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Abstract:

The problem of the long established thermal stratification discrepancy be-

tween numerical and experimental results is investigated in a three-part paper.

The first part establishes reference solutions by means of three-dimensional

(3D) spectral direct numerical simulations of a buoyancy-driven flow (RaH =

1.5× 109). Two configurations of differentially heated air-filled cavity are con-

sidered: an idealized cavity (perfectly adiabatic cavity, PAC) and an Interme-

diate Realistic Cavity (IRC) making use of experimentally measured temper-

ature distributions (Salat, 2004) on its top and bottom walls. The IRC flow

structure as well as its associated rms fluctuations correspond to the experi-

mentally observed flow dynamics. However both configurations keep resulting

in a core thermal stratification value equal to 1.0 whereas experiments lead

to a stratification of about 0.5. It is proved that this stratification paradox is

neither related to three-dimensional effects nor to the experimental thermal

distributions applied on the horizontal walls. Resolving this stratification dis-

crepancy is the subject of the last two parts of this paper (Sergent et al., 2010;

Xin et al., 2010).

Keywords: natural convection, differentially heated cavity, direct nu-

merical simulation, benchmark solutions, turbulence, Chebyshev approx-

imation

1 Introduction

We consider in this paper a Differentially Heated Cavity (DHC) for pa-
rameter values resulting in weakly turbulent flow. This configuration has
been the subject of many studies in the past decades as it constitutes a
canonical exercise for testing the performances of numerical codes and/or
turbulence models. The early studies were performed in 2D but, with the
continuously increasing capacities of computers, more and more are car-
ried out in 3D (Dol and Hanjalić (2001); Tric et al. (2000); Soria et al.
(2004); Salat et al. (2004); Trias et al. (2007); Baraghi and Davidson
(2007), for example). The laminar regime in a DHC was numerically ex-
plored in the late 70’s and during the 80’s, (Mallinson and de Vahl Davis,
1977; de Vahl Davis and Jones, 1983; Le Quéré, 1991; Fusegi et al., 1993)
and these studies agree to a very large extent for values of the Rayleigh
number up to 106, whatever the numerical method used.

The situation is not the same for transitional or weakly turbulent flows,
that is for Rayleigh numbers of the order of 109 − 1010. After a few
early attempts to provide turbulent solutions using k − ǫ modelling (see
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e.g. Markatos and Pericleous (1984) as an example), an attempt to de-
fine a numerical reference solution for turbulent natural convection in a
2D DHC was made at the EUROTHERM/ERCOFTAC conference held
in Delft in 1992 (Henkes and Hoogendoorn, 1992). On this occasion, a
numerical benchmark was proposed for an air-filled square DHC with
adiabatic horizontal walls at a Rayleigh number of 5× 1010. Most of the
contributions used a RANS k− ǫ approach with various turbulence mod-
els. Two 2D DNS (direct numerical simulation) solutions were provided,
one by Paolucci (1990) for a Rayleigh number of 1010 and one by Xin and
Le Quéré (1995) for a Rayleigh number of 109.5. This comparison exercise
pointed out that the RANS solutions displayed a large scattering. Later
on, a ”RANS reference solution” was defined as the average of the half
contributions contained in the minimum interval. It is thus a compound
solution of almost all the contributions as the contributions retained for
one quantity (maximum velocity, for example) in the reference solution
are not the same as those retained for another quantity (Nusselt num-
ber, for example). In particular, the ”reference” dimensionless thermal

stratification at the cavity center (< S >=
∂ < θ >

∂z
(1

2
, 1

2
)) was set to

S = 0.539 (Henkes and Hoogendoorn, 1995). It happens that this value
was close to the thermal stratification equal to < S >= 0.38 predicted
by Paolucci (1990) (it turned out that the integration time of Paolucci’s
DNS was too short to reach the corresponding asymptotic flow regime).
However several authors using 2D or 3D DNS or Large Eddy Simulations
(LES) approaches (Xin and Le Quéré, 1995; Nobile, 2002; Sergent et al.,
2003; Soria et al., 2004; Salat et al., 2004; Trias et al., 2010a) have re-
ported dimensionless values of the stratification < S > of about 1. In
fact, < S > taking a valueclose to 1 is in continuity with the value ob-
served in the separated boundary layer regime for steady solutions with
Ra ∼ 108, as it is now well established (Janssen and Henkes, 1996; Le
Quéré and Behnia, 1998).

