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Global linear stability analysis of the wake and
path of buoyancy-driven disks and thin cylinders

Joël Tchoufag1, David Fabre1 and Jacques Magnaudet1,2,†

1Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse),
Allée Camille Soula, F-31400 Toulouse, France

2CNRS, IMFT, F-31400 Toulouse, France

The stability of the vertical path of a gravity- or buoyancy-driven disk of arbitrary
thickness falling or rising in a viscous fluid, recently studied through direct numerical
simulation by Auguste, Magnaudet & Fabre (J. Fluid Mech., vol. 719, 2013,
pp. 388–405), is investigated numerically in the framework of global linear stability.
The disk is allowed to translate and rotate arbitrarily and the stability analysis is
carried out on the fully coupled system obtained by linearizing the Navier–Stokes
equations for the fluid and Newton’s equations for the body. Three disks with different
diameter-to-thickness ratios are considered: one is assumed to be infinitely thin, the
other two are selected as archetypes of thin and thick cylindrical bodies, respectively.
The analysis spans the whole range of body-to-fluid inertia ratios and considers
Reynolds numbers (based on the fall/rise velocity and body diameter) up to 350. It
reveals that four unstable modes with an azimuthal wavenumber m = ±1 exist in
each case. Three of these modes result from a Hopf bifurcation while the fourth
is associated with a stationary bifurcation. Varying the body-to-fluid inertia ratio
yields rich and complex stability diagrams with several branch crossings resulting
in frequency jumps; destabilization/restabilization sequences are also found to take
place in some subdomains. The spatial structure of the unstable modes is also
examined. Analyzing differences between their real and imaginary parts (which
virtually correspond to two different instants of time in the dynamics of a given
mode) allows us to assess qualitatively the strength of the mutual coupling between
the body and fluid. Qualitative and quantitative differences between present predictions
and known results for wake instability past a fixed disk enlighten the fact that the
first non-vertical regimes generally result from an intrinsic coupling between the body
and fluid and not merely from the instability of the sole wake.
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1. Introduction

Understanding and predicting the path of bodies of arbitrary shape falling/rising
under gravity/buoyancy in an infinite fluid medium has always been an important
concern in Mechanics, as testified by Leonardo’s drawings related to the spiralling
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motion of rising bubbles (Prosperetti et al. 2003; Prosperetti 2004). Nevertheless,
despite this uninterrupted interest, robust experimental data were essentially made
available within the last half-century, especially for thin disks (Willmarth, Hawk &
Harvey 1964; Field et al. 1997).

The topic has received growing attention during the last decade for two main
reasons. The first is, of course, its physical relevance and importance in many
up-to-date applications such as in meteorology, ecology, bio-inspired flight, aeronautics
and multiphase flows to mention just a few. The other is the growing maturity of
modern observation techniques, such as high-speed video cameras and particle image
velocimetry, and of three-dimensional direct numerical simulation (DNS). The latter
has also become a powerful tool to explore the various non-vertical regimes of
axisymmetric bodies such as freely rising spheroidal bubbles (Mougin & Magnaudet
2002b), falling/rising spheres (Jenny, Dusek & Bouchet 2004) and disks (Auguste,
Magnaudet & Fabre 2013; Chrust, Bouchet & Dusek 2013), and determine the
transitions between them, especially in the presence of strongly nonlinear effects.

Nevertheless, despite its many merits, DNS does not give a detailed access to
several important aspects of the phenomena that take place near the first thresholds
of the instability, such as the spatial structure of each unstable mode or the reasons
that sometimes make the characteristics of path deviations (especially their geometry
and frequency) change dramatically when the body geometry is slightly modified,
nor does it allow the role of these various modes to be easily disentangled. Such
information is better obtained by performing systematic linear or weakly nonlinear
global stability analyses. This approach is also the right tool for performing parametric
studies of the neutral curves corresponding to destabilization of the base flow, as DNS
is very time-consuming under near-neutral conditions where the temporal transients
are extremely long. However, it is only very recently that this type of approach
started to be applied to this class of problems. To the best of the authors’ knowledge,
the first attempt is due to Assemat, Fabre & Magnaudet (2012) who carried out a
systematic linear stability analysis (LSA) of the vertical path of two-dimensional
bodies, such as plates and rods. Regarding three-dimensional bodies, the only work
to date seems to be the weakly nonlinear analysis recently performed by Fabre,
Tchoufag & Magnaudet (2012) to predict the onset and geometrical characteristics of
the steady oblique (SO) path of spheres and disks observed under certain conditions,
e.g. Veldhuis & Biesheuvel (2007) and Horowitz & Williamson (2010) for spheres.

