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4 LIMSI-CNRS, BP 133, F-91403 Orsay Cedex
5 UPMC Univ Paris 06, F-75005, Paris cedex

Tel : 33 4 72 43 70 77, Fax : 33 4 72 43 88 11, e-mail : shihe.xin@insa-lyon.fr

Abstract : The present study concerns an air-filled differentially heated cavity

of 1 m×0.32 m×1 m (width×depth×height) subject to a temperature difference

of 15 K and is motivated by understanding the persistent discrepancy observed

on thermal stratification in the cavity core between numerical and experimental

results. An improved experiment with enhanced metrology was set up and exper-

imental data have been obtained along with the characteristics of the surfaces and

materials used in the set-up. Especially experimental temperature distributions

on the passive walls have been introduced in numerical simulations and this is one

way for numerical simulation to predict correctly the experimental results. By

means of DNS using spectral methods, heat conduction in the insulating material

is first coupled with natural convection in cavity. As heat conduction influences

only temperature distribution on the top and bottom surfaces and in the near

wall regions, surface radiation is added to the coupling of natural convection with

heat conduction. The polycarbonate front and rear walls of the cavity, which are

almost black surfaces for low temperature radiation, and also other low emissivity

walls affect strongly temperature distribution in the cavity: thermal stratification

is considerably weakened by surface radiation. Good agreement between numer-

ical simulations and experiments is observed on both time-averaged fields and

turbulent statistics. Treating the full conduction-convection-radiation coupling

allowed to confirm that experimental wall temperatures resulted from the coupled

phenomena and this is another way to predict correctly the experimental results

in the cavity.
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1 Introduction

Three-dimensional numerical simulations of natural convection flows in an air filled cav-

ity have been performed for the idealized boundary conditions (adiabatic horizontal and

vertical passive walls) and also for realistic boundary conditions (measured temperature)

on the horizontal walls [22]. Despite the tremendous efforts, no improvement on agree-

ment between experimental and numerical results has been observed: the discrepancy,

already observed on the thermal stratification and the temperature profiles on the cavity

horizontal walls between two-dimensional computations and experimental measurements,

still remains important.

In Parts I and II [25, 24], efforts have been made to understand the reasons for the

discrepancy and improve the agreement between numerical and experimental studies:

apart from the Intermediate Realistic Cavity (IRC), periodically realistic and fully real-

istic thermal boundary conditions have been introduced and the corresponding configu-

rations, namely PRC (Periodically Realistic Cavity) and FRC (Fully Realistic Cavity),

have been investigated by using LES approach. PRC configuration was chosen in order

to have compatible approaches with those used by Peng and Davidson [19]. In a FRC,

thermal conditions on the 6 cavity walls are of Dirichlet type and provided by experi-

mental measurements. This ensures that when working on the same physical problem

(the same boundary value problem) both experimental and numerical studies provide

similar results which are in good agreement. Therefore, understanding the reason why

the discrepancy persists and where the realistic thermal boundary conditions come from

is more than ever a current topic.

Three reasons for the discrepancy or the fully realistic thermal boundary conditions

are possible: non-Boussinesq effects, the coupling between air convection and heat con-

duction in insulating polyurethane foam and the coupling of air convection with both

heat conduction in polyurethane foam and radiation between cavity internal surfaces.

As in the experiment ∆T = 15K is within the validity limit of Boussinesq assumption es-

tablished for air by Gray and Giorgini [10], it is still doubtful that non-Boussinesq effects

influence more than 50% the thermal stratification in the cavity core, especially when

the experimental measurements showed no sign of important centro-symmetry break-

ing [21]. We can therefore exclude, at least at the current stage, non-Boussinesq effects

from consideration.

In this study we present briefly experimental studies performed and investigate nu-

merically the last two possible reasons. It is known that air has low thermal conductivity

and it is difficult to achieve adiabatic conditions for an air-filled cavity as polyurethane

foam has λf = 0.027 W/(m K) to be compared with λ = 0.025 W/(m K) of dry air. The

coupling between convection in air and heat conduction in polyurethane foam needs thus

to be taken into account. This is supported by the recent work of Omri and Galanis [18]

2



who investigated the experimental case of Tian and Karayiannis [28] and observed sig-

nificant effect on numerical results when considering heat conduction in the horizontal

walls.

As far as surface radiation is concerned, its importance is supported by the following

facts:

• Net radiative flux is not small compared with convective heat flux. The cavity

active walls are made of polished aluminium. Typical emissivity of polished alu-

minium surface is about 0.1. Net radiative flux exchanged between these walls

is proportional to ǫσ(T 4
h − T 4

c ) ∼ 4ǫσT 3
0 (Th − Tc) where ǫ = 0.1, σ = 5.67 ×

10−8W/(m2 K4) is Stefan-Boltzmann constant, T0 = (Th + Tc)/2 = 295.5 K is the

average temperature and Th and Tc are respectively the hot and cold temperatures.

When scaled with conduction flux, λ∆T/H (λ = 0.025 W/(m K), air thermal con-

ductivity andH = 1m, cavity height), dimensionless net radiative flux (4ǫσHT 3
0 /λ)

is equal to about 24, roughly 40% of convective heat transfer. The above rough

estimation indicates that not only surface radiation can not be neglected in natural

convection in the cavity considered but also the estimated magnitude of radiative

net flux is important in terms of heat transfer.

• Surface radiation changes dramatically thermal boundary conditions. Adiabatic

conditions imply the balance between convective flux and net radiative flux, this

means that temperature gradient is no longer equal to zero at the adiabatic walls.

Interface conditions at polyurethane foam surfaces will result from the balance of

conduction in polyurethane foam, convection in air and surface radiation.

• The front and rear walls are almost black bodies. The cavity surfaces in the

experiment are at low temperatures and the corresponding surface radiation is in

infra-red. The front and rear walls are made of polycarbonate, they are opaque for

infra-red and have thus strong emissivities.

• Emissivities of the front and rear walls do influence the thermal stratification in

the cavity core [21]. With decreasing the emissivities (from 0.97 to 0.1) of the

front and rear walls, the stratification measured for depth/height aspect ratio of

0.32 increased from 0.375 to 0.44. This is certainly not enough to explain the

difference between numerical and experimental results but it does suggest that

surface radiation is important in the cavity and should be investigated in order to

understand its effects.

We are thus motivated by investigating surface radiation and its influence on heat transfer

and flow structures in the cavity and numerical methods have been developed to enable

numerical studies of the coupling between surface radiation and natural convection.
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Although there are in the literature numerous references for natural convection in

cavities, works on interactions between surface radiation and natural convection are rare.