More recently, new contributions using LES have provided numerical
values of the thermal stratification which are in good agreement with
experimental measurements of thermal stratification. For instance, Peng
and Davidson (2001), dealing with the experimental cavity of Tian and
Karayiannis (2000), have reported numerical results in good agreement
with the experimental observations when performing a 3D LES using the
measured temperature distributions on the top and bottom walls and
either adiabatic or periodic Boundary Conditions (BCs) in the spanwise
direction. This seems to indicate that combining 3D simulations with the
measured temperature distributions on the top and bottom walls, is the
key to the prediction of the thermal stratification in the cavity core. Dol
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and Hanjalić (2001) have also considered the measured temperature on
the cavity walls as Dirichlet BCs when performing 2D and 3D RANS
with either a second moment closure model or a modified k − ε model.
In their study, the rear and front walls are either passive or thermally
controlled but an unusual condition has been applied to the horizontal
walls: an isothermal cold bottom wall and an isothermal hot top wall
have been used. They have reported complete 2D and 3D comparisons
with the experimental data available for the different configurations con-
sidered. However, their results have proved to be very dependent on the
turbulence model and their comparisons with experimental data are not
completely satisfactory. The persistence of the variety of predicted flow
structures may lead to the occurrence of multiple solutions exhibiting
different symmetries, as it has been shown in the Rayleigh number range
107 − 108 in a cubic cavity (de Gassowski et al., 2006).

At the same time a joint research program has been set up in order to un-
derstand the unexplained discrepancy observed on thermal stratification
in the cavity core. This joint team work is based on three different but
complementary approaches: experimental measurements, 3D DNS and
LES. A new experiment (Salat et al., 2004) has been built up to revisit
the early experimental studies of Mergui and Penot (1997). Numerically,
3D DNS using spectral methods have been carried out along with 3D LES
using finite volumes, for parameters corresponding to the experimental
configuration.

This part, the first of a three part paper, is aimed at presenting a com-
plete set of reference numerical results (DNS) in a DHC with idealized
BCs (perfectly adiabatic BCs or measured temperature on the horizontal
walls). These results are meant to provide reliable data for analyzing the
influence of horizontal walls BCs on the flow structure.

The second part of the paper (Sergent et al., 2010) defines several con-
figurations with increasing levels of realism in the thermal BCs. The
corresponding results of LES are compared. The increasing improvement
in predicting the thermal stratification in the cavity core is shown which
resolves the stratification paradox. The third part of the paper (Xin et al.,
2010) will show that the main physical phenomenon responsible for the
temperature distributions on the cavity walls is the wall radiation.

The remainder of the present paper is structured as follows: next sec-
tion is devoted to the physical problem of interest, then the equations
are given together with a brief description of the numerical methods. In
section 3, the results are presented laying the emphasis on the influence
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Fig. 1. The considered geometry.

of the thermal distribution on the horizontal walls. Comparison is based
on qualitative and quantitative results for time-averaged flow, turbulent
transition, power spectra and turbulent statistics are given. The conclu-
sions are given in section 4.

2 Physical problem and mathematical formulations

2.1 Geometrical configuration and thermal characteristics

The geometrical configuration corresponds to an air-filled cavity of width
W in the x direction, depth D, in the spanwise y direction and height
H in the vertical z direction as illustrated in Figure 1. Its two opposite
vertical walls in the x direction are maintained at uniform but different
temperatures Th at x = 0 and Tc at x = W . Due to buoyancy, a fluid
motion is induced in the cavity: it depends on the cavity geometry, the
working fluid and the temperature difference, ∆T (= Th −Tc). The front
and rear walls are considered to be thermally insulated. Depending on
the studied configuration, the two other walls (top and bottom walls)
are either thermally insulated or maintained at a constant temperature
distribution (see section 3.1).

In terms of dimensional analysis, the representative dimensionless param-
eters are the geometrical aspect ratios (Ax = W/H = 1, Ay = D/H =
0.32, Az = 1), the Prandtl number, Pr = ν/α (Pr = 0.71 for air) and
the Rayleigh number, Ra = gβ∆TH3/(να) (Ra = 1.5 × 109), where
β is volumetric thermal expansion coefficient, g gravity acceleration, ν
kinematic viscosity and α thermal diffusivity.

In the differentially heated cavity displayed in Figure 1, the buoyancy
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force results in a clockwise circulation which consists, at large enough
Rayleigh number, in a thin upward vertical boundary layer along the
hot wall and a thin downward boundary layer along the cold wall. The
vertical boundary layers are connected by horizontal flows which take
place along the top and bottom walls. The cavity core is mostly at rest
and experiences a thermal stratification with a quasi-linear temperature
distribution in the vertical direction. This thermal stratification can thus
be characterized by the vertical temperature gradient at the cavity center:

S =
∂θ

∂z
(Ax/2, Ay/2, 0.5) where θ = (T −T0)/∆T is reduced temperature

with T0 = (Th +Tc)/2. In turbulent regime, it is defined in time-averaged

sens with < S >=
∂ < θ >

∂z
(Ax/2, Ay/2, 0.5) where the < · > denotes

time averaging. Time-averaged heat transfer at the cavity walls is defined
by the following Nusselt numbers:

• 1D Nusselt numbers averaged along the vertical and horizontal lines at

the cavity mid-depth (y = Ay/2): < Nu1D,hot >=
∫ 1

0

∂ < θ >

∂x
(0, Ay/2, z)dz

and < Nu1D,cold >=
∫ 1

0

∂ < θ >

∂x
(Ax, Ay/2, z)dz

< Nu1D,bottom >=
1

Ax

∫ Ax

0

∂ < θ >

∂z
(x, Ay/2, 0)dx and < Nu1D,top >=

1

Ax

∫ Ax

0

∂ < θ >

∂z
(x, Ay/2, 1)dx

• 2D Nusselt numbers averaged over the vertical and horizontal walls:

< Nu2D,hot >=
1

Ay

∫ 1

0

∫ Ay

0

∂ < θ >

∂x
(0, y, z)dydz and < Nu2D,cold >=

1

Ay

∫ 1

0

∫ Ay

0

∂ < θ >

∂x
(1, y, z)dydz

< Nu2D,bottom >=
1

Ax×Ay

∫ Ax

0

∫ Ay

0

∂ < θ >

∂z
(x, y, 0)dydx and < Nu2D,top >=

1

Ax×Ay

∫ Ax

0

∫ Ay

0

∂ < θ >

∂z
(x, y, 1)dydx

Needless to note that adiabatic conditions along the top and bottom walls
would imply zero Nusselt numbers there, although they are not equal to
zero in the case of real experiments and in numerical simulations using
measured temperature distribution on the top and bottom walls.
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2.2 Governing equations

Air in the cavity is considered to be newtonian and incompressible.
Buoyancy-induced air flow is governed by the unsteady 3D Navier-Stokes
under Boussinesq assumption in dimensionless form:







































∂ui

∂xi
= 0

∂ui

∂t
+ uj

∂ui

∂xj
= −

∂p

∂xi
+

Pr

Ra1/2

∂

∂xj

(

∂ui

∂xj
+

∂uj

∂xi

)

+ Prθδi3

∂θ

∂t
+ uj

∂θ

∂xj
=

1

Ra1/2

∂2θ

∂xj
2

(1)

Dimensionless Equations 1 are obtained by using cavity height (H) as
reference length and the convective velocity (αRa1/2/H) as reference ve-
locity. t denotes time, xi denotes the coordinates (xi = (x, y, z)), ui is the
velocity component in the xi−direction (ui = (u, v, w)), p is the pressure
and θ, the reduced temperature, ranges from −0.5 on the cold wall to 0.5
on the hot wall.

In the present part of the three-part paper, the thermal BCs on the
front/rear vertical walls (y = 0, Ay) are set to be adiabatic (∂θ/∂y = 0).
On the bottom/top horizontal walls (z = 0, Az), thermal BCs can be
either adiabatic or of Dirichlet type (measured distributions). No-slip
BCs are set for velocity field on all 6 walls.

2.3 Numerical methods

The DNS code is based on a time marching procedure and uses spectral
collocation methods as spatial discretization. Time integration of the
governing equations is performed through a second-order semi-implicit
scheme. It combines a second-order backward Euler scheme with an
implicit treatment for the diffusion terms and an explicit second-order
Adams-Bashforth extrapolation for the nonlinear terms. This time scheme
results mainly in Helmholtz equations which should be solved at each
time step. Incompressibility is imposed by a projection method which
retains second-order accuracy of the time integration (Guermond and
Quartapelle, 1998; Achdou and Guermond, 2000).
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Helmholtz equations for velocity components and temperature, and pseudo-
Poisson equation for pressure correction are solved through total diago-
nalization of the discrete operators of second derivatives. Details of the
method can be found in Xin and Le Quéré (1995; 2002).

With Chebyshev collocation methods, grid points are defined in each
direction (x, y, z) by the Gauss-Lobatto distribution:

ξi =

(

1 + cos(
i π

Nξ
)

)

×
Aξ

2
; 0 ≤ i ≤ Nξ

where Aξ is the cavity aspect ratio in direction ξ.

In terms of wall units at Ra = 1.5× 109, the DNS grid results in ∆x+ ≤
0.2, ∆y+

max ≤ 0.2, ∆z+
max ≤ 0.4 in the PAC case (see section 3.1 for

definition).

3 Reference numerical results

3.1 Investigated configurations

We are interested in two configurations, one is academic with perfectly
adiabatic passive walls and another is more realistic with measured tem-
perature distributions on the horizontal walls. They are defined as follows:

• The academic configuration is a Perfectly Adiabatic Cavity (PAC)
with two opposite vertical active walls and four other (top, bottom,
front and rear) adiabatic walls. This configuration should be the canon-
ical problem for both experimental and numerical investigations. How-
ever, since adiabatic walls are almost impossible when working with
air, it becomes an idealized configuration which is only suited for nu-
merical approaches.