As is now widely recognized, the presence of vorticity in the flow is at the root
of path instability (as far as the body is released in such a way that no torque
is created by the initial conditions), making the understanding of wake instability
past the body held fixed an important prerequisite. However, this does not imply
that the body dynamics are enslaved to the wake: some body paths clearly mirror
the characteristics of wake modes, while other do not. Similarly, the thresholds at
which these non-vertical paths set in and their oscillation frequencies often differ
dramatically from those of wake instability (Alben 2008; Assemat et al. 2012;
Auguste et al. 2013). These observations make it clear that any stability analysis of
this class of problems must consider the body + fluid system as fully coupled, even
though it may be concluded at the very end that the couplings are weak in some
limit cases.

This is the essence of the present work in which we perform a systematic LSA of
the entire system for a class of bodies corresponding to disks of various thicknesses
which may also be thought of as thin circular cylinders. The present study is the
natural extension of the work by Assemat et al. (2012) to axisymmetric bodies and



three-dimensional flow fields and of that by Auguste et al. (2013) where various
falling styles of disks associated with fully nonlinear dynamics were examined using
the DNS approach. The organization of the paper is as follows. The geometrical
set-up, control parameters, general governing equations and main aspects of the LSA
approach are described in § 2; the various operators involved in this problem and
some important properties of the eigenmodes m = 0 and m = ±1 are made explicit
in appendix B. The next three sections are devoted to the discussion of the results
obtained for Reynolds numbers (based on the body diameter and rise/fall velocity)
up to 350 for an infinitely thin disk and two disks with diameter-to-thickness ratios
of 10 and 3, respectively. The latter two geometries are selected because available
experiments (Fernandes et al. 2007) suggest that they may be considered as typical of
the contrasting behaviours displayed by ‘thin’ and ‘thick’ bodies, respectively. Each
of these sections provides some comparisons of LSA results with available DNS and
experimental data and examines the contents of the stability diagrams resulting from
the LSA as a function of the body-to-fluid inertia ratio. In these sections we also
discuss the nature of the corresponding unstable modes and their spatial characteristics
from which we show that important characteristics of the system dynamics in the
fully nonlinear regime can be inferred. The paper ends with § 6 where results obtained
for the three bodies are compared and physical mechanisms that make their dynamics
strikingly different, especially in the limit of low inertia ratios, are discussed.

2. Problem formulation and methodological approach

2.1. Control parameters and geometrical configuration

We consider a three-dimensional body with uniform density and cylindrical geometry
falling or rising freely under gravity in an unbounded fluid at rest at infinity. In
what follows, the body which has a thickness h, diameter d and density ρb, will
be termed a ‘disk’ whatever its thickness; it moves with an instantaneous velocity
whose translational and rotational components are U(t) and Ω(t), respectively. The
surrounding medium is a Newtonian fluid of kinematic viscosity ν and density ρ.

The problem is entirely characterized by three dimensionless parameters for which
several choices are possible (Ern et al. 2012). The first of these is unambiguously the
geometrical aspect ratio χ = d/h. As a second parameter, we may choose either the
body-to-fluid density ratio ρ̄ = ρb/ρ, or equivalently some inertia ratio I∗ involving
the disk’s moment of inertia; the selected definition of I∗ will be specified later. Note
that, gravity acting downwards, ‘heavy’ disks such that ρ̄ > 1 fall whereas ‘light’
disks with ρ̄ < 1 rise. The third parameter is a ‘Reynolds’ number built upon the
disk diameter, the viscosity and a velocity scale. Several choices are possible for the
latter, as the actual disk velocity is usually not known beforehand. A possibility is to
use the gravitational velocity Ug = (2|ρ̄ − 1|gh)1/2, yielding the so-called Archimedes

number Ar =
√

(3/32)Ugd/ν. Here, we will generally make use of the velocity U0

of the disk in the ‘base state’ corresponding to the steady vertical broadside motion,
which yields a ‘nominal’ Reynolds number defined as Re = U0d/ν. This velocity scale
coincides with the actual disk’s velocity as long as the deviations with respect to this
base state are small, which is consistent with the linear study conducted herein. The
relation between Re and Ar will be made explicit in § 2.4.