As far as rectangular cavities are considered, participating medium is investigated by

Lauriat [14], Chang et al. [6], Fusegi and Farouk [8], Yücel et al [35], Han and Baek [12],

Kassemi and Naraghi [13], and Colomer et al [7], partitioned cavities are considered by

Chang et al. [6], Han and Baek [12] and Mezrhab and Bchir [17] and finally transparent

medium in cavities of simple geometry is investigated by Behnia et al [4], Balaji and

Venkateshan [2, 3], Kassemi and Naraghi [13], Akiyama and Chong [1], Velusamy et

al [30] and Colomer et al [7]. Among studies performed for transparent medium in

cavities of simple geometry, only Colomer et al [7] and Borjini et al [5] performed three-

dimensional simulations and Velusamy et al [30], Sharma et al [26] and Xamán et al [32]

investigated interactions of turbulent natural convection with surface radiation by using

two-dimensional k − ǫ modelling. There are obviously difficulties in finding test cases

in order to validate numerical procedures developed for investigating three-dimensional

turbulent natural convection interacting with surface radiation. Even in two-dimensional

laminar cases, there is no benchmark problem on interactions of natural convection with

surface radiation for the purpose of code validation. Therefore in the present 3D work

only basic tests have been done for numerical procedures used. Note nevertheless that

the approach used has been tested and validated previously in 2D cases [31].

As has been observed in Part II [24], LES using the temperature fields experimentally

measured on the passive walls yielded numerical results in good agreement with the

experimental data. Our last motivation is to understand the physical phenomena which

result in the experimentally observed temperature distributions on the passive walls.

This paper is organized as follows: the next section concerns the physical problem

which is followed by the mathematical formulation and numerical methods. Numerical

results will be presented and discussed before giving the concluding remarks.

2 Physical problem

We are interested in an air-filled cavity of 1 m wide in x direction (width W = 1 m),

0.32 m deep in y direction (depth D = 0.32 m) and 1 m high in z direction (height

H = 1 m). The corresponding experimental facility displayed in Figure 1 is an air-

filled cavity of 1 m×1 m×1 m. The cavity floor and ceiling are made of polyurethane

foams of Hf = 100 mm thick (λf = 0.027 W/(m K) and κf = 3.04 × 10−7 m2/s) and

they are covered by an aluminium foil of 70 µm thick with low emissivity. The two

active (isothermal) walls are realized with 10 mm polished aluminium plates. In order

to prevent heat loss through the vertical passive walls, the whole cavity is divided in

the depth (y) direction into three cavities of equal size by transparent polycarbonate

sheets of 1 mm thick. Measurements are done only in the central cavity and the present
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experimental set-up is an improved version of the cavity studied by Mergui and Penot [16]

with enhanced temperature and velocity metrology.

In order to stay within the limit of Boussinesq assumption, temperature difference

between the hot and cold walls, ∆T = Th−Tc, is kept to be equal to 15 K (Th = 303 K and

Tc = 288 K) around the ambient temperature which is equal to the mean temperature,

T0 = (Th+Tc)/2 = 295.5 K. In terms of non-dimensional parameters, natural convection

flows in the cavity depend on the geometrical aspect ratios (Ax = W/H = 1, Ay =

D/H = 0.32 and Af = Hf/H = 0.1), Prandtl number Pr = ν/κ = 0.71 and Rayleigh

number Ra = (gβ∆TH3)/(νκ) = 1.5 × 109 where β = 0.003 K−1 (thermal expansion

coefficient), ν = 1.5 × 10−5 m2/s (molecular viscosity) and κ = 2.1126 × 10−5 m2/s

(thermal diffusivity) are calculated at the mean temperature T0.

In this work, surface radiation between the cavity internal surfaces is investigated.

As temperature ranges from Th to Tc in the experimental set-up and Th < 310 K,

surface radiation involved in it is low temperature radiation in infra-red. Due to the

fact that dry air is the working fluid, fluid medium is considered as transparent for

low temperature radiation. Because polycarbonate forming the front and rear walls is

opaque for low temperature radiation, the cavity surfaces are supposed to be grey, diffuse

and opaque, i.e. surface emissivities, ǫi, and their absorptivity, αi, are independent of

wavelengths and directions, furthermore ǫi = αi. Emissivities of the cavity internal

surfaces have been measured: for the polished aluminium surfaces (the vertical active

walls) ǫ = α = 0.09, for the aluminium films covering polyurethane foam ǫ = α =

0.18 and for the polycarbonate surfaces ǫ = α = 0.97. Note that the aluminium films

covering polyurethane foam are separated from active walls and heat conduction in them

are neglected in numerical simulations: they are supposed to only take part in surface

radiation.

3 Mathematical formulation

The physical problem defined above involves natural convection in air, heat conduction in

the horizontal insulating walls made of polyurethane foam and surface radiation between

the cavity internal surfaces. In the following a brief mathematical description in the scope

of DNS approach is given. Concerning the LES approach, details can be found in [23, 22]

and only boundary conditions are specified.

3.1 Boussinesq equations in air

As ∆T = 15 K, we can suppose air flows in cavity are governed by the unsteady Navier-

Stokes equations under Boussinesq approximation. Using the temperature difference

∆T = Th − Tc and the mean temperature T0, we define reduced temperature Θ =
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(T − T0)/∆T . Using the cavity height as reference length, thermal diffusivity of air and

Rayleigh number Ra, we define reference velocity as κRa1/2/H . The unsteady Navier-

Stokes equations governing air flows in the cavity read in dimensionless form:

0 =
∂u

∂x
+

∂v

∂y
+

∂w

∂z

∂u

∂t
+ u

∂u
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+

Pr

Ra1/2
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)u

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
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+
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(
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+
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+
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∂z
= −

∂p
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+

Pr

Ra1/2
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)w + PrΘ

∂Θ

∂t
+ u

∂Θ

∂x
+ v

∂Θ

∂y
+ w

∂Θ

∂z
=

1

Ra1/2
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)Θ

(1)

where u, v and w are the velocity components in respectively x, y and z directions. The

above equations are defined in (x, y, z) ∈ [0, Ax]× [0, Ay]× [0, 1].

3.2 Heat conduction in polyurethane foam

Dimensionless equation of heat conduction in polyurethane foam reads:

∂Θ

∂t
=

κf

κ

1

Ra1/2
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)Θ (2)

where κf is thermal diffusivity of polyurethane foam. It is defined in (x, y, z) ∈ [0, Ax]×

[0, Ay]× [−Af , 0] (the bottom insulating wall) and [0, Ax]× [0, Ay]× [1, 1+Af ] (the top

insulating wall).

3.3 Low temperature surface radiation

Given a temperature distribution on the cavity internal surfaces and the above assump-

tions, the surface radiation problem in a differentially heated cavity is fully described by

the following linear system governing the radiosity, J̃i (W/m2):

J̃i = (1− ǫi)
m
∑

j=1

Fij J̃j + ǫiσT
4

i (i = 1, 2, · · · , m) (3)

where σ is Stefan-Boltzmann constant, m is the total number of isoflux and isothermal

surface elements, Fij is geometric view factor between i surface element and j surface

element. The net radiative heat flux resulted from surface radiation, which is defined in

the normal direction of a surface element, can be calculated by:

q̃i =
ǫi

1− ǫi
(σT 4

i − J̃i) (i = 1, 2, · · · , m) (4)
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Equations (3) and (4) are the most elementary formulation of surface radiation [27, 20].

