true

eigenfunctions of Ls(h) as quasimodes for the model operator in order to obtain a lower bound for the

true eigenvalues.

We first perform a change of variables to transform the triangle Tri(s) into the rectangle

Rec(s) = (−1 − s, 1 − s) × (0, 1):





u = x; t = (1 + s)
y

x+ 1 + s
for − 1 − s < x < 0,

u = x; t = −(1 − s)
y

x− (1 − s)
for 0 < x < 1 − s.

(3.3)

8



For the sake of simplicity we define

s− := 1 + s, s+ := s− 1.

In the coordinates (u, t) defined in (3.3), we denote by L−
s (h) and L+

s (h) the expression of Ls(h),
respectively for u < 0 and u > 0. We have:

L±
s (h)(u, t; ∂u, ∂t) := −h2

(
∂2

u −
2t

u+ s±
∂u∂t +

2t

(u+ s±)2
∂t +

t2

(u+ s±)2
∂2

t

)
− s±

(u+ s±)2
∂2

t .

The boundary condition are Dirichlet on (−1, 1) × {0} and (−1, 1) × {1}.

3.1 Quasimodes

To prove Theorem 1.2 we first construct quasimodes at any order in power of h1/3 and it yields the

Proposition 3.1 Let S(Ls(h)) denotes the spectrum of Ls(h) and s0 ∈ [0, 1). There are sequences

(βj,n(s))j≥0 for any integer n ≥ 1 so that there holds: for all N0 ∈ N
∗ and J ∈ N, there exist h0 > 0

and C > 0 such that for all s ∈ [−s0, s0) and all h ∈ (0, h0)

dist
(
S(Ls(h)),

J∑

j=0

βj,n(s)hj/3
)
≤ Ch(J+1)/3, n = 1, . . . , N0.

Moreover, the functions (s 7→ βj,n(s)) are analytic on (−1, 1) and we have: β0,n(s) = π2, β1,n(s) = 0,

and β2,n(s) = (2π2)2/3κn(s).

Proof: The proof is divided into three parts. The first one deals with the form of the Ansatz chosen to

construct quasimodes. The second part deals with lemmas about operators which appear in the first

part. The third part is the determination of the profiles of the Ansatz.

Ansatz We want to construct quasimodes (γs,h, ψs,h) for the operator Ls(h)(x, y; ∂x, ∂y). It will be

more convenient to work in the rectangle Rec(s) with the operators L±
s (h)(u, t; ∂u, ∂t). We introduce

the new scales:

α = h−2/3u; β = h−1u.

We look for quasimodes ψ̂s,h(u, t) = ψs,h(x, y). Such quasimodes will have the form on the left and on

the right:

ψ±
s (u, t) ∼

∑

j≥0

[
Ψ±

s,j(α, t) + Φ±
s,j(β, t)

]
hj/3.

associated with quasi-eigenvalues:

γs,h ∼
∑

j≥0

βj(s)h
j/3,

in order to solve the eigenvalue equation in the sense of formal series. An Ansatz containing the

scale h2/3 alone is not sufficient to construct quasimodes because one can see that the system is

overdetermined. Expanding the operators in powers of h2/3, we obtain the formal series:

L±
s (h)(h2/3α, t;h−2/3∂α, ∂t) ∼

∑

j≥0

L±
s,2jh

j/3, with leading term L±
s,0 := L±

0 = −∂2
t ,

9



and in power of h:

L±
s (h)(hβ, t;h−1∂β, ∂t) ∼

∑

j≥0

N±
s,3jh

j/3, with leading term N±
s,0 := N±

0 = −∂2
β − ∂2

t ,

We consider these operators on the half-strips H− := (−∞, 0) × (0, 1) and H+ := (0,∞) × (0, 1). On

the left and on the right, the leading term at the scale h2/3 acts only in the transverse variable t and is

the Dirichlet Laplacian on (0, 1). At the scale h, the leading term is the Laplacian on a half-strip. The

leading terms at both scales do not depend on s. Since ψs,h has no jump across the line x = 0, we find

that ψ−
s and ψ+

s should statisfy two transmission conditions on the interface I := {0} × (0, 1):

ψ−
s (0, t) = ψ+

s (0, t) and
(
∂u −

t

s−
∂t

)
ψ−

s (0, t) =
(
∂u −

t

s+

∂t

)
ψ+

s (0, t),

for all t ∈ (0, 1). For the formal series, these conditions write for all t ∈ (0, 1) and all j ≥ 0:

Ψ−
s,j(0, t) + Φ−

s,j(0, t) = Ψ+
s,j(0, t) + Φ+

s,j(0, t), (3.4)

∂αΨ−
s,j−1(0, t) + ∂βΦ−

s,j(0, t) −
t

s−
∂tΨ

−
s,j−3(0, t) −

t

s−
∂tΦ

−
s,j−3(0, t)

= ∂αΨ+
s,j−1(0, t) + ∂βΦ+

s,j(0, t) −
t

s+

∂tΨ
+
s,j−3(0, t) −

t

s+

∂tΦ
+
s,j−3(0, t),

(3.5)

where we understand that the terms associated with a negative index are 0. Finally, in order to ensure

the Dirichlet boundary condition on Tri(s) we will require for our Ansatz, for any j ∈ N, the boundary

conditions:

Ψ±
s,j(·, 0 and 1) = 0; Φ±

s,j(·, 0 and 1) = 0. (3.6)

Three lemmas To start the construction of our Ansatz, we will need three lemmas, but before let us

denote by (sj)j≥1 the eigenfunctions associated with the eigenvalues of the Dirichlet Laplacian on the

line (0, 1). We have sj(t) =
√

2 sin(jπt) and this eigenfunction is associated with the eigenvalue j2π2.

The analyticity of the solutions in the following lemmas is a direct consequence of the analyticity

of the datas.

Lemma 3.2 Let F−
s = F−

s (β, t) and F+
s = F+

s (β, t) be functions respectively in L2
exp(H−) and

L2
exp(H+), depending analytically on s ∈ (−1, 1). Let Gs ∈ H3/2(I) ∩H1

0 (I) and Hs ∈ H1/2(I) be

data on the interface I , depending analytically of s ∈ (−1, 1). Then, for all s ∈ (−1, 1) there exist

unique coefficients ξs and δs such that the transmission problem:





(N±
0 − π2)Φ±

s = F±
s in H±, Φ±

s (·, 0 and 1) = 0,

Φ−
s (0, t) − Φ+

s (0, t) = Gs(t) + ξss1(t)

∂βΦ−
s (0, t) − ∂βΦ+

s (0, t) = Hs(t) + δss1(t),

has a unique solution (Φ−
s ,Φ

+
s ) in H2

exp(H−) ×H2
exp(H+) and we have

ξs = −
∫ 0

−∞

〈F−
s (β, ·), s1〉tβdβ −

∫ +∞

0

〈F+
s (β, ·), s1〉tβdβ − 〈Gs, s1〉t,

δs =

∫ 0

−∞

〈F−
s (β, ·), s1〉tdβ −

∫ +∞

0

〈F+
s (β, ·), s1〉tdβ − 〈Hs, s1〉t.