2.2. Governing equations

In the absolute frame of reference (O, x0, y0, z0), the position of any material point
of the disk may be characterized through its distance vector r from the disk’s centre



of inertia C and the three angles (ζ , Θy, Θz) of the roll/pitch/yaw system measuring
rotations in the relative or body frame (x, y, z). With these definitions one may
introduce the vector Ξ = (ζ , Θy, Θz) and, for small rotations, the rotation rate
Ω = dΞ/dt follows directly.

The flow around the disk of volume V = (π/4)d2h, mass M = ρbV and inertia
tensor I = I1xx + I2(yy + zz) with I1 = (1/8)Md2 and I2 = (1/16)Md2(1 + (4/3χ−2))

is described by the incompressible Navier–Stokes equations. The system of equations
governing the fluid + disk dynamics is fully coupled through the fluid forces and
torques acting on the disk’s surface S on the one hand and the no-slip boundary
condition on S imposed to the flow by the moving disk on the other hand. We
express the equations in the absolute frame, but with axes rotating with the disk,
following Mougin & Magnaudet (2002a) (the formulation adopted here differs from
that employed by Assemat et al. (2012), where relative velocities were introduced;
we checked that both formulations lead to the same results). The full set of equations
reads

∇ · V = 0, (2.1)

∂V

∂t
+ (V − W) · ∇V + Ω × V = − 1

ρ
∇P + ν∇2V, (2.2)

M
dU

dt
+ MΩ × U = (M − ρV )g +

∫

S

T · n dS, (2.3)

I ·
dΩ

dt
+ Ω × (I · Ω) =

∫

S

r × (T · n) dS, (2.4)

dΞ

dt
= Ω, (2.5)

where V(r, t) and P(r, t) are the velocity and pressure fields in the fluid, W(r, t) =
U(t) + Ω(t) × r is the local entrainment velocity, T = −PI + ρν(∇V + t

∇V) denotes
the stress tensor and I is the Kronecker tensor. Finally, the no-slip condition on the
disk surface and the vanishing of the fluid velocity at large distance imply

V = W on S and V = 0 for ‖r‖ → ∞. (2.6)

In the following, the governing equations and problem variables will be treated as
dimensionless by normalizing lengths with d, velocities with the terminal velocity U0

defined above, pressure and stresses with ρU2
0 , time with d/U0 and gravity with U2

0/d,
the body mass and moments of inertia being normalized by ρd3 and ρd5, respectively.
Instead of using the density ratio ρ̄, we characterize the body-to-fluid relative inertia
through the parameter I∗ defined as the disk’s dimensionless moment of inertia about
one of its diameters, namely I∗ = I2/(ρd5) = (π/64)ρ̄χ−1(1 + (4/3)χ−2). Therefore in
(2.2)–(2.4), ν, M, I1 and I2 become Re−1, 16I∗(1 + (4/3)χ−2)−1, 2I∗(1 + (4/3)χ−2)−1

and I∗, respectively, so that I is replaced by the dimensionless inertia tensor I
∗ =

I∗{2(1 + (4/3)χ−2)−1xx + yy + zz}.

2.3. Strategy for the LSA and numerical implementation

The above equations form a coupled system governing the evolution of the state
vector Q = [Qf

, Q
b], where Q

f = [V(r, t), P(r, t)] contains the quantities associated
with the fluid and Q

b = [U(t), Ω(t), Ξ(t)]) gathers the degrees of freedom associated
with the body kinematics. The latter are expressed in the moving Cartesian basis
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FIGURE 1. Problem configuration. The disk is assumed to be initially released with its
axis oriented in the vertical direction.
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FIGURE 2. Sketch of the computational domain. Gravity g is toward the left (respectively
right) for falling (respectively rising) disks.

(x, y, z) using straightforward transformations involving the roll/pitch/yaw angles
(yielding for instance disk velocity components (Ux, Uy, Uz)). On the other hand,
quantities associated with the fluid are projected onto the local cylindrical basis
(er, eϕ, x) (see figure 1), yielding fluid velocity components (Vr, Vϕ, Vx).