They are chosen for their simplicity although Equation (4) is not valid for black surfaces.

In numerical simulation of natural convection it is usual to work with dimensionless

equations and heat transfer is characterized then by Nusselt number. Coupling natural

convection with the surface radiation requires the same manner to make dimensionless

heat flux, i.e., qi = q̃iH/(λ∆T ) and Ji = J̃iH/(λ∆T ). (Note also that (λ∆T )/H is

the reference flux for conduction in polyurethane foam.) This leads to the following

dimensionless equations:

Ji − (1− ǫi)
m
∑

j=1

FijJj = ǫiσH(Θi ×∆T + T0)
4/(λ∆T ) (i = 1, 2, · · · , m) (5)

and

qi =
ǫi

1− ǫi
[σH(Θi ×∆T + T0)

4/(λ∆T )− Ji] (i = 1, 2, · · · , m) (6)

In the literature of natural convection-surface radiation coupling, apart from the

dimensionless parameters appeared in natural convection and the radiative properties

of the surfaces, two more numbers are involved: Θ0 = T0/∆T , reference temperature

ratio, and Nr = HσT 4
0 /(λ∆T ), radiation number, or its inverse Planck number. The

experimental case investigated numerically in the present work corresponds to Θ0 = 19.7

and Nr = 1717.6359. Note that when using radiation number Nr or Planck number

one has to use another dimensionless net radiative flux in order to calculate radiative

Nusselt number. From the dimensionless net radiative flux used in Equations (5) and (6)

radiative Nusselt number can be obtained directly by integrating qi or −qi depending on

the considered walls. Note also that in experimental studies Rayleigh number is modified

by changing either the cavity size or the temperature difference ∆T : any change in

Rayleigh number will also modify Θ0 and Nr. It is therefore impossible, in experiments,

to keep constant Pr, Θ0 and Nr simultaneously while varying only Rayleigh number.

This means that, when doing numerical simulations using Θ0 and Nr, these numbers

should be carefully chosen so that the computed cases correspond to experimentally

realisable situations.

3.4 Boundary and interface conditions

On the cavity internal surfaces, velocity field satisfies no-slip conditions.

The thermal boundary conditions are complicated by the fact of involving surface ra-

diation. In terms of energy conservation, adiabatic condition means the balance between

convective flux and net radiative flux and on the interfaces between air and polyurethane

foam net radiative flux should also be considered. The thermal conditions are then:

• Θ = 0.5 on the hot wall (x = 0) and Θ = −0.5 on the cold wall (x = Ax).
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• Θ = 0 at z = −Af and 1 + Af (on the external surfaces of the top and bottom

walls).

• −
λf

λ

∂Θ

∂z

∣

∣

∣

∣

∣

foam
= −

∂Θ

∂z

∣

∣

∣

∣

∣

air
+ q at z = 0 (on the cavity bottom surface) and

λf

λ

∂Θ

∂z

∣

∣

∣

∣

∣

foam
=

∂Θ

∂z

∣

∣

∣

∣

∣

air
+ q at z = 1 (on the cavity top surface).

• Adiabatic conditions at y = 0 and Ay for polyurethane foam:
∂Θ

∂y
= 0 for z < 0

and z > 1.

• Adiabatic conditions at y = 0 and Ay on the surfaces of polycarbonate sheets:

−
∂Θ

∂y
+ q = 0 for 0 < z < 1 and y = 0 and

∂Θ

∂y
+ q = 0 for 0 < z < 1 and y = Ay.

where λf is the thermal conductivity of polyurethane foam and q, the net radiative flux,

is the solutions of Equations (6).

Note that

• for the case of conjugate natural convection (convection-conduction coupling), it

suffices to set to zero the net radiative flux in the above thermal boundary condi-

tions and spare the relevant computations of surface radiation. The usual adiabatic

conditions are recovered on the front and rear walls.

• for the case of LES using the measured temperature distributions one needs only

to work in air, i.e. in (x, y, z) ∈ [0, Ax] × [0, Ay] × [0, 1], and provide the thermal

boundary conditions of Dirichlet type on the front (y = 0), rear (y = Ay), top

(z = 1) and bottom (z = 0) walls. The corresponding analytical expressions can

be found in [24].

3.5 Heat transfer

In dimensionless form, the thermal conditions on the top (z = 1) and bottom (z = 0)

walls represent the relationship between convective, conductive and radiative Nusselt

numbers. In most of the times one is interested in the equivalent 2D-configuration

Nusselt numbers in the mid-depth vertical plane at y = Ay/2 and some experimental

results are available for the comparison purpose. As indicated Parts I and II, Nusselt

number averaged over cavity walls are also of interest and should also be provided for

comparison.

If < .> denotes time-averaging and (λ∆T )/H is used as the reference flux, local

time-averaged convective Nusselt number in air is defined as <Nu>c (x,Ay/2, 0) =

−
∂<Θ>

∂z
(x,Ay/2, 0)

∣

∣

∣

∣

∣

air
at y = Ay/2 and z = 0. Local time-averaged diffusive Nusselt
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number in polyurethane foam on the same wall is defined as <Nu>d (x,Ay/2, 0) =

−
λf

λ

∂<Θ>

∂z
(x,Ay/2, 0)

∣

∣

∣

∣

∣

foam
. Local time-averaged radiative Nusselt numbers is <Nu>r

(x,Ay/2, 0) =< q > (x,Ay/2, 0) at z = 0 in the mid-depth vertical plane. The cor-

responding time-averaged mean Nusselt numbers, denoted respectively by <Nu>
c
1D,

<Nu>
d
1D and <Nu>

r
1D, are calculated by integrating local time-averaged Nusselt num-

bers along the mid-depth line: <Nu>
c
1D =

1

Ax

∫ Ax

0

<Nu>c (x,Ay/2, 0)dx for exam-

ple. In the same way, Nusselt numbers are defined along the mid-width line on the

top wall, but note that local time-averaged radiative Nusselt number is defined as

<Nu>r (x,Ay/2, 1) = − <q> (x,Ay/2, 1) at z = 1 due to the fact that q is in top

wall’s normal direction.

Let us recall that local time-averaged convective and radiative Nusselt numbers on

the hot wall are defined as follows: <Nu>c (0, Ay/2, z) = −
∂<Θ>

∂x
(0, Ay/2, z) and

<Nu>r (0, Ay/2, z) =< q > (0, Ay/2, z). Integrating them along the mid-depth line

gives rise to the time-averaged mean Nusselt numbers, <Nu>
c
1D and <Nu>

r
1D. Nusselt

numbers are defined in the same way on the cold wall except for <Nu>r (Ax, Ay/2, z) =

− <q>(Ax, Ay/2, z).