• The more realistic configuration is named as Intermediate Realistic
Cavity (IRC). It is also defined with two opposite vertical active
walls and adiabatic front and rear walls. On the top and bottom walls,
temperature distributions are considered to be known and independent
of y. They correspond to the analytical fit of the measured temperature
distributions along the centerline at y = Ay/2 (Salat, 2004):
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Cavity type Spatial resolution Time step Integ. time Av. time

DNSPAC Perfectly Adiabatic 180 × 100 × 200 0.005 655 200

DNSIRC Intermediate Realistic 180 × 100 × 200 0.002 612 208

Table 1
Numerical characteristics of the direct numerical simulations.















< θbottom > (x, y) = (0.5 − x) + 0.994
x(x − 1)(x − 0.681)

x(x − 1) − 0.0406(x + 0.5)

< θtop > (x, y) = − < θbottom > (1 − x, y)

(2)

The IRC case relies on a close collaboration between experimental
and numerical approaches and it is an important configuration toward
resolving the stratification discrepancy of turbulent natural convection
in differentially heated air-filled cavities.

Direct numerical simulations using spectral methods have been performed
for the above configurations at Ra = 1.5× 109. They are aimed not only
at understanding the corresponding flow regime but also at providing
reference numerical solutions to both cases for the purpose of benchmark
excercises. In a cubic PAC, Labrosse et al. (1997) and de Gassowski et al.
(2003) have observed a first transition to unsteadiness at Rac1 = 3.2×107

and de Gassowski et al. (2003)) have obtained several solution branches
either steady or time-dependent up to Ra = 108. The Rayleigh num-
ber investigated is thus two decades higher than the first transition into
unsteadiness in a cubic PAC. As can be seen below, flow is much more
turbulent in the IRC than in the PAC, the DNS reference solutions of
the IRC will be also used to demonstrate in the second part (Sergent
et al., 2010) that the LES methodology is able to reproduce DNS results
in a configuration which is more turbulent and closer to the experimen-
tal cell. The numerical parameters used in the simulations are reported
in Table 1. As usual time integrations of the governing equations were
started from a lower Rayleigh number and were carried out long enough
for the flow regime and the turbulent statistics to become statistically es-
tablished. In Table 1 the integration time is the time interval over which
the governing equations have been integrated before starting the statis-
tical sampling, expressed in units of dimensionless time. The averaging
time is the period used for computing the turbulent statistics.

As said above, the present simulations of PAC and IRC have been per-
formed with a Chebyshev spectral collocation approximation using 180
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points or polynomials in the horizontal direction, 200 points in the verti-
cal direction and 100 points in the spanwise direction. Past benchmarks
(de Vahl Davis and Jones, 1983; Janssen and Henkes, 1996) have shown
that for the types of flow under consideration, it requires at least 5 more
points in each direction with a finite difference approximation to achieve
the same accuracy. Achieving the accuracy of the present results with
typical finite difference codes would thus have required on the order of
1000 mesh points per direction, which has not been done so far. A fur-
ther confirmation of the spatial accuracy of the presents results can be
obtained by looking at the decay of the spectral coefficients of the temper-
ature or velocity fields. A close inspection of these coefficients shows that
they decrease with increasing order, and the respective ratios of 105 for
IRC and 106 for PAC are consistently observed. Past studies (Le Quéré
and Alziary de Roquefort, 1985) have shown that such values guarantee
spatial convergence of the Chebyshev expansion.

The second point relates to the integration time, and to the fact that
we have integrated long enough in time to reach the true asymptotic
turbulent regime. It is well known that the asymptotic regime is reached
after the transient effects induced by the sudden step change in Rayleigh
number have died away. To make sure this is indeed the case, the equa-
tions were integrated for around 600 time units before starting comput-
ing statistical quantities. As it takes approximately 40 time units for the
fastest fluid parcels to perform one lap in the cavity, a time length of 600
thus corresponds to approximately 15 times this global circulation time.
Statistics were performed over the next 200 time units which corresponds
to approximately 5 times that global circulation time. To our knowledge
computations thus long have not been carried out before, except in the
work of Trias et al. (2007).

An indirect quantification of the time needed to obtain accurate statistics
can be obtained from checking that the time averaged solution obeys to
the well known symmetries, in particular the reflexion symmetry about
the middepth plane y = Ay/2, although the instantaneous solution does
not. The flow statistics reported hereunder (see Table 5) display this mid-
depth symmetry to a very good approximation: the spatial deviation of
the time-averaged transverse velocity field (< V >) to the theoritical
value of zero has an averaged value on the mid-depth plane on the order
of 10−6. This confirms that the averaging time used was sufficient for
computing accurate flow statistics.

The combination of these two features, very large spatial resolutions and
long time integrations, gives us confidence in the quality of the present
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< S > < Nu1D,hot−cold > < Nu2D,hot−cold > < Nu1D,bot−top > < Nu2D,bot−top >

DNSPAC 1. 61.1 60.1 - -

DNSIRC 1. 59.3 57.9 12.1 11.9

Table 2
Time-averaged thermal stratification < S > and Nusselt numbers for PAC
and IRC.

results and allows us to claim their status of benchmark results.