To perform the LSA of the problem, the flow is classically split into a base
flow plus a disturbance in the form Q = Q0 + ǫq (ǫ ≪ 1). Introducing the above
ansatz in (2.5), a zeroth-order nonlinear problem and a first-order linear problem are
obtained. Thanks to an azimuthal Fourier expansion of the disturbance (see below)
and to symmetries detailed later, the fluid quantities only have to be computed in
a two-dimensional domain corresponding to a meridional half-plane, as sketched in
figure 2. We make use of the finite-element software FreeFem++ to build and invert
the various matrices and of the SLPEc library to find the eigenpairs. Details regarding
the weak formulation of the problem, convergence tests and boundary conditions can
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FIGURE 3. (Colour online) Example of the base flow used for the global stability analysis:
case of an infinitely thin disk at Re = 117. The colour scale refers to the magnitude of
the axial velocity; the streamlines underline the dipolar structure of the flow.

be found in appendices A and B as well as in previous related studies (Meliga,
Chomaz & Sipp 2009b; Assemat et al. 2012; Tchoufag, Magnaudet & Fabre 2013).

2.4. Base flow

The zeroth-order (base) flow is sought in the form of a steady axisymmetric flow
associated with a steady vertical broadside motion of the disk. The corresponding state
vector reads merely Q0 =[V0(r), P0(r),−x, 0, 0] (owing to the rotational symmetry of
the body geometry, the last component of this state vector could contain an arbitrary
constant angle ζ in the x direction; we set it to zero for simplicity). The associated
nonlinear set of equations reads

∇ · V0 = 0, (2.7)

(V0 + x) · ∇V0 = −∇P0 + Re−1∇2V0, (2.8)

It has to be supplemented by the no-slip condition V0 = −xb on S , the far-field
condition V0 = 0 on S∞ ≡ Sin ∪ Sh (see figure 2), the symmetry condition V0r

=
∂rV0x

=0 on the domain axis Sa, and the zero-traction condition −P0x +ρνx ·∇V0 =0

on Sout.
Figure 3 shows an example of the base flow seen in the laboratory frame in the case

of an infinitely thin disk falling at a Reynolds number Re = 117. As one could expect,
the wake structure is exactly that of the flow past a fixed disk, once the uniform
flow at infinity has been removed. The drag coefficient CD ≃ 1.20 compares well
with the value CD ≃ 1.23 determined experimentally by Roos & Willmarth (1971); the
recirculation length, lR, obtained by determining the point of the symmetry axis where
Vx = −1, is lR ≃ 2.2, in good agreement with the value lR ≃ 2.1 obtained numerically
for Re = 116.9 by Meliga, Chomaz & Sipp (2009a).

Although we retain the Reynolds number Re based on U0 as one of the control
parameters, comparisons with experiments have to be carried out in terms of the
Archimedes number Ar defined above. The relation between Re and Ar is obtained
from (2.3), which then reduces to a balance between the net weight of the disk and
the drag force, namely

(M − ρV )g = −
∫

S

T0 · n dS ≡ −D0ρd2U2
0x, (2.9)



which in non-dimensional form leads to

Ar2 = 3

32
Re2CD(Re), (2.10)

where CD = 8D0/π denotes the dimensionless drag coefficient. This relationship holds
until the threshold at which the steady vertical body motion becomes unstable is
reached.

2.5. Global mode analysis

At order ǫ, the state vector reads q = [v(r, t), p(r, t), u(t), ω(t), ξ(t)] and the linearized
perturbation equations take the form

∇ · v = 0, (2.11)

∂tv + (V0 + x) · ∇v + (v − w) · ∇V0 + ω × V0 = −∇p + Re−1∇2v, (2.12)

16
I∗

1 + 4

3
χ−2

{

du

dt
− ω × x

}

− D0(θzy − θyz) =
∫

S

t · n dS, (2.13)

I
∗
·

dω

dt
=

∫

S

r × (t · n) dS, (2.14)

dξ

dt
= ω, (2.15)

where t is the disturbance stress tensor and θy and θz are the disturbance pitch and
yaw angles, respectively. In (2.13), the last term in the left-hand side represents the
O(ǫ)-contribution of the net body weight; its expression is obtained by making use
of (2.9) and of the projection of the gravity vector in the body frame, namely g =
−gx0 = −gx + ǫg(θzy − θyz).

The system (2.11)–(2.15) must be supplemented with the no-slip condition v = w =
u + ω × r on S , the far-field condition v = 0 on S∞, the zero-traction condition on
Sout, plus suitable conditions on the symmetry axis Sa to be specified later.