The above Nusselt numbers are defined in the coordinate directions. A positive value

means that heat flux is in the same direction as the coordinate. This explains why the

definition of radiative Nusselt numbers is complicated by the fact that net radiative flux

is always defined in surface’s normal direction. Obviously, time-averaged mean Nusselt

numbers over any active or passive surface can be obtained by integrating in the depth

direction the above mean Nusselt numbers defined on lines. For example, on the hot

wall <Nu>
c
2D =

1

Ay

∫ Ay

0

∫

1

0

<Nu>c (0, y, z)dzdy. These definitions are similar to those in

Parts I and II [25, 24] but complicated by the fact that one should distinguish conductive,

convective and radiative Nusselt numbers.

4 Numerical methods

Equations (1), (2), (5) and (6) are coupled through boundary and interface conditions.

The previous study [33] showed that the coupling between Equations (1) for convection

in air and Equation (2) for conduction through interface conditions can be dealt with

a domain decomposition approach. The main question concerns how to treat the in-

teraction between Equations (5) and (6) of surface radiation and Equations (1) and (2)

of convection-conduction. As flows to be investigated are turbulent, any instantaneous

exact coupling requiring an iterative method would be too expensive to be feasible. A

realistic idea is to decouple the equations of surface radiation from those of convection-

conduction by explicit treatment of surface radiation problem in time due to the fact

that time step must remain small for turbulent flows. In the following we recall briefly
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numerical methods used for solving Equations (1) and (2) and detail how to solve the

surface radiation problem.

Equations (1) and (2) are discretized in time by a semi-implicit scheme: diffusion

is treated implicitly and nonlinear terms are explicit. Solutions in polynomial forms

are searched for these equations: spectral Chebyshev collocation methods are used.

Apart from velocity-pressure coupling, Equations (1) are reduced to Helmholtz equa-

tions which are solved by total diagonalization as was suggested by Haidevogel and

Zang [11]. Velocity-pressure coupling arisen in the unsteady Boussinesq equations is

handled by projection method. Details of solving 3D unsteady Boussinesq equations can

be found in [34].

In z-direction the layers of polyurethane foam are considered as sub-domains and

Equations (2) are discretized in space by using a different grid. Together with interface

conditions, the discretized energy equations are a mono-dimensional domain decomposi-

tion problem which can be solved either by a direct method or matrix influence method

(see [33] for details) provided that q, net radiative heat flux, appeared in the bound-

ary and interface conditions is known. Explicit treatment of q leads to the following

conditions at time step n+ 1:

• −
λf

λ

∂Θn+1

∂z

∣

∣

∣

∣

∣

foam
= −

∂Θn+1

∂z

∣

∣

∣

∣

∣

air
+ (2qn − qn−1) at z = 0 and

λf

λ

∂Θn+1

∂z

∣

∣

∣

∣

∣

foam
=

∂Θn+1

∂z

∣

∣

∣

∣

∣

air
+ (2qn − qn−1) at z = 1.

• Adiabatic conditions at y = 0 and Ay:
∂Θn+1

∂y
= 0 for z < 0 and z > 1, −

∂Θn+1

∂y
+

(2qn − qn−1) = 0 for 0 < z < 1 and y = 0 and
∂Θn+1

∂y
+ (2qn − qn−1) = 0 for

0 < z < 1 and y = Ay.

which allow to get temperature field at time step n + 1, the rhs of Equations (5), Jn+1
i

and qn+1
i .

Due to the fact that the cavity internal surfaces are not isothermal except for the two

vertical active walls, we have to, in order to set up the surface radiation problem (3),

discretize the non-isothermal cavity internal surfaces. It means that m, the number of

surfaces elements, is no longer equal to the number of cavity surfaces and must be much

larger than it.

Given a grid number of NI ×NJ ×NK for solving the Navier-Stokes equations (1),

one gets 2(NI×NJ+NI×NK+NJ×NK) surface elements. If NI = NJ = NK = 100

for example, the number of surfaces elements, which is also the dimension of the discrete

radiation problem, is equal to 6×104 (very huge indeed!). Although a grid number of 106

is common for DNS and LES, it is clear that the discrete radiation problem resulting from

the same Navier-Stokes mesh still has a very huge dimension. It is therefore impossible
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to couple DNS or LES with surface radiation problem by using the same surface mesh

as the one used for solving the Navier-Stokes equations.

It seemed to us that one way to deal with the convection-surface radiation coupling

is to use a coarser surface mesh for the discrete radiation problem. As a differentially

heated cavity possesses two isothermal vertical walls, we used a strong assumption that

energy incident on and leaving these surfaces is uniform and they can thus be considered

as two surface elements for the radiative problem. Although this helps considerably to

reduce the dimension of surface radiation problem, it prevents us from investigating the

local radiative exchange on the two vertical active walls. In this way if we take every

other point of the Navier-Stokes grid on the cavity internal surfaces, with NI = NJ =

NK = 100 for example, the dimension of discrete surface radiation problem, equal to

2(1 +NI ×NJ/4 +NI ×NK/4) = 10002, becomes more reasonable for using a direct

solver. In practice for Ra = 1.5×109 a surface mesh of 2(1+NI×NJ/8+NI×NK/16)

has been used for the surface radiation problem.

Obviously a coarser surface mesh for surface radiation problem imposes a polyno-

mial interpolation of the net radiative flux from the radiation surface mesh onto the

Navier-Stokes collocation mesh. As the mesh for surface radiation problem is also Gauss

points, the corresponding interpolation is a uniform approximation and can be used.

Note, however, that net radiative flux is an averaged quantity over each surface element,

the most consistent approach requires computations of averaged temperature on each

radiation surface element and deconvolution of net radiative flux from the radiation sur-

face mesh onto the Navier-Stokes collocation mesh. In the present study we considered

the inner-most pointwise temperature on a radiation surface element to be the averaged

temperature over this element and the net radiative exchange over this element to be

the pointwise heat flux at the inner-most point. Further investigation should be carried

out in the future in order to improve the present approach.

Equations (5) can be put into matrix formAJ = b where Aij = δij−(1−ǫi)Fij and bi =

ǫiσH(Θi×∆T+T0)
4/(λ∆T ). Solving the surface radiation problem consists of calculating

Fij and finding solutions of the linear system (5). Fij is calculated by combining 5

point Gauss-Legendre quadrature with analytical integration : easy integrations are done

analytically and the remaining is completed by Gauss-Legendre quadrature. The quality

of Fij calculation is checked by
m
∑

j=1

Fij − 1 < 10−4. Note that matrix A is diagonally

dominant for ǫi > 0 and that iterative methods such as Jacobi, Gauss-Seidel and GMRes

can be used to solve Equations (5), nevertheless in the present study A is inverted and

J is obtained directly by doing matrix-vector product, A−1b. A−1 is obtained by using

Lapack routines and A−1A = I is checked on round-off level.
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5 Results and discussions

5.1 Experimental uncertainties

As numerical results will be compared with experimental data [21], it is important

to provide measurement uncertainties. Temperature is measured by calibrated K-type

micro-thermocouples of 25 µm and velocity measurements are obtained with a 5W two-

component Argon Laser Doppler Anemometer in backscatter mode. Most of temperature

and velocity profiles are measured in the mid-depth plane of the central cavity at var-

ious vertical positions. Both temperature and velocity measurements made use of a

Charlyrobot transverse system with a position uncertainty of 10 µm.