Moreover ξs, Gs and (Φ−
s ,Φ

+
s ) depend analytically on s ∈ (−1, 1).
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Proof of the lemma: We look for a solution (Φ−
s ,Φ

+
s ) that we decompose, in the transverse coordinates,

along the basis of the eigenfunction of the Dirichlet Laplacian on (0, 1):

Φ±
s (β, t) =

∑

j≥1

Φ±
s,j(β)sj(t).

For all j ≥ 1, the following equations are satisfied:

(
− ∂2

β + π2(j2 − 1)
)
Φ±

s,j = 〈F±
s , sj〉t,

and we are looking for exponentially decaying solutions. For j = 1, we find:

Φ−
s,1(β) =

∫ β

−∞

∫ β1

−∞

〈F−
s (β2, ·), s1〉tdβ2dβ1, Φ+

s,1(β) = −
∫ +∞

β

∫ +∞

β1

〈F+
s (β2, ·), s1〉tdβ2dβ1.

Using the data on the interface I we find the expression of ξs and δs. For j ≥ 2, we solve the ordinary

differentials equations. Taking into account the exponential decay and data on the interface I it achieves

the proof of Lemma 3.2. ⋄
The following lemma can be found in [6, Sec. 5]. It is a consequence of the Fredholm alternative:

Lemma 3.3 Let F±
s = F±

s (α, t) be a function in L2
exp(H±), and depending analytically on s ∈ (−1, 1).

Then, there exist solution(s) Ψ±
s ∈ H2

exp(H±) such that:

(L±
0 − π2)Ψ±

s = F±
s in H±, Ψ±

s (α, 0 and 1) = 0

if and only if:

〈F±
s (α, ·), s1〉t = 0 for all α ∈ R

∗
±.

In this case, they write:

Ψ±
s (α, t) = Ψ±,⊥

s (α, t) + g±s (α)s1(t),

with Ψ±,⊥
s ∈ H2

exp(H±). Moreover, Ψ±
s ,Ψ

±,⊥
s and g±s are analytic in the s-variable.

Lemma 3.4 Let f−
s = f−

s (α) ∈ L2
exp(R−), f+

s = f+
s (α) ∈ L2

exp(R+) and cs, θs ∈ R depending

analytically on s ∈ (−1, 1). There exists a unique ω(s) such that the system






(
− ∂2

α − α

1 + s
− κn(s)

)
g−s = f−

s + ω(s)Tn
s in R−, g+

s (0) − g−s (0) = cs
(
− ∂2

α +
α

1 − s
− κn(s)

)
g+

s = f+
s + ω(s)Tn

s in R+, (grig
s )′(0) − (glef

s )′(0) = θs,

has a unique solution (g−s , g
+
s ) ∈ H2

exp(R−)×H2
exp(R+). Moreover g−s , g

+
s and ω(s) depend analytically

on s.

Proof of the lemma: Let us define gs := g−s 1R−
+ g+

s 1R+
. In the distribution sense we have:

(
lmod
s − κn(s)

)
gs =

(
lmod
s − κn(s)

)
(g−s 1R−

) +
(
lmod
s − κn(s)

)
(g+

s 1R+
).

After computations we find:

(
lmod
s − κn(s)

)
gs = fs + ω(s)Tn

s − θsδ0 − csδ
′
0,
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where fs := f−
s 1R−

+ f+
s 1R+

and δ0 is the Dirac delta function at α = 0. Then, we define the function

m:

m(α) := (θsα+ cs)1R+
.

In the distribution sense, we have:

m′(α) = θs1R+
+ csδ0, m′′(α) = θsδ0 + csδ

′
0.

We introduce a smooth cut-off function χ which is 1 near 0. Finally, we define the auxiliary function

g̃s := gs − χm and we obtain:

(
lmod
s − κn(s)

)
g̃s = fs + ω(s)Tn

s +
(
(∂2

αχ)m+ 2θs(∂αχ)1R+
− vmod

s (α)χm+ κn(s)χm
)
. (3.7)

By definition, g̃s belongs to the form domain of the operator lmod
s . The right hand side of equation

(3.7) being in L2(R), g̃s is also in the domain of the operator lmod
s . As a consequence, equation (3.7) is

also true in L2(R) and we can apply the Fredholm alternative to find a solution g̃s and ω(s), this latest

satisfying:

ω(s) =
〈
(vmod

s − κn(s))χm− (∂2
α)m− 2θs(∂αχ)1R+

− fs,T
n
s

〉
.

It concludes the proof of Lemma 3.4. ⋄
In the following construction we use a version of this lemma up to some normalization constants.

Determination of the profiles

Now we can start the construction of the Ansatz.

Terms of order h0 Let us write the equations inside the strip:

H±,α : −∂2
t Ψ

±
s,0 = γ0(s)Ψ

±
s,0 H±,β : −(∂2

t + ∂2
β)Φ±

s,0 = γ0(s)Φ
±
s,0

The transmission conditions are:

(Ψ−
s,0 + Φ−

s,0)(0, t) = (Ψ+
s,0 + Φ+

s,0)(0, t),

(∂βΦ−
s,0 − ∂βΦ+

s,0)(0, t) = 0.

With the Dirichlet boundary conditions (3.6), we get:

γ0(s) = π2, Ψ±
s,0(α, t) = g±s,0(α)s1(t).

We now apply Lemma 3.2 with F−
s ≡ 0, F+

s ≡ 0, Gs ≡ 0 and Hs ≡ 0 to get:

ξs = 0 and δs = 0.

We deduce Φ−
s,0 ≡ 0 and Φ+

s,0 ≡ 0 and, since ξs = g+
s,0(0) − g−s,0(0), g+

s,0(0) = g−s,0(0). At this step we

do not have determined g±s,0 yet.
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Terms of order h1/3 The equations inside the strip read:

H±,α : (−∂2
t − π2)Ψ±

s,1 = γ1(s)Ψ
±
s,0 H±,β : (−∂2

t − ∂2
β − π2)Φ±

s,1 = 0

The transmission conditions are:

(Φ−
s,1 + Ψ−

s,1)(0, t) = (Φ+
s,1 + Ψ+

s,1)(0, t),

(∂αΨ−
s,0 + ∂βΦ−

s,1)(0, t) = (∂αΨ+
s,0 + ∂βΦ+

s,1)(0, t).