The solution of (2.11)–(2.13) is then sought in the form of normal modes, namely

q =
(

q̂
f
(r, x)eimϕ

q̂
b

)

eλt + c.c., (2.16)

where c.c. denotes the complex conjugate, and λ = λr + iλi is the associated complex
eigenvalue whose real and imaginary parts are the growth rate and frequency of the
mode, respectively.

As mentioned above, the ‘fluid’ components q̂
f

of the eigenvector are expressed in
the local cylindrical coordinate system (r, ϕ, x), using the azimuthal wavenumber m

to remove the ϕ-dependence, while the ‘solid’ components q̂
b

are expressed in the
Cartesian system (x, y, z).

Among the nine potential components of q̂
b = [û, ω̂, ξ̂ ], only a few have to

be actually retained in the analysis. Their number depends upon the azimuthal
wavenumber m. To identify the relevant components, we may consider the symmetries
of the force and torque involved in the right-hand sides of (2.13) and (2.14),
respectively.

(i) For m = 0 (axisymmetric modes), the force and torque are held by the axial
direction x and hence can only be coupled to the kinematic degrees of freedom



corresponding to this direction. It is thus natural to take the corresponding solid

components of the eigenmodes as q̂
b = [ûx, ω̂x] (the roll angle might also be

included but it can actually be dropped, owing to the rotational invariance of the
problem).

(ii) For m = ±1 (helical modes), the force and torque are held by the vectors y ∓ iz
(up to complex conjugates). Projections of (2.13)–(2.15) along y and z can thus
be combined so as to obtain a single equation for each of (2.13)–(2.15) in the
plane of the disk. This is achieved by introducing the so-called U(1) coordinates

(Jenny & Dusek 2004) in the form û± = ûy ∓ iûz, ω̂± = ω̂z ± iω̂y and θ̂± = θ̂z ± iθ̂y.
The solid components associated with the eigenmodes for m = ±1 can thus be

reduced to three complex numbers, namely q̂
b = [ûm, ω̂m, θm].

(iii) For |m|> 2, the overall force and torque induced by the fluid component of the
eigenmode vanish upon integration with respect to ϕ over [0, 2π]. Thus, there
is no coupling between the fluid and body for these modes, so that the solid

component q̂
b

can simply be dropped from the problem, which becomes identical
to that governing the stability of the flow past a fixed disk.

The problem (2.11)–(2.15) with appropriate boundary conditions can then be recast as
a generalized eigenproblem in the form

Amq̂ = λBmq̂, (2.17)

where

Am =
(

A f
m(Re) C

Fm(Re) A b
m (Re, I∗)

)

, Bm =
(

Bf 0

0 Bb
m(I∗)

)

and q̂ =
(

q̂
f

q̂
b

)

. (2.18)

The matrices A f and Bf represent the linear operators acting only on the fluid

variables q̂
f = [v̂, p̂]. Similarly, A b and Bb are the operators of the linearized rigid-

body equations which only act on the disk kinematic variables q̂
b = [û±, ω̂±, θ̂±].

Terms C and F ensure the coupling between the body and fluid. The former
expresses the action of the disk motion on the fluid flow (through the no-slip
boundary condition on S and the presence of the body velocity and rotation
rate in the Navier–Stokes equations), while the latter expresses to role of the
fluid on the body motion through the hydrodynamic force and torque in (2.13)
and (2.14), respectively. All submatrices are detailed in appendix B, as well as
the symmetry conditions on the axis Sa to be retained for each value of m. As
shown in appendix B, the case m = 0 yields only stable modes whose properties
and spatial structure are discussed in appendix C. Since |m| = 2 modes do not
influence the body path in the linear framework, we shall not discuss them any
longer. Therefore, in the rest of the main text, we shall restrict the discussion to
the case |m| = 1, or rather to m = +1 by taking advantage of the symmetries
(vr, vϕ, vx, p, ux, u+, ω+, θ+, m) → (vr, −vϕ, vx, p, ux, u−, ω−, θ−, −m).

Note that modes with m = +1 and λi > 0 correspond to a right-handed helix, while
those with m = −1 and λi > 0 correspond to a left-handed helix. In the framework
of linear theory, both kinds of helices are admissible solutions, as well as any linear
superposition of them. In particular, the superposition of right and left-handed helices
of equal amplitudes yields a planar zigzagging path.
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FIGURE 4. (Colour online) Critical eigenvalues for an infinitely thin disk at I∗ = 4 × 10−3

and Re 6 220. The growth rate (respectively frequency) of modes F1, F2, S1 and S2 is
depicted with full (respectively dashed) lines. The plotted frequency is actually a Strouhal
number defined as St = λi/2π.