The calibrating procedure followed in [21] revealed an uncertainty of 0.12 K for tem-

perature between 283.15 K and 323.15 K. In terms of time-averaged reduced temperature

Θ, the uncertainty is equal to 0.8%. The uncertainties of LDA measurements are 1% on

time-averaged velocity, 5% on standard deviation and 0.1 mm on the measured position.

More details can be found in [21].

5.2 Numerical parameters

For solving the Navier-Stokes equations (1) and heat conduction equation (2) in the

horizontal walls, the following parameters are used: NI = 120, NJ = 90, NK = 180

and NKf = 20. (NI+1)×(NJ+1)×(NK+1) = 1, 992, 991 is the number of grid points

in the working fluid—air. As NKf is applied to the insulating material—polyurethane

foam, the corresponding grid points for temperature field in both fluid and insulating

foam are then equal to (NI + 1)× (NJ + 1)× (NK + 2NKf + 1) = 2, 433, 431. Using

this grid, spectral coefficients of Chebyshev polynomials have been checked: the level of

the highest frequencies is below 10−5 for instantaneous fields and 10−6 for time-averaged

ones.

The surface mesh for the radiative problem is NI/4, NJ/2 and NK/4 respectively in

x−, y− and z− directions (except for the hot and cold walls which are only two surface

elements due to the fact that they are isothermal). The dimension of surface radiation

problem is equal to 2(1 +NI ×NJ/8 +NI ×NK/16) = 5402. (It means that A (A−1)

has 29, 181, 604 elements and takes 233.45 Megabytes in computer memory.) Due to

the fact that for a given problem with fixed parameters A−1 needs to be computed only

once, solving the surface radiation problem does not increase much computation cost:

numerical simulations have been performed on a NEC SX5 vector computer by using

only one processor. The corresponding performance of 7.1 GFlops in average means a

speed of 5.25 seconds of mono-processor CPU time per time step. As the dimensionless

time step used is equal to 1.5 × 10−3, simulations of one dimensionless time unit take

approximately one hour of mono-processor CPU time. Note also that, although the
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number of surface elements used is relatively limited, it is not possible to use more

surface elements and discuss mesh sensitivity as a finer surface mesh with NI/2, NJ

and NK/2 will use 21604 surface elements and exceed completely the capacity of one

single processor (a 3.7 Gigabytes matrix to be inverted). This is also the reason why

each isothermal wall has been considered as a single surface element.

5.3 Simulations performed

The very first numerical simulation we performed was a LES using the measured tem-

perature distributions on the four passive walls. The aim was to show that numeri-

cal prediction should be reasonable provided that the thermal boundary conditions of

Dirichlet type are realistic. As the LES yielded numerical results in agreement with the

experimental data [24], several DNS were performed in order to understand from where

these realistic boundary conditions come.

Using numerical results obtained at Ra = 1.5 × 109 for the idealized cavity with

adiabatic passive walls, the first DNS has been done for the case of conjugate natural

convection (convection-conduction coupling). Although the convection-conduction cou-

pling improves considerably numerical prediction of temperature distribution on the top

and bottom walls, the discrepancy observed on the thermal stratification remains un-

changed. Three DNS have been then set up for the coupling of natural convection with

conduction in the insulating walls and surface radiation at the same Rayleigh number of

1.5 × 109. The first one has been performed with guessed emissivities of ǫ = 0.3 for the

active walls and the top and bottom surfaces (thin aluminium film). This simulation has

been done over 378 units of dimensionless time and two sets of turbulent statistics over

108 time units (one from 162 to 270 and another from 270 to 378) have been done in

order to check their dependence on integration time: the fact that very small difference

between the two sets of data has been observed leads us to the conclusion that the time

asymptotic flow regime was reached. The second one has been performed for more than

200 time units by using the ǫ = 0.2 in order to check the influence of the emissivities

on numerical results. After the emissivities of the active walls and the top and bottom

surfaces have been measured, the last one has been performed using ǫ = 0.09 for the

active walls and ǫ = 0.18 for the top and bottom surfaces for more than 300 time units.

Time-averaged fields and turbulent statistics have been obtained for the last 150 time

units. Table 1 summarises the numerical simulations performed.

5.4 Convection-conduction coupling

The DNS performed for convection-conduction coupling (S2) revealed that heat conduc-

tion in the insulating walls does influence positively the temperature distributions on the

top and bottom wall as indicated by Figure 2: significant improvement on temperature
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distribution is observed in comparison with adiabatic horizontal walls. Nevertheless,

numerical predictions still differ very much from the experimental data. With respect

to the thermal stratification, there is no improvement: temperature profile near the cav-

ity center remains unchanged. But it is important to note that heat conduction in the

insulating walls cools down fluid near the top wall and heats it up near the bottom wall.

Despite the important effects of heat conduction in the horizontal walls on the nu-

merical results, which are in agreement with the work of Omri and Galanis [18], the dis-

crepancy observed on temperature distribution and thermal stratification still remains.

This leads us to the conclusion that heat conduction is not the only physical phenomenon

responsible for the discrepancy. Heat conduction in the insulating walls is important and

should be considered by numerical studies (this is in agreement with the observation of

Omri and Galanis [18]), however it is not important enough to change flow structures in

the cavity core. Therefore the DNS of convection-conduction coupling was not pursued

and no other results are presented here.

5.5 Convection-conduction-radiation coupling

As the coupling of convection with conduction in the horizontal walls did not improve

numerical prediction of the thermal stratification in the cavity core, surface radiation

was included in the coupling process using DNS approach. Three simulations (S3, S4

and S5) have been performed and they differ only in the wall emissivities. Only S5 has

been conducted with the measured emissivities of the active walls (ǫ = 0.09) and the

aluminium films (ǫ = 0.18). Despite of the different values of the wall emissivities, the

results of the simulations S3 and S4 differ only slightly from those of simulation S5 in

terms of the thermal stratification and time-averaged profiles. Some results of S4 are

displayed in Figures 3 and 4 in order to show it. In the remaining of the paper, only the

results of S5 will be presented and discussed in detail.