We also take the Dirichlet boundary conditions (3.6) into account. Lemma 3.3 implies:

γ1(s) = 0, Ψ±
s,1(α, t) = g±s,1(α)s1(t).

We now apply Lemma 3.2 with F−
s ≡ 0, F+

s ≡ 0, Gs ≡ 0 and Hs ≡ 0, we get:

ξs = 0, δs = 0.

Since ξs = g+
s,1(0) − g−s,1(0) and δs = (g+

s,0)
′(0) − (g−s,0)

′(0) we have:

g+
s,1(0) = g−s,1(0), (g+

s,0)
′(0) = (g−s,0)

′(0).

We also deduce that Φ−
s,1 ≡ 0 and Φ+

s,1 ≡ 0.

Terms of order h2/3 The equations inside the strip read:

H±,α : (−∂2
t − π2)Ψ±

s,2 = −L±
s,2Ψ

±
s,0 + γ2(s)Ψ

±
s,0 H±,β : (−∂2

t − ∂2
β − π2)Φ±

s,2 = 0

where we have:

L±
s,2 :=

2α

s±
∂2

t − ∂2
α.

The transmission conditions are:

(Ψ−
s,2 + Φ−

s,2)(0, t) = (Ψ+
s,2 + Φ+

s,2)(0, t),

∂αΨ−
s,1(0, t) + ∂βΦ−

s,2(0, t) = ∂αΨ+
s,1(0, t) + ∂βΦ+

s,2(0, t),

We also have to take the Dirichlet boundary conditions (3.6) into account. Then, we apply a renor-

malized version of Lemma 3.3. Consequently, there exists a solution (Ψ−
s,2,Ψ

+
s,2) if and only if the

following system is verified:






(
− ∂2

α − 2απ2

1 + s
− γ2(s)

)
g−s,0(α) = 0 in R−, g+

s,0(0) − g−0 (0) = 0

(
− ∂2

α +
2απ2

1 − s
− γ2(s)

)
g+

s,0(α) = 0 in R+, (g+
s,0)

′(0) − (g−s,0)
′(0) = 0.

This leads to the choice:

γ2(s) = (2π2)2/3κn(s); gs,0(α) = Tn
s ((2π2)2/3α),
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with g±s,0(α) = Tn
s ((2π2)2/3α)1R±

(α). Particularly, this determines the unknown functions of the

previous steps (this choice of gs,0 gives an explicit expression of Ψ±
s,0). We are led to take:

Ψ±
s,2(α, t) = Ψ±,⊥

s,2 (α, t) + g±s,2(α)s1(t),

with Ψ+,⊥
s,2 ≡ 0 and Ψ−,⊥

s,2 ≡ 0. Finally we have to solve the system:






(−∂2
t − ∂2

β − π2)Φ±
s,2 = 0 in H±,

Φ±
s,2(·, 0 and 1) = 0,

Φ−
s,2(0, t) − Φ+

s,2(0, t) = (g+
s,2(0) − g−s,2(0))s1(t)

∂βΦ−
s,2(0, t) − ∂βΦ+

s,2(0, t) = ((g+
s,1)

′(0) − (g−s,1)
′(0))s1(t).

Then, we apply Lemma 3.2 with F−
s ≡ 0, F+

s ≡ 0, Gs ≡ 0 and Hs ≡ 0 = ((g+
s,1)

′(0)− (g−s,1)
′(0))s1(t)

and we get:

ξs = g+
s,2(0) − g−s,2(0) = 0, δs = (g+

s,1)
′(0) − (g−s,1)

′(0) = 0.

This gives Φ+
s,2 ≡ 0, Φ−

s,2 ≡ 0.

Terms of order h The equations inside the strip read:

H±,α : (−∂2
t − π2)Ψ±

s,3 = γ3(s)Ψ
±
s,0 H±,β : (−∂2

t − ∂2
β − π2)Φ±

s,3 = 0

The transmission conditions are:

(Ψ−
s,3 + Φ−

s,3)(0, t) = (Ψ+
s,3 + Φ+

s,3)(0, t),

∂αΨ−
s,2(0, t) + ∂βΦ−

s,3(0, t) −
t

s−
∂tΨ

−
s,0(0, t) = ∂αΨ+

s,2(0, t) + ∂βΦ+
s,3(0, t) −

t

s+

∂tΨ
+
s,0(0, t).

We also take the Dirichlet boundary conditions (3.6) into account. Lemma 3.3 gives:

γ3(s) = 0, Ψ±
s,3(α, t) = g±s,3(α)s1(t).

We have to solve the system:






(−∂2
t − ∂2

β − π2)Φ±
s,3 = 0 in H±,

Φ±
s,3(·, 0 and 1) = 0

Φ−
s,3(0, t) − Φ+

s,3(0, t) = (g+
s,3(0) − g−s,3(0))s1(t)

(∂βΦ−
s,3 − ∂βΦ+

s,3)(0, t) = ((g+
s,2)

′(0) − (g−s,2)
′(0))s1(t) + g+

s,0(0)
( tπ

1 − s
+

tπ

1 + s

)
cos(πt).

Hence, we apply Lemma 3.2 with F−
s ≡ 0, F+

s ≡ 0,G0
s ≡ 0 andHs(t) = g+

s,0(0)
( tπ

1 − s
+

tπ

1 + s

)
cos(πt)

and we get:

ξs = g+
s,3(0) − g−s,3(0) = 0, δs = (g+

s,2)
′(0) − (g−s,2)

′(0) = − 2
√

2π

1 − s2
Tn

s (0)〈t cos(πt), s1〉t.

This determines Φ−
s,3 and Φ+

s,3 which are not necessarily zero.
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Continuation Let us assume that we can write Ψ±
s,k(α, t) = Ψ±,⊥

s,k (α, t) + g±s,k(α)s1(t) for all

0 ≤ k ≤ n and that (g±s,k)0≤k≤n−3, (Ψ±,⊥
s,k )0≤k≤n−1 are determined. Let us also assume that

g−s,n−2(0) − g+
s,n−2(0), (g−s,n−2)

′(0) − (g+
s,n−2)

′(0), (γk(s))0≤k≤n and (Φ±
s,k)0≤k≤n−2 are already known.