3.2 Heat transfer

The PAC and IRC configurations differ only in the thermal BCs applied
on the top and bottom walls. In IRC, these imposed temperature distri-
butions result in a heat transfer between the fluid and the horizontal walls
(< Nubottom−top >). This additional heat transfer does not modify signif-
icantly the global Nusselt number on the vertical walls (< Nuhot−cold >)
nor the central stratification (< S >) (see Table 2).

Despite the high value of the Rayleigh number, the overall Nusselt num-
bers along the vertical walls (< Nu2D >) still fit the laminar Nu ∼
0.30Ra

1/4

H relationship in both cases.

It is noted that the centerline Nusselt numbers (< Nu1D >) in both
cases are slightly larger than the corresponding 2D Nusselt numbers.
This is due to to the presence of the front and rear walls as already
noted by Tric et al. (2000)) for steady flows in a cubic PAC. Although
the global < Nu1D > is the same for both PAC and IRC cases, the
mid-depth vertical profile of < Nu1D > is more uniform for IRC than
PAC (Figure 2). This comes from the important effect of the thermal BCs
applied on the horizontal top and bottom walls. In fact, thermal boundary
conditions modified the global flow structure and the turbulence level in
the vertical boundary layers as can be seen in next section.

3.3 Time-averaged flow

The sensivity of the flow structure to the thermal BCs applied on the
bottom and top walls is shown on Figure 3. Due to the local heat transfer
at the horizontal walls in the IRC, the horizontal flow along these walls
is reinforced and experiences global reversal on the top and the bottom
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Fig. 2. Vertical profile of time-averaged Nusselt number along the hot wall in
the mid-depth plane (y = Ay/2). Comparison between PAC and IRC.

parts of the cavity. This reversal has also been reported by several numer-
ical studies Dol and Hanjalić (2001); Peng and Davidson (2001); Salat
et al. (2004). They have shown that it was necessary to impose similar
temperature distributions on the horizontal walls as that of experiments
for reproducing the observed large flow reversal along the outer edge of
the horizontal boundary layers (Tian and Karayiannis, 2000; Salat et al.,
2004). This flow reversal does not exist in the PAC case, which displays
the typical area of large eddies ejection instead (Xin and Le Quéré, 1995;
Janssen and Henkes, 1996; Trias et al., 2007).

The IRC flow reversals create near the top and bottom walls two large
areas which are more homogeneous in temperature than in the PAC.
However the thermal stratification in the cavity core (approximatively
for z between 0.35 − 0.65) is not changed by the modification of the
thermal BCs on the top/bottom walls, as can be seen on Figure 4.

The time-averaged characteristics of the velocity fields are gathered in
Table 3. In both cases, the flow remains mainly two-dimensional in the
mid-depth plane, where the spanwise velocity component (< V >) values
are weak. But for IRC, the magnitude of two horizontal velocity compo-
nents (< U >, < V >) is increased everywhere in the whole volume.
This results from the aforementioned change of the flow structure, which
affects not only the four boundary layers but also the cavity core.

Both cases differ substantially in the nearly motionless cavity core (Figure
3). In PAC, the upward and downward boundary layers entrain fluid
through the whole cavity width respectively in the bottom and top half
parts of the cavity core. In IRC, the strong flow reversals reduce by a
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factor two the height of the cavity core. The upward vertical boundary
layer receives fluid mainly from the fast horizontal boundary layer up
to the first quarter of the height (z ∼ 0.25), then from the cavity core
approximatively up to z ∼ 0.6.

At mid-height of the cavity (z = 0.5), the horizontal temperature pro-
file (Figure 5) exhibits in both cases an undershoot temperature region
at the outer edge of the boundary layer, which is a typical feature of
thermal boundary layers in stratified medium (Yang et al., 1972). This
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DNSPAC DNSIRC

< U >max < V >max < W >max < U >max < V >max < W >max

Maximum of velocity components on the entire volume

0.0977 0.0294 0.2475 0.1130 0.0379 0.2571

x = 0.0468 0.0272 0.0062 x = 0.0760 0.0245 0.0062

y = 0.0230 0.3219 0.3184 y = 0.2852 0.3202 0.3202

z = 0.9938 0.9961 0.4608 z = 0.9925 0.9970 0.4373

Maximum of velocity components on the mid-depth plane, y = Ay/2

0.0837 0.0014 0.2152 0.1069 0.0037 0.2175

x = 0.0545 0.2887 0.0062 x = 0.0760 0.0148 0.0062

z = 0.9880 0.9926 0.4764 z = 0.9911 0.1002 0.4373

Maximum of velocity components on the mid-height plane, z = Az/2

0.0018 0.0027 0.2416 0.0064 0.0053 0.2543

x = 0.0432 0.0092 0.0062 x = 0.0301 0.0218 0.0076

y = 0.0204 0.2817 0.3184 y = 0.0065 0.2921 0.3184

Table 3
Maximum of time-averaged velocity components for the PAC and IRC cases.

spatial oscillation is still present in the PAC case at z = 0.7, whereas
it disappears at this height in the IRC case owing to the flow reversal
which interferes with the vertical boundary layer.