Figure 3 displays temperature distributions in the mid-depth vertical plane on the in-

ternal horizontal walls and at the mid-width (x = Ax/2). It shows that numerical results

are strongly improved by adding surface radiation to the convection-conduction coupling

because numerical prediction is almost in perfect agreement with the experimental mea-

surements. The LES using measured temperature distributions on the passive walls also

predicts well the thermal stratification in the cavity core despite the larger peak values

of temperature in the horizontal boundary layers. In terms of the thermal stratification

(
∂<Θ>

∂z
) in the cavity core, the experimental result is equal to 0.37, the DNS (S5) and

LES (S1) provided respectively 0.33 and 0.42 while DNS (S4) yielded a value in between.

The agreement is really reasonable and satisfying compared with O(1) of the previous

studies [21, 22, 23].
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5.5.1 Heat transfer

In order to explain how surface radiation reduces the thermal stratification in the cavity,

heat transfer is first presented. In traditional 2D studies, heat transfer is presented in

terms of local and mean Nusselt numbers. In 3D cases, the equivalent 2D configuration

is the mid-depth vertical plane and in most of 3D investigations particular attention is

paid to the equivalent Nusselt numbers.

Figure 4 depicts the numerical and experimental local Nusselt numbers averaged

in time on the hot wall in the mid-depth vertical plane and shows a good agreement

between them. This agreement is also supported by the values of time-averaged mean

Nusselt numbers listed in Table 2. (Time-averaged global Nusselt numbers averaged

over wall surfaces are listed in Table 3.) Time-averaged local Nusselt numbers along the

top wall is displayed in Figure 5: reasonable agreement between numerical prediction

and experimental measurement is observed for the convective Nusselt number (see also

Table 2 for mean values). As far as the horizontal walls are concerned, Figure 5 and

Table 2 show that <Nu>
c
1D and <Nu>

d
1D are positive, while <Nu>

r
1D is negative. Near

the top wall, fluid is cooled down not only by heat conduction in the insulating wall

but also by surface radiation; near the bottom wall, fluid is heated not only by heat

conduction but also by surface radiation. Figure 6 showing net radiative flux on the

horizontal walls confirms the above observation: net radiative flux is essentially positive

on the top wall and leaves it; net radiative flux is essentially negative on the bottom

wall and arrives at it. This means that surface radiation plays the same role as heat

conduction in the insulating walls, that is pumping energy from hot fluid in the upper

part of the cavity and supplying energy to cold fluid in the lower part of the cavity.

Therefore, both heat conduction and surface radiation tend to decrease the thermal

stratification in the cavity through the horizontal walls.

Time-averaged net radiative flux on the front wall is shown in Figure 7. A similar

distribution is observed on the rear wall due to the temperature symmetry. Net radiative

flux is approximately positive on the top part of the front wall and the maximum value

is located in the top hot corner. It is negative on the bottom part of the front wall and

the minimum value is located in the bottom cold corner. This means that both the front

and rear walls lose energy through surface radiation on the top parts and receive energy

through surface radiation on the bottom parts. Surface radiation drains energy from

hot fluid through the top parts of the front and rear walls and supplies it to cold fluid

through the bottom parts of the front and rear walls. This also tends to decrease the

thermal stratification in the cavity core.

In summary, it is clear that heat conduction in the insulating walls and surface

radiation are both responsible for the weak thermal stratification observed in the cavity

core. The effects of heat conduction are only limited in the top and bottom parts of the

cavity, but the effects of surface radiation are more global as they are achieved through
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the four passive walls.

5.5.2 Time-averaged flow structure (profiles)

Vertical distribution of <u> velocity at mid-width and mid-depth of the cavity is shown

in Figure 8. Experimental measurement indicates a weak boundary layer flow along the

horizontal walls and a return flow outside the boundary layers. Near the bottom wall, for

example, the boundary layer thickness is equal to about 0.1 and the minimum velocity

is equal to about −0.06, the return flow extends from z = 0.1 to about z = 0.3 and the

maximum velocity is equal to 0.03. Let us recall that in previous studies

• Numerical simulations performed with adiabatic horizontal walls yielded results

which did not agree with experimental measurement not only in the horizontal

boundary layer but also in the return flow region [22, 25].

• Numerical simulations performed with measured temperature distributions on the

horizontal walls yielded results which agreed better with experimental measure-

ment in the horizontal boundary layer, but discrepancy is still important in the

return flow region [22, 25, 24].

• The LES using the measured temperature distributions on the 4 passive walls (the

FRC configuration) predicts a stronger horizontal boundary layer flow and a weaker

return flow in a smaller region, but the agreement remains reasonable [24]

When investigating the convection-conduction-radiation coupling, numerical results of

DNS reproduced well the experimental data except for the discrepancy observed on

the peak velocity value in the boundary layer along the top wall. As LES makes use of

measured temperature distributions on the top and bottom walls at the mid-width plane,

it is interesting to know how these profiles are representative of the corresponding wall

temperature. Figure 9 shows time-averaged temperature fields on the top and bottom

walls and confirms that the mid-depth profiles are a good approximation for 80% of the

surfaces.

Figure 10 depicts velocity and temperature profiles at z = 0.1, 0.2, · · ·, 0.9 along the

vertical active walls: a global agreement is observed between numerical and experimental

results especially as far as temperature profiles are concerned. Note nevertheless that

at z = 0.7, 0.8 and 0.9 the DNS predicts smaller peak values of <w> velocity than the

experiment and the LES in the hot boundary layer and that the LES predicts slightly

different <u> profiles at z = 0.8 and 0.9. Vertical flow in the hot boundary layer is

reinforced by the outside horizontal flow almost everywhere except for the position z =

0.2 at which the return flow occurs. Because of the return flow, important negative <u>

is observed at z = 0.8 and 0.9. It is also important to note that vertical velocity, <w>,

does not display any negative value outside the boundary layer and that slight negative
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vertical velocity outside the hot boundary layer characterises up to now the numerical

simulations performed with adiabatic horizontal walls in 2D cases and adiabatic passive

walls in 3D cases [22].

The profiles in Figure 10 display well the centro-symmetry observed in pure natural

convection in cavities. But rigorously there should not be any centro-symmetry because

surface radiation breaks this symmetry. The only hint of the symmetry breaking comes

from slight differences indicated by Figure 10 (b) on <u> and <θ> outside the boundary

layer.