Finally, we assume that g−s,n−1(0) − g+
s,n−1(0), Φ±

s,n−1 are known once g−s,n−2 and g+
s,n−2 are determined

and all that functions are exponentially decaying and analytic in the s variable for s ∈ (−1, 1).
The equations inside the strip read:

H±,α : (−∂2
t − π2)Ψ±

s,n = γn(s)Ψ±
s,0 − L±

s,nΨ±
s,0 −

n−1∑

j=2

(L±
s,j − γj(s))Ψ

±
s,n−j

H±,β : (−∂2
t − ∂2

γ − π2)Φ±
s,n = −

n−1∑

j=1

(N±
s,j − γj(s))Φ

±
s,n−j.

The transmission conditions are:

(Ψ−
s,n + Φ−

s,n(0, t) = (Ψ+
s,n + Φ+

s,n)(0, t)

(∂βΦ−
s,n − ∂βΦ+

s,n)(0, t) = ((g+
s,n−1)

′(0) − (g−s,n−1)
′(0))s1(t) + (∂αΨ+,⊥

s,n−1 − ∂αΨ−,⊥
s,n−1)(0, t)

+
t

1 + s
(∂tΨ

−,⊥
s,n−3 + ∂tΦ

−
s,n−3)(0, t) +

t

1 − s
(∂tΨ

+,⊥
s,n−3 + ∂tΦ

+
s,n−3)(0, t)

+
√

2π
( 1

1 + s
g−s,n−3(0) +

1

1 − s
g+

s,n−3(0)
)
t cos(πt).

In order to apply Lemma 3.3 we need to solve equations in the form:

(
− ∂2

α − 2α

1 + s
π2 − γ2(s)

)
g−s,n−2(α) = γn(s)g−s,0(α) + f−

s (α),

(
− ∂2

α +
2α

1 − s
π2 − γ2(s)

)
g+

s,n−2(α) = γn(s)g+
s,0(α) + f+

s (α).

We can apply Lemma 3.4 because f±
s , g−s,n−2(0) − g+

s,n−2(0) and (g−s,n−2)
′(0) − (g+

s,n−2)
′(0) are known.

It provides an unique γn(s), moreover g±s,n−2 are now determined. From the recursion assumption, we

deduce that Φ±
s,n−1 are now determined. Lemma 3.3 uniquely determines Ψ±,⊥

s,n such that:

Ψ±
s,n(α, t) = Ψ±,⊥

s,n (α, t) + g±s,n(α)s1(t).

We can now write the system in the form:






(N±
s,0 − π2)Φ±

s,n = F±
s , in H±,

Φ±
s,n(·, 0 and 1) = 0,

Φ−
s,n(0, t) − Φ+

s,n(0, t) = (Ψ+,⊥
s,n − Ψ−,⊥

s,n )(0, t) + (g−s,n(0) − g+
s,n(0))s1(t).

∂βΦ−
s,n(0, t) − ∂βΦ+

s,n(0, t) = Hs(t) + ((g+
s,n−1)

′(0) − (g−s,n−1)
′(0))s1(t),

whereHs is known. We can apply Lemma 3.2 which determines g−s,n(0)−g+
s,n(0), (g+

s,n−1)
′(0) − (g−s,n−1)

′(0),
Φ−

s,n and Φ+
s,n.

Quasimodes The previous construction leads to introduce:

ψ̂
[J ]
s,h(u, t) :=

J+2∑

j=0

(Ψ±
s,j(uh

−2/3, t) + Φ±
s,j(uh

−1, t))hj/3 − uχ±(uh−1)R±
J,s,h(p),when u ∈ R±. (3.8)
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where the correctors are

R±
J,s,h(t) = ∂αΨ±

s,J+2(0, t)h
J/3 − t

s±

J+2∑

j=J

(∂tΨ
±
s,j(0, t) + ∂tΦ

±
s,j(0, t))

are added to make ψ̂
[J ]
s,h satisfy the second transmission condition. Here χ± are two smooth cut-off

functions being 1 near 0. Then, by construction, ψ
[J ]
s,h defined by

ψ
[J ]
s,h(x, y) = χ(u)ψ̂

[J ]
s,h(u, t)

belongs to the domain of Ls(h). Using the exponential decay, for all s0 ∈ (−1, 1), J ∈ N we get the

existence of h0 > 0, C(J, s0, h0) > 0 such that for all s ∈ [−s0, s0] and all h ∈ (0, h0):

∥∥∥(Ls(h) −
J∑

j=0

γj(s)h
j/3)ψ

[J ]
s,h

∥∥∥ ≤ C(J, s0, h0)h
(J+1)/3.

�

3.2 Agmon estimates

In order to prove Theorem 1.2, we need Agmon localization estimates about Ls(h) (see the work [1, 2]

and in the semiclassical context [7, Chap. 6]) and [12]). We remark that thanks to Propositions 1.1 and

3.1, for all s0 ∈ (0, 1) the N0 lowest eigenvalues λs of Ls(h) satisfy for all s ∈ [−s0, s0]:

|λs − π2| ≤ Γ0h
2/3, (3.9)

for some positive constant Γ0 depending on N0 and s0. We define Tri±(s) := Tri(s) ∩ {x ∈ R±}. We

have the following two Agmon localization estimates for the true eigenfunctions of Ls(h):

Proposition 3.5 Let s0 ∈ [0, 1). Let Γ0 > 0 and ρ0 ∈ (0, π). There exist h0 > 0, C0 > 0 and

η0 > 0 such that for all s ∈ [−s0, s0], h ∈ (0, h0) and all eigenpair (λs, ψs) of Ls(h) satisfying

|λs − π2| ≤ Γ0h
2/3, we have:

∫

Tri±(s)
eΦ

±

1
(x)/h(|ψs|2+|h2/3∂xψs|2)dxdy ≤ C0‖ψs‖2 and

∫

Tri±(s)
eΦ

±

2
(x)/h(|ψs|2+|h∂xψs|2)dxdy ≤ C0‖ψs‖2,

with

Φ±
1 (x) :=

η0√
|s±|

|x|3/2 and Φ±
2 (x) := −ρ0|s±| ln

(
1 +

x

s±

)
.