In the PAC, the fluid carried by the vertical boundary layers impinges the
top or bottom wall and experiences several flow reversals downwards and
upwards before being dragged along towards the opposite vertical wall.
Figure 3 displays the two separated (recirculating) horizontal bound-
ary layers with successive detachments and re-attachments in the top
and bottom parts of the cavity. For the sake of brevity, these horizontal
fluid layers are called horizontal separating fluid layers thereafter. The
location of these separated regions can be evaluated from the horizon-
tal distribution of the wall shear stress (Figure 6) approximatively at
x ∼ 0.088 − 0.125 for the first region and x ∼ 0.383 − 0.456 for the sec-
ond one. This figure also points out that the shear stress becomes slightly
negative at x ∼ 0.21, which is not visible in Figure 3. As no separated re-
gion is present in the IRC case, a quasi-constant wall shear stress (τwall)
is generated in the center part of the horizontal walls (0.3 ≤ x ≤ 0.8).
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Fig. 5. Horizontal profiles of temperature (< θ >) and vertical velocity
(< W >) at various z positions and y = Ay/2. Comparison between PAC
and IRC.

The existence of the horizontal separating fluid layers in the PAC modifies
the U−velocity vertical profile (Figure 4) at the cavity mid-width (x =
Ax/2) which is located downstream of the second re-attachment point.
It also modifies the horizontal profiles at z = 0.9 of the temperature and
the vertical velocity (< W >) with the presence of the first separated
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Fig. 6. iTime-averaged wall shear stress on the hot vertical wall (left) and on
the top horizontal wall (right) in the mid-depth plane (y = Ay/2). Comparison
between PAC and IRC.

region (Figure 5).

3.4 Turbulent transition and instantaneous fields

Considering Figure 5, we note for the IRC at z = 0.7 a thickening of the
thermal and viscous boundary layers associated with a weaker counter-
flow by comparison with the PAC. Moreover the IRC W−velocity profile
decreases nearly monotonically from a velocity maximum lower than the
PAC peak. This indicates that the IRC cavity gives rise to an early turbu-
lent transition of the vertical boundary layers. This is in good agreement
with the vertical distribution of the mean wall shear stress (Figure 6),
which exhibits the classical laminar shape almost over the whole height
of the PAC cavity, whereas the wall shear stress is reduced earlier in the
downstream part of the IRC vertical boundary layer by the turbulent
transition (Trias et al., 2010a).

The instantaneous fields of temperature and horizontal velocity compo-
nent (< U >) at the cavity mid-depth are displayed in Figure 7. This
figure confirms the very weak flow and the uniform thermal stratification
of the PAC cavity core observed by Trias et al. (2007) in their three-
dimensional simulations. Moreover the laminar-turbulent transition can
be approximatively located at a height z ∼ 0.8, which also agrees well
with their results. Unlike PAC, the IRC top wall is colder than the hot
fluid coming from the upward vertical boundary layer and this results in
a locally thermally unstable boundary layer, where small scale thermal
plumes develop. These fluctuations are fed into the vertical downward
boundary layer and trigger a much earlier transition to turbulence for
IRC (with respect to PAC). It should furthermore be noted that the
presence of vortices along the vertical walls indicates a transition loca-
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Fig. 7. Instantaneous fields of temperature θ (left) and horizontal velocity
u (right) in the vertical mid-depth plane (y = Ay/2). PAC (top) and IRC
(bottom).

tion at around the mid-height of cavity (z ∼ 0.5).

Figure 8 depicts the coherent structures in the cavity, and especially
those belonging to the boundary layers. It confirms the earlier turbulent
transition occurring in IRC, as well as the fully turbulent regime of the
downward part of the vertical boundary layers. It also shows that PAC
exhibits a strong dependence on the spanwise direction, while still dis-
playing the reflexion symmetry. On the contrary, the IRC flow is much
more homogeneous throughout the spanwise direction.

3.5 Power spectra

For both configurations, low frequency oscillations are observed in the
cavity core as evidenced by the time evolution of temperature at the
center and the corresponding power spectra shown in Figure 9. The power
spectrum is normalized such that the maximum of density is equal to one.
The temperature fluctuations are weak and remarkably regular in PAC
while of larger amplitude and more chaotic in IRC. However a rather
similar fundamental frequency is found in both cases (see Table 4) at
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Fig. 8. Iso-surface of λ2, the second eigenvalues of ΩikΩkj +SikSkj (Jeong and
Hussain, 1995), colored by the vorticity component ωx. Left: PAC ; right: IRC.
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Fig. 9. Time series and normalized density power spectra of temperature at
the cavity center (point A, see Table 4 for coordinates) in PAC (top) and IRC
(bottom) cases.

around fA ∼ 0.13, which is in good agreement with the dimensionless
Brunt-Väısälä frequency N relating to the internal gravity waves.