3. The infinitely thin disk

3.1. Parametric study

We start discussing the results of the stability analysis by examining the limit case
of an infinitely thin disk of finite inertia. Although unphysical strictly speaking, this
limit is important to understand how very thin disks with a finite mass behave. In this
case the definition of the dimensionless inertia I∗ may be extended by introducing the
surface density σb = limχ→∞ ρbh, so that I∗ → (π/64)σb/ρd. The disk we consider
actually corresponds to χ = 104 because the FreeFem++ solver requires the body to
have a non-zero thickness. At such very large aspect ratios the precise value of χ

has no influence, as shown by Meliga et al. (2009a) and Fabre et al. (2012) who
employed the same software and recovered with disks corresponding to χ = 103 and
χ = 104, respectively, the thresholds computed by Natarajan & Acrivos (1993) using
a strictly infinitely thin disk.

The first important finding of the LSA is that at least four modes exist whatever
I∗. One of them is stationary while the other three are oscillating. Hereinafter, these
modes are identified as F1, F2, S1 and S2, with S referring to ‘solid’ and F to ‘fluid’
for reasons that will become evident later. Figure 4 illustrates the situation in the case
of a disk with I∗ = 4 × 10−3 by displaying the variations of the growth rate λr and
Strouhal number St = λi/2π with the Reynolds number. The S2 mode is stationary
(λi = 0) while F1, F2 and S1 are oscillating (thus, corresponding to pairs of complex
conjugates eigenvalues with λi 6= 0).

In the case of a disk held fixed in a uniform stream, the growth rate λr changes
from negative to positive values at a critical Reynolds number Rec and keeps positive
values for larger Re. Figure 4 shows that more subtle scenarios can exist for a freely
moving disk. Indeed the S1 mode first becomes unstable for Re ≈ 104.4, restabilizes
at Re ≈ 136 and destabilizes again at Re ≈ 167.7. This ‘destabilization–restabilization’
process, which is not observed in some other ranges of I∗, was also noticed in the
LSA of two-dimensional freely moving plates and rods (Assemat et al. 2012).

The four branches where a change of path occurs in a LSA perspective are gathered
in figure 5. The grey-shaded area in that figure is the zone where a rectilinear vertical
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the range where a destabilization–restabilization process takes place; the vertical arrow in
(b) indicates the frequency jump associated with the switching from mode F1 to mode S1

along the critical curve.

path is stable with respect to infinitesimal disturbances. The curve corresponding to
the S1 branch shows that the destabilization–restabilization process mentioned earlier
is actually confined within a narrow interval, typically I∗ ∈ [3.2 × 10−3, 5 × 10−3].
The picture provided by figure 5 is exhaustive since all curves end with horizontal
asymptotes corresponding to the limits I∗ →∞ and I∗ → 0, respectively. The marginal
curve corresponding to the minimum critical Reynolds number for each value of I∗ is
made of mode F1 for I∗ 6 I∗

c ≃ 3.2 × 10−3 and of mode S1 for larger I∗. This mode
switching has a spectacular consequence, as it is associated with a frequency jump
from St ≈ 0.1 to St ≈ 0.25 as I∗ crosses the critical value I∗

c ; at large inertia ratios,
the frequency of the S1 mode is found to behave as I∗−1/2 (see figure 12b).

A surprising feature is the existence of a small stable subregion around Re ≈
95, I∗ ≈ 0.09. This subregion correspond to a ‘loop’ of the F1 branch which turns
back twice through two saddle nodes; accordingly, the lower part of the critical curve
that joins those two points corresponds to a restabilization of the F1 mode. This
feature is qualitatively similar to the destabilization/restabilization event occurring
along the S1 branch, as illustrated in figure 4. According to figure 5(b), the frequency
of the mode experiences a sharp variation in the range corresponding to this ‘loop’.
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FIGURE 6. (Colour online) Comparison of thresholds provided by LSA (thin lines) with
the regime map obtained through DNS by Auguste et al. (2013). Seven well-characterized
regimes may be identified according to DNS data: the large area on the left (shown in
grey) corresponds to the steady vertical fall; then increasing I∗ along the right vertical
axis of the figure one successively encounters a planar zigzagging (or fluttering) path
(shown in green online) hereinafter termed as the ZZ regime, a helical zigzagging path
termed ‘hula-hoop’ by Auguste et al. (shown in cyan online), a chaotic intermittent
fluttering/tumbling regime (shown in purple online), a tumbling regime (shown in orange
online) and a helical tumbling regime (shown in brown online). The thick curve (shown in
red online) encloses the zone where small-amplitude ‘A-regimes’ are observed; the small
triangle at its bottom left corner (shown in blue online) corresponds to a small-amplitude
zigzagging path (hereinafter termed as the ZZ2 regime) with a frequency typically three
times smaller than that of the main fluttering path.