In the regime h → 0, Proposition 3.5 localize the eigenfunctions of Ls(h) in a neighborhood of

Tri(s) ∩ {x = 0} and gives decay estimates away from this set. These estimates justify that the

Feshbach-Grushin projections of the true eigenfunctions of Ls(h) are good quasimodes for the one

dimensional operator (u 7→ h2ltans (u + s; ∂u)), cf. (1.1), that is the tangent approximation of the

Born-Oppenheimer approximation of Ls(h).
Because the shape of the effective potential vs defined in (1.4) is close to the one of [6], the proof

of Proposition 3.5 uses the technical background of Propositions 5.5. and 5.6 of [6].
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3.3 Approximation of the first eigenfunctions by tensor products

In this subsection we will work with the operator LRec(s)(h) defined on the left side u ≤ 0 by Llef
s (h)

and on the right side u ≥ 0 by Lrig
s (h). Let us consider the N0 first eigenvalues of LRec(s)(h) (shortly

denoted by λs,n(h)). In each corresponding eigenspace we choose a normalized eigenfunction ψ̂s,n so

that 〈ψ̂s,n, ψ̂s,p〉 = 0 if n 6= p. We introduce:

Ŝs,N0
(h) = span

(
ψ̂s,1, . . . , ψ̂s,N0

)
.

Then, we follow the same lines as in [6, Sec. 4.3] and define the following quadratic form:

Q0
Rec(s)(ψ̂s) =

∫

R−(s)

(|∂tψ̂s|2 − π2|ψ̂s|2)
(
1 +

u

s−

)
dudt +

∫

R+(s)

(|∂tψ̂s|2 − π2|ψ̂s|2)
(
1 +

u

s+

)
dudt,

where R−(s) = Rec(s) ∩ {u ≤ 0} and R+(s) = Rec(s) ∩ {u ≥ 0}. We consider the projection:

Π0ψ̂s(u, t) = 〈ψ̂s(u, ·), s1〉ts1(t).

We can now state a first approximation result:

Proposition 3.6 Let s0 ∈ (0, 1), there exists h0 > 0 and C > 0 such that for all s ∈ [−s0, s0], all

h ∈ (0, h0) and all ψ̂s ∈ Ŝs,N0
(h):

0 ≤ QRec(s)(ψ̂s) ≤ Ch2/3‖ψ̂s‖2

and ∥∥(Id − Π0)ψ̂s

∥∥ +
∥∥∂t

(
(Id − Π0)ψ̂s

)∥∥ ≤ Ch1/3‖ψ̂s‖.

Moreover we have, Π0 : Ŝs,N0
→ Π0

(
Ŝs,N0

)
is an isomorphism.

Proof: We use the same reasoning as in [6, Sec 4.3] and [20, Sec 4.3]. �

3.4 Reduction to the model operator

The aim of this subsection is to prove Theorem 1.2 using the projections of the true eigenfunctions

(Π0ψ̂s,n) as test functions for the quadratic form of the model operator. We apply the technical

background of [20, Sec. 4.4]. Let us consider ψ̂ ∈ Ŝs,N0
(h). We will need the two following lemmas to

estimate the quadratic form of the model operator tested on (Π0ψ̂). The key in their proof is the use of

Proposition 3.5.

Lemma 3.7 Let s0 ∈ (0, 1). For all ψ̂ ∈ Ŝs,N0
there exist h0 > 0 and C > 0 such that for all

s ∈ [−s0, s0] and all h ∈ (0, h0):

∣∣h2

∫

R±(s)

∂uψ̂s∂tψ̂st
(
1 +

u

s±

)
dudt

∣∣2 ≤ Ch4/3
∥∥ψ̂s

∥∥2
,
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Lemma 3.8 Let s0 ∈ (0, 1). Let ψ̂s ∈ Ŝs,N0
(h). There exist h0 > 0 and C > 0 such that for all

s ∈ [−s0, s0] and all h ∈ (0, h0):

∣∣∣
h2

s±

∫

R±(s)

|∂uψ̂s|2|u|dudt
∣∣∣ ≤ Ch4/3

∥∥ψ̂s

∥∥2
,

∣∣∣
1

s2
±

∫

R±(s)

|ψ̂s|2|u|2dudt
∣∣∣ ≤ Ch4/3

∥∥ψ̂s

∥∥2
.

We can now prove the

Proposition 3.9 Let s0 ∈ (0, 1), ψ̂s ∈ Ŝs,N0
(h). There exist h0 > 0 and C > 0 such that for all

s ∈ [−s0, s0] and h ∈ (0, h0) we have:

Qmod
s,h (ψ̂s) ≤ (λs,N0

(h) − π2)‖ψ̂s‖2 + Ch4/3‖ψ̂s‖2,

where

Qmod
s,h (ψ̂s) :=

∫

R−(s)

h2|∂uψ̂s|2 +
2π2

1 + s
|u||ψ̂s|2dudt+

∫

R+(s)

h2|∂uψ̂s| +
2π2

1 − s
|u||ψs|2dudt.

We remark that Qmod
s,h is, up to h2 in front of the derivative term and a factor 2π2 for the potential, the

quadratic form of the model operator in two dimension.

Proof: Let us take ψs ∈ Ss,N0
(h). As the (ψs,j)j∈{1,...,N0} are orthogonal, we have:

Qs,h(ψs) ≤ λs,N0
(h)‖ψs‖2.

By definition, for all ψ ∈ Dom(Qs,h) we have:

Qs,h(ψ) ≥
∫

Tri(s)

h2|∂xψ|2 + vs(x)|ψ|2dxdy.

The last inequality combined with the convexity of the effective potential vs yields:

∫

Tri(s)

h2|∂xψs|2 + 2π2
(
1R−

(x)

1 + s
+

1R−
(x)

1 − s

)
|x||ψs|2dxdy ≤ (λs,N0

(h) − π2)‖ψs‖2.

Then, we perform the change of variables (3.3) to get:

Qmod
s,h (ψ̂s) ≤ (λs,N0

(h) − π2)‖ψ̂s‖2 +
h2

s−

∫

R−(s)

|ψ̂s|2|u|dudt+
h2

|s+|

∫

R+(s)

|ψ̂s|2|u|dudt +

2π2

s2
−

∫

R−(s)

|ψ̂s|2|u|2dudt+
2π2

s2
+

∫

R+(s)

|ψ̂s|2|u|2dudt +

2h2

∫

R−(s)

t∂uψ̂s∂tψ̂s

(
1 +

u

s−

)
dudt− 2h2

∫

R+(s)

t∂uψ̂s∂tψ̂s

(
1 +

u

s+

)
dudt

To obtain Proposition 3.9 we apply Lemmas 3.7 and 3.8 taking into account (3.9). �
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Proof of Theorem 1.2 We apply Proposition 3.6 to the result of Proposition 3.9 and we obtain:

Qmod
s,h (ψ̂s) ≤ (λs,N0

(h) − π2)
∥∥Π0ψ̂s

∥∥2
+ Ch4/3

∥∥Π0ψ̂s

∥∥2
.