The power spectra of the temperature are shown in Figure 10 for two
monitoring points at the same height in the downstream part of the
vertical upward boundary layer. Point (B) is located in the outer edge of
the boundary layer, whereas point (C) is located in the inner part. For
each cavity, the fundamental frequencies of both locations are of the same
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point (x, y, z) DNSPAC DNSIRC

Brunt-Väısälä frequency (N =
√

SPr/(2π)) 0.134 0.134

A (0.5, Ay/2, 0.5) 0.137 0.122

B (0.14, Ay/2, 0.9755) 0.078 0.073

C (0.017, Ay/2, 0.8535) 0.664 0.512

Table 4
Fundamental frequencies at the monitoring locations for PAC and IRC cases.
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Fig. 10. Normalized density power spectra of temperature at two different
locations (points B and C, see Table 4 for coordinates) in PAC (top) and IRC
(bottom) cases. The Kolmogorov slope is reported for comparison (dashed
line).

order. In the outer edge of the boundary layer (point B), the fundamental
frequency is very weak (Table 4). It is representative of the large eddies
ejected from the downstream part of the vertical boundary layers. As
expected for the PAC (Xin and Le Quéré, 1995; Tian and Karayiannis,
2000), these large structures resulting from the separating fluid layer
are characterized by a frequency smaller than N . Concerning the IRC,
the value of fB corresponds to the base frequency of the temperature
fluctuations measured by Tian and Karayiannis (2000) in the outer edge
of the boundary layer.

In the inner part of the boundary layer (point C), a high frequency peak
is observed, corresponding to travelling waves. For the PAC, this peak at
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high frequency and its harmonics are visible in the power spectrum. This
discontinuity in frequency of the spectrum is characteristic of a chaotic
regime. Concerning the IRC, the power spectra are continuous for points
(B) and (C) and exhibit a −5/3 slope for the highest frequencies, which
indicates that the regime if fully turbulent in the vertical boundary layer.

3.6 Second-order statistics

3.6.1 Qualitative analysis

It has been shown in section 3.3 that in both configurations, the turbu-
lence level is too low to impact the global Nusselt number (< Nu2D >): it
keeps a scaling law which is characteristic of the laminar regime. In fact
the major part of the cavity flow remains laminar mainly in the core. This
can be observed in Figure 11 displaying the spatial distributions of the
turbulent kinetic energy (k), the rms fluctuations of temperature (θrms)
and the horizontal turbulent heat flux (< u′θ′ >) in the mid-depth plane.
In both cases a centro-symmetry with respect to the cavity center is ex-
hibited. However the PAC spatial distribution of the fluctuations differs
substantially from IRC. In PAC, the turbulent fluctuations are concen-
trated in the horizontal separating fluid layers. This does not agree with
the recent results of Trias et al. (2010b), but it is explained by the fact
that they considered a cavity of aspect ratio 4 which does not allow for
the existence for a clearly defined detached region. The contour plot of
< u′θ′ > (Figure 3) shows the mixing effect of the successive detachments
and re-attachments of the horizontal boundary layers, which make the
top and bottom areas more uniform in temperature than the stratified
core. In IRC the turbulent fluctuations are located along the four walls
and predominantly along the vertical isothermal walls. The comparison
with the experimental data Tian and Karayiannis (2000) shows that the
IRC configuration allows one to reproduce the spatial distributions of the
turbulent intensities. The dissimilarity of the k and θrms is indeed also
observed experimentally as well as the abrupt growth located around
the first quarter downstream of the vertical boundary layers. This height
corresponds to the separating point between the horizontal flow reversals
and the vertical boundary layers (Figure 3).
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Fig. 11. Isocontours of the turbulent kinetic energy k =< u′

iu
′

i > (top), the
rms fluctuations of temperature θrms (middle) and the horizontal turbulent
heat flux < u′θ′ > (bottom) in the vertical mid-depth plane y = Ay/2. PAC
(left) and IRC (right).

3.6.2 Quantitative analysis

A summary of the maximum values of the Reynolds stresses is given in
Table 5, which confirms the different turbulent levels induced by the BCs
of PAC or IRC. Only Urms keeps a similar order of magnitude in both
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DNSPAC DNSIRC

θrms Urms Vrms Wrms θrms Urms Vrms Wrms

Maximum of the rms fluctuations on the entire volume

0.0375 0.0226 0.0191 0.0257 0.0843 0.0306 0.0483 0.0675

x = 0.0128 0.0218 0.0218 0.0049 x = 0.0076 0.0272 0.0245 0.0128

y = 0.1857 0.1650 0.0116 0.1650 y = 0.1805 0.1546 0.2853 0.2305

z = 0.9619 0.9704 0.9524 0.9263 z = 0.6091 0.7129 0.9960 0.5392

Maximum of the rms fluctuations on the mid-depth plane (y = Ay/2)