Finally, LSA predicts that the stationary S2 mode becomes unstable at Re = 141.5,
i.e. Ar ≃ 45.57 (see figure 4), regardless of the disk inertia. This conclusion is in line
with the weakly nonlinear predictions of Fabre et al. (2012) who determined that disks
switch from a strictly vertical path to a SO path (which results from the addition of a
stationary mode to the base flow) exactly for this value of Ar. That the S2 branch is
independent of I∗ could have been inferred from the fact that inertia is not involved
in (2.11)–(2.15) any more when λ = 0, as is the case at criticality with a stationary
bifurcation.

3.2. Comparison with available studies

The complex behaviours displayed in figure 5 are far from being anecdotal. In
particular, their comparison with the DNS data reported by Auguste et al. (2013)
sheds light on a number of so far unexplained results. To evidence this, we made use
of (2.10) to express the thresholds in terms of Ar rather than Re and switched the
vertical and horizontal axes of figure 5(a) so as to obtain a direct comparison with the
phase diagram displayed in figure 2 of Auguste et al. (2013). This procedure resulted
in figure 6 which reveals that the marginal curve provided by the LSA matches the



I∗ Arc St (Stability branch)

1.5 × 10−3

38.18 0.11 This study (F1)

38.0 0.11 DNS (Auguste et al. 2013) (thick line)

38.31 0.11 DNS (Chrust et al. 2013)

4 × 10−3

35.8 0.25 This study (S1)

33.0 0.29 DNS (Auguste et al. 2013)

(left boundary of the fluttering regime)

38.13 0.11 This study (F1)

34.3 0.1 DNS (Auguste et al. 2013) (thick line)

1.6 × 10−1

14.3 0.13 This study (S1)

14.0 0.13 DNS (Auguste et al. 2013)

22.87 0.14 QST (Fabre, Assemat & Magnaudet 2011)

5 × 101 22.77 0.0080 This study (S1)

22.87 0.0077 QST (Fabre et al. 2011)

I∗ Rec St (Stability branch)

5 × 101 125.2 0.12 This study (F1)

125.3 0.12 LSA of the flow past a fixed disk (Meliga et al. 2009b)

5 × 101 272.25 0.22 This study (F2)

272.1 0.22 LSA of the flow past a fixed disk (unpublished)

TABLE 1. Comparison of thresholds and frequencies at representative values of I∗.

loss of the steady vertical path predicted by the DNS quite well, especially in the
range 9 × 10−3 6 I∗ 6 3 × 10−1. For lighter disks, the picture is complicated by the
existence of small-amplitude regimes (called ‘A-regimes’ by Ern et al. (2012)). The
lower bound of the range of existence of the fluttering regime also departs from the
neutral curve predicted by LSA, owing to the subcritical nature of the corresponding
transition (Auguste et al. 2013; Chrust et al. 2013). Nevertheless, the thick line
corresponding to the transition from steady vertical fall to the small-amplitude
regimes is in perfect agreement with the prediction of LSA.

A noticeable discrepancy is also observed for I∗ > 3.5 × 10−1: while DNS indicates
that two successive transitions (vertical/fluttering and fluttering/tumbling) take place
within the narrow range 15.Ar . 17, LSA still predicts a stable vertical path in that
range. Here again, the subcritical nature of these transitions was numerically attested
(Chrust et al. 2013).

Note that DNS confirms the existence of a stable vertical fall regime in a small
region around Ar ≈ 36.0 and I∗ ≈ 0.09, which coincides with the stable subregion
embedded within the aforementioned ‘loop’ formed by the F1 branch. In this range,
the vertical path coexists with the large-amplitude tumbling motion but is only reached
in DNS when using initial conditions very close to the vertical fall.

Apart from this peculiar feature, the higher branches predicted by the LSA do
not seem to be relevant for determining the boundaries separating the various falling
regimes. This is no surprise, owing to the linearity of this approach and the fact that
it makes use of an axisymmetric base flow.