Then, equation (3.9) and Lemma 3.6 yield:

Qmod
s,h (ψ̂s) ≤ (λs,N0

(h) − π2)
∥∥Π0ψ̂s

∥∥2

L2(Rec(s))
+ Ch4/3

∥∥Π0ψ̂s

∥∥2

L2(Rec(s))
,

where

‖ψ̂s‖2
L2(Rec(s)) = ‖ψ̂s‖2

L2(R−(s),dudt) + ‖ψ̂s‖2
L2(R+(s),dudt).

Moreover, we have

Qmod
s,h (ψ̂s) = Qmod

s,h (Π0ψ̂s) +Qmod
s,h ((Id − Π0)ψ̂s) + 2bmod

s,h

(
Π0ψ̂s, (Id − Π0)ψ̂s

)
,

where bmod
s,h is the bilinear form associated with Qmod

s,h . We remark that

bmod
s,h

(
Π0ψ̂s, (Id − Π0)ψ̂s

)
=

∫

R−(s)

〈Π0

((
− h2∂2

u +
2π2

1 + s
|u|

)
ψs

)
, (Id − Π0)ψ̂s〉tdudt +

∫

R+(s)

〈Π0

((
− h2∂2

u +
2π2

1 − s
|u|

)
ψs

)
, (Id − Π0)ψ̂s〉tdudt = 0.

Finally we have

Qmod
s,h (Π0ψ̂s) ≤ (λs,N0

(h) − π2)
∥∥Π0ψ̂s

∥∥2

L2(Rec(s))
+ Ch4/3

∥∥Π0ψ̂s

∥∥2

L2(Rec(s))
.

Now the conclusion is standard. We denote by π0ψ̂s := 〈ψ̂s(u, ·), s1〉t. Let us consider the smooth

cut-off function χ being 1 for |u| ≤ 1

4
and 0 for |u| ≥ 1

2
. We define χs(u) := χ

( u

1 − s

)
it holds:

qmod
s,h (χsπ0ψ̂s) ≤ (λs,N0

(h) − π2)
∥∥π0ψ̂s

∥∥2
+ Ch4/3

∥∥π0ψ̂s

∥∥2
,

where

qmod
s,h (ϕ) :=

∫ 1−s

−1−s

h2|∂uϕ|2 + 2π2
(
1R−

(u)

1 + s
+

1R−
(u)

1 − s

)
|u||ϕ|2du.

Then, we consider ŝs,N0
(h) := span

(
π0ψ̂s,1, . . . , π0ψ̂s,N0

)
and we apply the min-max principle to the

N0 dimensional space χsŝs,N0
(h) wich yields

π2 + (2π2)2/3κN0
(s)h2/3 ≤ λs,N0

(h).

Jointly with Proposition 3.1, this finishes the proof of Theorem 1.2.

4 An application to tunneling: a symmetric mountain

The aim of this section is to prove Theorem 1.4. We follow the philosophy of [12] about tunneling.

After the proof of some Agmon localization estimates in Subsection 4.1 we study in Subsection 4.2
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the splitting of eigenvalues for this problem. To avoid the dependence on h of the domain Ω(h) we

perform the scaling:

x = x1; y =
1

h
x2.

The domain Ω(h) is now Ω := Ω(1) and we respectively denote by L(h),Llef(h),Lrig(h) and L(h)
the operators −∆Dir

Ω(h),−∆Dir
Ωlef(h)

,−∆Dir
Ωrig(h) and D(h) in this new variables, up to a multiplication by

h2. L(h),Llef(h) and Lrig(h) are the Dirichlet realization of −h2∂2
x + ∂2

y on each associated geometric

domain (denoted Ω,Ωlef and Ωrig). We denote by (ζn(h))n≥1 the eigenvalues of L(h) and (λn(h))n≥1

the eigenvalues of the two iso-spectral operators Llef(h) and Lrig(h). In terms of physical variables, we

obtain:

νn(h) = h−2ζn(h); µn(h) = h−2λn(h).

For the operator L(h) we construct an effective potential in the spirit of the Born-Oppenheimer

approximation as in Subsection 1.4, we obtain the operator:

−h2∂2
x + v(x),

where the effective potential v is:

v(x) = π2
( (1 − s)2

(x+ 1)2
1(−1,−s)(x) +

4s2

(x− s)2
1(−s,0)(x) +

4s2

(x+ s)2
1(0,s)(x) +

(1 − s)2

(x− 1)2
1(s,1)(x)

)

The shape of the potential helps us to get the Agmon estimates of Subsection 4.1.

4.1 Agmon estimates

To enlighten tunneling we need Agmon localization estimates on Ω for the true eigenfunctions of L(h),
Llef(h) and Lrig(h).

Agmon estimates for L(h) between the two peaks

Proposition 4.1 Let Γ0 > 0. There exist h0 > 0, C0 > 0 and C > 0 such that for all h ∈ (0, h0) and

all eigenpair (ζ, ψ) of L(h) satisfying |ζ − π2| ≤ Γ0h
2/3, we have:

∫

Ω ∩ {(−s/2,s/2)×R}

|ψ|2 + |h2/3∂xψ|2dxdy ≤ C0e
−C/h‖ψ‖2.

Proof: For Φ a Lipschitz function to be dertermined, if (ζ, ψ) is an eigenpair of L(h), the IMS formula

reads: ∫

Ω

h2|∂x(e
Φ/hψ)|2 + |eΦ/h∂yΨ|2 − |Φ′eΦ/hψ|2 − ζ|eΦ/hψ|2dxdy = 0.

Consequently we have:

∫

Ω

h2|∂x(e
Φ/hψ)|2 + v(x)|eΦ/hΨ|2 − |Φ′eΦ/hψ|2 − ζ|eΦ/hψ|2dxdy ≤ 0.

We denote by:

I1 = (−1,−s), I2 = (−s, 0), I3 = (0, s), I4 = (s, 1),
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these intervals. Let Ωj = Ω ∩ {Ij × R} Then, by convexity near each minimum, and for symmetry

reasons we have:

∫

Ω

h2|∂x(e
Φ/hψ)|2dxdy +

4∑

j=1

∫

Ωj

(π2 + tj(x) − ζ − Φ′(x)2)|eΦψ|2dxdy ≤ 0,

where we have:

t1(x) = − 2π2

1 − s
(x+ s), t2(x) =

π2

s
(x+ s), t3(x) = −π

2

s
(x− s), t4(x) =

2π2

1 − s
(x− s).