In order to illustrate the global structure of the time-averaged flow and confirm the

experimental observation [21], DNS results of velocity fields in three horizontal planes

and two vertical planes are displayed in Figures 11 and 12. The three horizontal planes

correspond to z = 0.05 (near the bottom wall), 0.5 (mid-height) and 0.95 (near the

top wall) and the two vertical planes to y = 0.02 (near the front wall) and y = 0.30

(near the rear wall). Figure 11 shows that the transverse velocity, <v>, leaves the

mid-depth vertical plane at z = 0.05 and 0.95, which agrees with the the experimental

observation [21], and returns to this vertical plane at z = 0.5, the mid-height. In the

horizontal plane at z = 0.05, the vertical velocity, <w>, is positive near the front and

rear vertical walls (the corresponding flow is upward) and at z = 0.95 it is negative

near these vertical walls (the corresponding flow is downward), while at the mid-height

(z = 0.5) <w> is positive for x < 0.5 (upward flow) and negative for x > 0.5 (downward

flow) along the vertical front and rear walls. Figure 12 indicates that vertical flow is

mainly downward in the upper part and upward in the lower part near the front and

rear walls. Near these vertical walls, the transverse flow (with <v>) leaves the mid-depth

vertical plane only near the top and bottom walls. Over 80% of the central part of the

front and rear walls, the transverse flow which is very weak returns to the mid-depth

vertical plane. This confirms also the experimental observation [21].

In time-averaged sense, the 3D flow structure can be described as follows. After

turning the corner and leaving the hot vertical boundary layer, hot air flows along the

top horizontal wall: most of the fluid particles arrive at the opposite wall and feed the

cold boundary layer, but a small part of them flows horizontally and obliquely to the

front and rear walls. These particles move then downwards along the front and rear wall

and on their way downwards they return gradually towards the mid-depth vertical plane:

depending on the vertical positions some of them join the return flow to the hot wall

and the remaining particles move towards the cold wall. Although this 3D flow is weak

compared with flow scales in the vertical boundary layers, it is of ultimate importance

in terms of heat transfer. In fact, downward fluid particles along the front and rear walls

are hot particles. When they move downwards, they transfer energy to the front and

rear walls and are cooled down because the upper parts of the front and rear walls lose

energy through radiation (positive net radiative flux in Figure 7) and the front and rear
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walls should drain energy from fluid particles. Similar phenomena occur in the bottom

part of the cavity: cold particles move upwards along the front and rear walls and are

heated by surface radiation while mixed with less cold particles. In this way, the above

mentioned 3D flow mixes hot and less hot particles on the one hand and on the other

hand thermal radiation through the top, bottom, front and rear walls transfers energy

directly from the upper part of the cavity to the bottom part. This mechanism decreases

considerably temperature difference in the vertical direction and leads to a weak thermal

stratification.

5.5.3 Turbulent statistics

Turbulent statistics have been computed and compared with experimental measure-

ments. Figure 13 displays the corresponding results in terms of turbulent intensity along

the vertical walls in the mid-depth vertical plane.

Although time-averaged profiles show to a large extent the centro-symmetry, tur-

bulent statistics which are less symmetrical indicate better the symmetry-breaking by

surface radiation. In terms of turbulent quantities, the hot and cold boundary layers be-

have slightly different: the downstream of the cold boundary layer seems to be slightly

more turbulent in terms of wrms but slightly less turbulent in terms of θrms. The overall

agreement between numerical and experimental results are good, but note that numeri-

cal simulations over-estimate turbulent intensity of temperature. Concerning the vertical

velocity, w, turbulent intensity increases in the hot boundary layer, but for temperature

turbulent quantities are first damped from z = 0.1 to z = 0.3 and then amplified up

to z = 0.9. More generally, the profiles of turbulent intensity take the boundary layer

form of the time-averaged w velocity (apart from the wrms profiles at z = 0.1): θrms

is strongly correlated with <w> as the peak values of θrms locate almost at the peak

positions of the time-averaged w velocity, <w>; peak values of wrms locate outside the

peak positions of θrms and <w>.

Compared with time-averaged profiles, the agreement between numerical and exper-

imental results are less good for turbulent quantities. This can be partially explained by

experimental uncertainties: inertia of the micro-thermocouples may influence the accu-

racy of θrms for example. It is nevertheless important to note that the current agreement

is much better than the previous ones [22].

6 Summary and concluding remarks

For many years we have been doing comparative experimental and numerical studies in

order to understand the discrepancy observed on thermal stratification in a differentially

heated air-filled cavity.
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It was thought first that the discrepancy would be due to the 2D numerical simula-

tions performed for 3D experimental configuration. Efforts have been made to develop

3D codes, unfortunately 3D numerical simulations did not improve the agreement be-

tween numerical and experimental results: the same discrepancy was observed on the

thermal stratification [22]. Similar conclusion was also given in [29] for a cavity of aspect

ratio 4. Numerical studies using temperature distributions measured on the top and

bottom walls have been then proposed [15, 9, 19]. It turned out that this suggestion

had only limited effect on the results in the top and bottom parts of the cavity and did

not have any effect on the thermal stratification in the cavity core [22, 25]. Previous

works and various reflexions led us to take into consideration heat conduction in the

insulating materials and thermal radiation between the cavity internal surfaces in the

present study.

Heat conduction in the insulating horizontal walls should be considered because the

working fluid, air, is a good insulating material, this is also supported by a recent

study [18]. The coupling of natural convection with conduction in solid materials makes

use of domain decomposition techniques [33]: different materials define naturally the

sub-domains and heat flux is conserved at interfaces. Numerical simulation performed

by coupling natural convection with heat conduction in the insulating horizontal walls

yielded results similar to those obtained by using temperature distributions measured on

the internal surfaces of the horizontal walls: only results in the top and bottom parts of

the cavity have been modified. The near wall distributions of u velocity and temperature

are considerably improved, but the discrepancy observed on the thermal stratification

remains unchanged in the cavity core.

Surface radiation should be important because the front and rear walls are almost

black surfaces for low temperature radiation. It modifies the meaning of adiabatic con-

ditions and the interface conditions: adiabatic condition implies that convection flux

balances net radiative flux and interface conditions on the internal surfaces of the top

and bottom walls mean a balance of convection in air, conduction in the insulation

and surface radiation. Surface radiation was considered by using the common radiosity

formulation and assumptions that the surfaces are grey, diffusive and opaque. Net ra-

diative flux was also treated explicitly in time in order not to use any iterative methods.

The DNS has been performed for convection-conduction-radiation coupling and revealed

interesting results: a good agreement between numerical prediction and experimental

results is observed almost everywhere. This shows that surface radiation is an impor-

tant factor that affects natural convection in air-filled cavities and that the experimental

results of natural convection in air have resulted from the coupled phenomena of con-

vection, conduction and radiation. Surface radiation reduces the thermal stratification

through not only the horizontal walls but also the front and rear walls: first it cools

down the top wall and heats up the bottom wall; second it drains energy from hot air
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through the top parts of the front and rear walls and supplies energy to cold air through

the bottom parts of the front and rear walls. It is through the front and rear walls and

the corresponding heat transfer that a downward flow and a upward flow are observed

respectively along these walls near the top and bottom parts. In this sense, the ‘passive’

front and rear walls are far from being passive because they take part in heat transfer

through thermal radiation and decrease the thermal stratification in the cavity core.