0.0374 0.0226 0.0075 0.0257 0.0789 0.0288 0.0422 0.0583

x = 0.0128 0.0218 0.2350 0.0049 x = 0.0076 0.0245 0.0245 0.0128

z = 0.9649 0.9704 0.9045 0.9263 z = 0.6470 0.7545 0.9960 0.6319

Table 5
Maximum of rms fluctuations of temperature and velocity components for
PAC and IRC cases.

cavities. As PAC exhibits fluctuations related to the horizontal separat-
ing fluid layers, all the velocity rms fluctuations maxima have the same
order of magnitude. They are located close to the top-left or bottom-right
corners, and in the mid-depth vertical plane except for Vrms, which is very
weak in this plane. On the contrary, the IRC rms fluctuations are char-
acteristic of a wall turbulence, with a vertical component (Wrms) larger
than the two other components, which have the same order of magnitude.
The Wrms and θrms maxima are located around the turbulent transition
point of the vertical boundary layers.

3.6.3 Horizontal profiles in the hot boundary layer

In order to describe in details the PAC and IRC spectral solutions, the
horizontal profiles of temperature and velocities rms fluctuations at dif-
ferent heights are plotted in Figures 12 and 13. There are no visible
rms fluctuations upstream from the PAC vertical boundary layers which
remain laminar. But at z = 0.9, two peaks on the rms profiles are ob-
served: one in the downstream corner of the vertical boundary layer, and
another resulting from the first recirculating region (x > 0.125). On the
contrary, the fluctuations exist over the whole height of the IRC vertical
boundary layers. Their peak intensities increase until the turbulent tran-
sition height (z ≤ 0.5). At z = 0.7, the profiles do not decrease strictly
monotonously: two successive inflection points are noticeable for the θrms
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Fig. 12. Horizontal profiles of the rms fluctuations of temperature (θrms) and
vertical velocity (Wrms) at various z positions and y = Ay/2. Comparison
between PAC and IRC.

or Wrms profiles. This feature has been also observed experimentally by
Tian and Karayiannis (2000). Figure 13 shows that at this height the
peak of Urms and Vrms is smoother or even becomes a plateau.
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Fig. 13. Horizontal profiles of the rms fluctuations of the horizontal velocities
Urms and Vrms at various z positions and y = Ay/2. Comparison between PAC
and IRC.

4 Conclusion

Three-dimensional direct numerical simulations of a buoyancy-driven flow
in a differentially heated air-filled (Pr = 0.71) cavity of aspect ratios
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(Ax = 1, Ay = 0.32) at a Rayleigh number equal to 1.5 × 109 have been
presented. Two simulations have been performed using either adiabatic
conditions (PAC) or experimentally measured temperature distribution
(Salat, 2004) on the top and bottom walls (IRC), while the front and
rear walls were assumed to be adiabatic. The present simulations of PAC
and IRC have been performed with a Chebyshev spectral collocation ap-
proximation. The combination of very large spatial resolution and long
time integration guarantees the quality of the present results. The aim of
this work is to provide reference results in order to separate the potential
reasons (numerical errors, unsuitable physical or turbulence models) re-
sponsible for the long established discrepancy in thermal stratification ob-
served between experimental and numerical estimates using either DNS,
LES or RANS simulations.

Noteworthy is the modification of the flow structure by the thermal BCs
in the horizontal walls. PAC flow structures are characterized by thin
vertical boundary layers along the isothermal walls and two successive
separated recirculating flow regions in the upstream part of the horizon-
tal boundary layers. Only a chaotic behavior of the vertical boundary
layers has been observed. In the IRC, the flow exhibits two strong re-
circulating regions along the whole top and bottom walls of the cavity
and turbulent vertical boundary layers in their downstream parts. This
IRC flow structure as well as the relative rms fluctuations distribution
are typical of the flow dynamics observed experimentally.

However both 3D simulations keep resulting in a thermal stratification
value equal to one around the cavity mid-height, leading to the conclusion
that neither the tridimensional effect nor the experimental distribution
on the top/bottom walls improve the quality of numerical prediction con-
cerning the thermal stratification. Moreover, the IRC simulation reveals
that the time-averaged results in the vertical mid-depth plane are in good
agreement with the previous 2D results. This was also observed by Soria
et al. (2004) and Trias et al. (2007) concerning the general features of the
flow when performing 2D and 3D DNS with periodicity in the spanwise
direction in an adiabatic cavity (PAC) of aspect ratio 4 for a Rayleigh
number up to 1010. This confirms, in agreement with Fusegi and Hyun
(1994), that realistic thermal BCs on the top and bottom walls are not
key factors for explaining the weak vertical stratification observed in the
experimental studies.

The conclusion that can be drawn from these results is that both config-
urations miss a physical phenomenon that prevents from recovering the
experimental data. The influence of the thermal BCs applied on the front
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and rear walls will be the subject of the second part of the paper (Sergent
et al., 2010).
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