Then, we apply the same reasoning as in the proof of Proposition 3.5 and, using the reflection symmetry,

we obtain a C0 > 0 such that:
∫

Ω

e2Φ(x)/h
(
|ψ|2 + |h2/3∂xψ|2

)
dxdy ≤ C0‖ψ‖2, (4.1)

with, for some η1, η2 > 0:

Φ(x) = η1|x+s|3/2
1(−1,−s)(x)+η2|x+s|3/2

1(−s, 0)(x)+η2|x−s|3/2
1(0, s)(x)+η1|x−s|3/2

1(s, 1)(x).

We have 1(−s/2,s/2)Φ ≤ Φ. moreover there exists a constant C̃ > 0 such that:

C̃ ≤ Φ(x),∀x ∈ (−s/2, s/2).

Combined with (4.1), it yields for some constant C > 0:

∫

Ω ∩ {(−s/2,s/2)×R}

|ψ|2 + |h2/3∂xψ|2dxdy ≤ C0e
−C/h‖ψ‖2.

�

Agmon estimates for Llef(h) and Lrig(h) Using the same philosophy as in the proof of Proposition

4.1 and adapting the proof of Proposition 3.5 we have:

Proposition 4.2 Let Γ0 > 0. There exist h0 > 0, C0 > 0 and C > 0 such that for all h ∈ (0, h0) and

all eigenpair (λ, ψ) of Llef(h) satisfying |λ− π2| ≤ Γ0h
2/3, we have:

∫

Ωlef ∩ {(−s/2,0)×R}

|ψ|2 + |h2/3∂xψ|2dxdy ≤ C0e
−C/h‖ψ‖2.

The same proposition holds for Lrig(h).

4.2 Spectrum of L(h)

In our way to prove Theorem 1.4 we need the

Proposition 4.3 For all N ∈ N
∗ there exist h0 > 0, C0 > 0 and C > 0 such that for all h ∈ (0, h0)

and all j ∈ {1, . . . , N}:

ζ2j−1(h) ≤ C0e
−C/h + λj(h), ζ2j(h) ≤ C0e

−C/h + λj(h).
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Proof: Let χlef and χrig be a smooth cut-off functions such that χlef(x) = 1 for all x ∈ (−1,−s/2) and

χlef(x) = 0 for all x ∈ (−s/4, 0) and χrig(x) = χlef(−x) for all x ∈ (−1, 1). We take ψlef
j and ψrig

j

two eigenfunctions associated with λj(h), respectively for Llef(h) and Lrig(h), and we define the two

dimensional space Ej := span
(
χlefψlef

j , χ
rigψrig

j

)
⊂ Dom(L(h)). Let ψ ∈ Ej , thanks to Proposition 4.2

there exist h0 > 0, C0 > 0 and C > 0 such that, for all h ∈ (0, h0):

‖(L(h) − λj(h))ψ‖ ≤ C0e
−C/h‖ψ‖.

The spectral theorem yields the existence of k1(j, h) ∈ N
∗ such that:

|ζk1(j,h)(h) − λj(h)| ≤ C0e
−C/h.

Nevertheless, because dim(Ej) = 2 we can find another k2(j) ∈ N
∗ such that:

|ζk2(j,h)(h) − λj(h)| ≤ C0e
−C/h.

Without loss of generality we can assume that k1(j, h) < k2(j, h). Now, we prove in three steps that

k1(j, h) ≥ 2j.

(j 7→ k1(j, h)) and (j 7→ k2(j, h)) are injective functions Assume that there exists such that

k1(j1, h) = k1(j2, h). We have

|λj1(h) − ζk1(j1,h)(h)| ≤ C0e
−C/h, |λj2(h) − ζk1(j2,h)(h)| ≤ C0e

−C/h,

which gives

|λj1(h) − λj2(h)| ≤ 2C0e
−C/h.

Nevertheless, two distinct eigenvalues in the spectrum of L(h) satisfy |λj1(h) − λj2(h)| ≥ C̃h2/3, for

some C̃ > 0. Consequently j1 = j2. The proof is the same for k2(j, h).

(j 7→ k1(j, h)) and (j 7→ k2(j, h)) are non-decreasing functions Let j2 > j1, we have:

ζk1(j2,h)(h) ≥ λj2(h) − C0e
−C/h, ζk1(j1,h)(h) ≤ λj1(h) + C0e

−C/h.

We obtain:

ζk1(j2,h)(h) − ζk1(j1,h)(h) ≥ λj2(h) − λj1(h) − 2C0e
−C/h,

where the right-hand side of the inequality is positive for h small enough. Necessarily k1(j2, h) ≥
k1(j1, h) and thanks to the first step k1(j1, h) > k1(j2, h). The same reasoning hold for k2(j1, h) and

k2(j2, h). Moreover we can prove with the same technical background that ζk2(j1,h)(h) < ζk1(j2,h)(h).

Induction For j = 1 we have k2(j, h) > k1(j, h) ≥ 1. Let j ∈ N
∗ such that k2(j, h) > k1(j, h) > 2j.

Thanks to the previous steps we have:

k1(j + 1, h) > k2(j, h) > k1(j, h) ≥ 2j.

We deduce that k1(j+1, h) ≥ 2j+2. Because k2(j+1, h) > k1(j+1, h), we have k2(j+1, h) ≥ 2j+3,

which concludes the induction and the proof of Proposition 4.3. �

Now, we prove that there is at most two eigenvalues of L(h) at a distance of order O(e−C/h) from

an eigenvalue of L(h).
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Proposition 4.4 For all N ∈ N
∗, C0 > 0, C > 0, there exist h0 > 0 such that for all h ∈ (0, h0) and

all j ∈ {1, . . . , N}:

#{ζ(h) ∈ S(L(h)); |λj(h) − ζ(h)| ≤ C0e
−C/h} ≤ 2.

Proof: Let us assume that there exist ζj1(h) < ζj2(h) < ζj3(h) in S(L(h)) such that, for all p ∈
{1, 2, 3}, we have:

|λj(h) − ζjp(h)| ≤ C0e
−C/h.

We consider the family of orthonormal functions (ϕjp)p∈{1,2,3} where, for p ∈ {1, 2, 3}, ϕjp is an

eigenfunction of L(h) associated with λjp(h). Now we define ψjp = (χlefϕjp , χ
rigϕjp) and the space

Ej = span(ψjp)p∈{1,2,3}. We will also be lead to investigate the eigenspace Fj of L(h) associated with

λj(h): we denote by Φj,1 and Φj,2 an orthonormal basis of Fj . Let us take ψ 6= 0 ∈ Ej such that, for

p = 1, 2, 〈ψ,Φj,p〉 = 0. Such a function exists because dim(Ej) = 3 and, thanks to Proposition 4.1, we

have:

‖(L(h) − λj(h))ψ‖ ≤ C0e
−C/h‖ψ‖.