In this paper, numerical results of the LES which has been performed by using

temperature distributions measured on not only the top and bottom walls but also the

front and rear walls [24] are detailed and a good agreement with experimental data is

shown. This means that

• On the one hand, it is not sufficient for numerical simulations to use temperature

distributions measured only on the top and bottom walls in order to obtain ex-

perimentally coherent results, one should rely on experimental studies to measure

also temperature distributions on the front and rear walls.

• On the other hand, it is sufficient for numerical simulations to use the measured

temperature distributions on all the ‘passive’ walls in order not to study in de-

tail the coupled phenomena of natural convection, heat conduction and surface

radiation.

This means also that measured temperature distributions on the ‘passive’ walls come

from the full coupling of natural convection in air, conduction in insulating material and

radiation between internal surfaces.

Although the present study showed the ultimate importance of surface radiation in

air-filled natural convection, it will be important to study mesh sensitivity of radiative

heat transfer for the present case and revisit other well-known experimental configura-

tions, that of Tian and Karayiannis [28] for example, in order to confirm the current

observation. Given the importance of surface radiation observed in this work and the

fact that surface radiation affects strongly flow structures of 2D natural convection in

air-filled cavities and the corresponding onset of time-dependent flows [31], it is neces-

sary to clarify the meaning of numerical investigations of pure natural convection flows

in air as surface radiation is inherent in air natural convection flows : pursuing such

studies in the future is more motivated by numerical challenge than by physical un-

derstanding. For the time being, it is clear that there need benchmark problems for

natural convection-radiation coupling in 2D/3D air-filled cavities and the corresponding

reference solutions.
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Simulation Type
Physical

phenomena

Active

walls

Horizontal

walls

Front and

rear walls

S1 LES convection
measured

temperature

measured

temperature

S2 DNS
convection

and conduction
interface adiabatic

S3 DNS

convection,

conduction

and radiation

ǫ = 0.3
interface

ǫ = 0.3

adiabatic

ǫ = 0.97

S4 DNS

convection,

conduction

and radiation

ǫ = 0.2
interface

ǫ = 0.2

adiabatic

ǫ = 0.97

S5 DNS

convection,

conduction

and radiation

ǫ = 0.09
interface

ǫ = 0.18

adiabatic

ǫ = 0.97

Table 1: Numerical simulations performed in the present work. S3 and S4 have been

performed by using guessed emissivities of the active walls and horizontal walls.

Hot wall Cold wall

EXP. DNS LES EXP. DNS LES

<Nu>
c
1D 55 53.43 55.3 54 54.65 55.3

Top wall Bottom wall

EXP. DNS LES EXP. DNS LES

<Nu>
c
1D 6.5 7.96 10.6 6.1 8.08 10.6

<Nu>
r
1D -4.85 -4.97

<Nu>
d
1D 3.11 3.11

Table 2: Time-averaged mean Nusselt numbers along different lines in the vertical mid-

depth plane. On the active walls, numerical results of both DNS (S5) and LES (S1) agree

well with the experimental measurements. On the internal horizontal walls, numerical

simulations predict higher convective Nusselt numbers than the experiment and both

numerical and experimental results have the same order of magnitude.

24



Hot wall Cold wall

DNS LES DNS LES

<Nu>
c
2D 54.04 54.3 54.77 54.3

<Nu>
r
2D 10.42 9.81

Top wall Bottom wall

DNS LES DNS LES

<Nu>
c
2D 7.74 10.0 7.70 10.0

<Nu>
r
2D -4.56 -4.61

<Nu>
d
2D 3.17 3.09

Table 3: Time-averaged global Nusselt numbers over different wall surfaces. Concerning

the convective Nusselt number, good agreement is observed between the DNS (S5) and

LES (S1) results on the active walls. Furthermore, the DNS results showed that energy

conservation is fulfilled to 0.37% in time-averaged sense as
(

<Nu>
c
2D +<Nu>

r
2D

)

cold
−

(

<Nu>
c
2D +<Nu>

r
2D

)

hot
+

(

<Nu>
d
2D

)

top
−

(

<Nu>
d
2D

)

bottom
is equal to 0.2.
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Figure 1: Experimental set-up (left) and numerically studied configuration (right). The

studied configuration is an air-filled differentially heated cavity of 1 m×0.32 m×1 m

(width×depth×height) subject to a temperature difference of 15 K (= Th − Tc) and

insulated on top and at bottom by polyurethane foam of 0.1 m thick (Hf = 0.1 m).
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Figure 2: Time-averaged temperature profiles in the mid-depth vertical plane (y = Ay/2)

on the internal horizontal surfaces (left) and at mid-width (right).
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Figure 3: Time-averaged temperature profiles in the mid-depth vertical plane (y = Ay/2)

on the internal horizontal surfaces (left) and at mid-width (right). The full convection-

conduction-radiation coupling improves not only temperature distributions on the inter-

nal horizontal surfaces but also thermal stratification in the cavity core.
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Figure 4: Time-averaged local convective Nusselt number along the hot wall (x = 0) in

the mid-depth plane (y = Ay/2). A good agreement is observed between the simulations

and measurements.
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Figure 6: DNS results of time-averaged net radiative flux on the bottom (left) and top

(right) walls. The continuous lines represent positive values and the dashed ones negative

values. Net radiative flux is essentially negative on the bottom wall, it implies that the

bottom wall receives energy through surface radiation. Net radiative flux is essentially

positive on the top wall, it means that the top wall loses energy through surface radiation.

x

z

Figure 7: DNS results of time-averaged net radiative flux on the front wall (y = 0).

Approximately, net radiative flux is positive on the top half and negative on the bottom

half. This indicates that the top part of the front wall loses energy through surface

radiation and drains it from hot fluid and that the bottom part receives energy through

surface radiation and supplies it to cold fluid.
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Figure 10: (a) Time-averaged profiles of velocity and temperature in the mid-depth

vertical plane at z = 0.5, 0.4, 0.3, 0.2 and 0.1 (from top to bottom).
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Figure 10: (b) Time-averaged profiles of velocity and temperature in the mid-depth

vertical plane at z = 0.9, 0.8, 0.7 and 0.6 (from top to bottom). In order to illustrate the

flow centro-symmetry, profiles of velocity and temperature along the cold wall (dashed

lines for the DNS results and × symbols for the experimental data) are also shown in

terms of Ax − x and 1− z.
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Figure 11: DNS results of <w> velocity (left) and <v> velocity (right) in the horizontal

planes at z = 0.05 (bottom), 0.5 (middle) and 0.95 (top).

x

z

Figure 12: DNS results of <w> velocity (left) and <v> velocity (right) in the vertical

planes at y = 0.02 (top) and y = 0.30 (bottom).
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Figure 13: (a) wrms and θrms in the mid-depth vertical plane at z = 0.5, 0.4, 0.3, 0.2 and

0.1 (from top to bottom).
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Figure 13: (b) wrms and θrms in the mid-depth vertical plane at z = 0.9, 0.8, 0.7 and 0.6

(from top to bottom).
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