The spectral theorem yields n(j, h) ∈ N
∗, with n(j, h) 6= j, such that

|λn(j,h)(h) − λj(h)| ≤ C0e
−C/h.

Finally, we know that there exists C̃ > 0 such that |λn(j,h)(h) − λj(h)| ≥ C̃h2/3. For h small enough

we have a contradiction. �

Proposition 4.5 For all N ∈ N
∗ there exist h0, C0 > 0 and C > 0 such that for all h ∈ (0, h0) and all

j ∈ {1, . . . , 2N}:

|ζj(h) − λn(j,h)(h)| ≤ C0e
−C/h,

for some n(j, h) ∈ N
∗.

Proof: Let ϕj be an eigenfunction of L(h) associated with the eigenvalue ζj(h). Let us take χlef and

χrig like in the proof of Proposition 4.3. We define Φj = (χlefϕj, χ
rigϕj) ∈ Dom(L(h)) and we have,

thanks to Proposition 4.1:

‖(L(h) − ζj(h))Φj‖ ≤ C0e
−C/h‖Φj‖.

The spectral theorem yields the conclusion. �

Proof of Theorem 1.4 We prove that in Proposition 4.5 we have:

n(2j − 1, h) ≥ j, n(2j, h) ≥ j.

The proof is organized in three steps, as in Proposition 4.3.
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(j 7→ n(2j−1, h)) and (j 7→ n(2j−1, h)) are injective functions Let j1, j2 ∈ N
∗ such that j1 < j2

and

n(2j1 − 1, h) = n(2j2 − 1, h).

Consequently we have:

ζ2j2(h) − ζ2j1(h) ≤ 2C0e
−C/h.

There exists j̃ ∈ N
∗ such that 2j1 − 1 < j̃ < 2j2 − 1 and we have:

ζj̃(h) − ζ2j1(h) ≤ ζ2j2(h) − ζ2j1(h) ≤ 2C0e
−C/h.

Finally, we get:

|λn(2j1−1,h)(h) − ζj̃(h)| = |λn(2j1−1,h)(h) − ζ2j1−1(h) + ζ2j1−1(h) − ζj̃(h)| ≤ 3C0e
−C/h.

Then, we apply Proposition 4.4 and we have a contradiction because we found three eigenvalues

exponentially close to λn(2j1−1,h)(h). The proof is the same for (j 7→ n(2j − 1, h)).

(j 7→ n(2j− 1, h)) and (j 7→ n(2j− 1, h)) are non-decreasing functions Let j1, j2 ∈ N
∗ such that

j1 < j2, we have:

λn(2j2−1,h)(h) − λn(2j1−1,h)(h) + 2C0e
−C/h ≥ ζ2j2−1(h) − ζ2j1−1(h) > 0.

Thanks to the injectivity, for some C̃ > 0, we get:

sgn(n(2j2 − 1, h) − n(2j1 − 1, h))C̃h2/3 > 0,

where sgn denotes the function sign. Necessarily we get n(2j2 − 1, h) > n(2j1 − 1, h).

Induction For j = 1 we have n(1, h) ≥ 1 and n(2, h) ≥ 1. Let j ∈ N
∗ such that n(2j − 1, h) ≥ j

and n(2j, h) ≥ j. Thanks to the previous step we have:

n(2j + 1, h) > n(2j − 1, h) ≥ j, n(2j + 2, h) > n(2j, h) ≥ j.

which achieves the induction. Finally we get:

λj(h) ≤ C0e
−C/h + ζ2j−1(h), λj ≤ C0e

−C/h + ζ2j(h).

Combined with Proposition 4.3 it gives Theorem 1.4.

Figure 4 illustrates Theorem 1.4 and enlighten the localization of the spectrum of L(h).

Remark 4.6 Due to symmetry reason, we can be more accurate about the spectrum S(L(h)). In fact,

for all j ≥ 1, we necessarily have ζ2j−1(h) < λj(h) and ζ2j(h) = λj(h). △

A Shape of the eigenfunctions in the semiclassical limit

Let us now illustrate some theoretical properties of the eigenfunctions of Ls(h) with numerical

simulations. These computations are performed in the domain Tri(s) with the finite element library

Melina++ [17]. The mesh is constituted of triangles with 4 subdivisions on Tri−(s) and Tri+(s) with

6 as interpolation degree. Figure 5 pictures the dominant term in the construction (3.8): It is almost

a tensor product of the eigenfunction of the toy model operator and the sinus (respectively along the

X-axis and the Y -axis). The eigenfunctions are localized near the altitude of the triangle. This matches

with the Agmon estimates of Proposition 3.5.
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Figure 4: Repartition of S(L(h)) around S(L(h))

λ1(s, h) = 14.119615 λ2(s, h) = 16.461797

λ3(s, h) = 18.59000 λ4(s, h) = 20.63603

Figure 5: This figure represents the four first eigenfunctions of Ls(h) and their corresponding eigenvalue

for s = 0.5 and h = 0.1.

B Illustrations of tunneling

To illustrate some properties of the eigenfunctions of a symmetric mountain we compute some of them.

These computations are performed in the domain Ω for the operator L(h). The mesh is constituted

of triangles with 3 subdivisions on the Ωj (j = 1, . . . , 4) with 6 as interpolation degree. Figure 6

depicts the phenomenon of tunneling discussed in Section 4. We remark that the localization of the

eigenfunctions matches with the Agmon estimates of Subsection 4.1. Moreover a pair of exponentially

close eigenvalues is associated with eigenfunctions even or odd along the X−axis.

Figure 7 pictures Theorem 1.4 and the exponentially close difference between ζ2j−1(h) and ζ2j(h)
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(for j = 1 . . . 3). The interaction is of order e−C/h (for some C > 0). Nevertheless for small h there

is a stalling in the computations: we can not do the computation correctly because the difference

between the eigenvalues is two close to zero to compute them correctly. Consequently we did a linear

approximations for small h but before the stalling. These linear approximations go to −1 as h goes to

0.

ζ1(h) = 12.996729 ζ2(h) = 12.996730

ζ3(h) = 17.395903 ζ4(h) = 17.396014

ζ5(h) = 21.411375 ζ6(h) = 21.413785

Figure 6: Computation for s = 0.5 and h = 0.15. Numerical values of the first six eigenvalues. Plots

of the associated eigenfunctions in the domain Ω.
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