Table 1 displays, for some values of I∗, the values of Arc and St predicted by
the present LSA and compares them with DNS data of Auguste et al. (2013) and



Chrust et al. (2013) and with predictions of the quasi-static theory (QST) developed
by Fabre et al. (2011). A brief account of the assumptions underlying this theory
and of its main results is provided in appendix D. Table 1 shows that the values
of the Strouhal number St predicted by the LSA agree well with those reported in
available DNS. In the small-I∗ range, the two widely different frequencies reported in
these studies and respectively associated with the ZZ and ZZ2 regimes are faithfully
recovered. Figure 5(b) reveals that these two frequencies are associated with two
different unstable branches of the eigensolutions of (2.17), the ZZ mode being related
to either F2 or S1 while the ZZ2 mode is connected to F1 (these modes are defined in
the caption of figure 6). The situation is more complex for I∗ = 4 × 10−3 where DNS
predicts both a subcritical ZZ regime that sets in at Ar = 33 and is recovered by the
LSA with a threshold located at Ar = 35.8, and a supercritical ZZ2 regime that sets in
at Ar = 34.5. The latter is not directly predicted by the LSA; however, the Strouhal
number corresponding to this mode in the DNS is close to that characterizing the
F1 mode which becomes unstable at a somewhat larger value of Ar. We suspect that
this regime results from nonlinear interactions between modes S1 and F1 as it occurs
for a value of I∗ very close to a point of codimension two corresponding to the
intersection of the aforementioned two branches.

For moderate I∗, LSA predictions and DNS results match well regarding both the
primary threshold Arc and the associated Strouhal number St. In contrast, the QST
only captures properly the latter. This is in line with the findings of Assemat et al.

(2012) who observed that QST correctly assesses the frequency down to moderate
inertia ratios, whereas its predictions for the fluttering threshold are only reliable for
large inertia ratios. That QST predictions for the fluttering threshold improve when
I∗ increases is obvious in table 1 (compare the predictions corresponding to I∗ =
1.6 × 10−1 and I∗ = 5 × 101). Note that for I∗ = 1.6 × 10−1, DNS predicts existence of
a supercritical large-amplitude fluttering regime, thus closer to the ZZ type than to the
ZZ2 type despite a Strouhal number ∼0.13. As shown in figure 5(b), this is a range of
I∗ within which the S1 and F1 modes exhibit quite similar frequencies. This situation
underlines the obvious fact that when several modes have quite similar frequencies,
the mere knowledge of St provided by the LSA is not sufficient to predict the regime
that is observed after nonlinear saturation. A weakly nonlinear analysis might help
clarify this point. We shall see latter that useful information can also be obtained by
examining the spatial structure of the unstable modes.

Results corresponding to I∗ = 5 × 101 show that the QST predictions compare
well with those of the fully coupled LSA for large inertia ratios, thus validating the
uncoupling of the body and fluid time scales on which QST is based (see appendix D).
These results show that crossing the S1 branch results in a slow (St ≈ 0.008) unsteady
motion of the disk with a quasi-steady wake. Finally table 1 shows that, for large
I∗, the LSA recovers the existence of ‘wake’ (or ‘fluid’) modes. These are global
modes which exist, with the same thresholds and frequencies, even if the disk is
held fixed. Indeed, the first Hopf bifurcation for the flow past a fixed infinitely thin
disk takes place at Rec ≈ 125.3 (Natarajan & Acrivos 1993; Meliga et al. 2009b)
and oscillates at St ≈ 0.12. Here this mode is found to be the asymptotic limit
reached by the F1 branch for large I∗. Also, we find that the asymptotic limit of
the F2 branch corresponds to a second oscillating mode. We performed a specific
LSA of the flow past a fixed disk (with an independent stability code) and also
detected this mode which sets in through a Hopf bifurcation at Rec ≈ 272.1 with
St ≈ 0.22, i.e. approximately a frequency twice that of the first ‘fluid’ mode. To
the best of the authors’ knowledge, this second Hopf mode has not been reported



previously. Its physical relevance is of course questionable, since the base flow is no
longer axisymmetric at such values of Re. This mode may be seen as the counterpart
for the disk of the second von Kármán mode predicted by LSA in the wake of
two-dimensional fixed bodies (Assemat et al. 2012). That modes F1 and F2 may be
identified with the two global modes observed past a fixed disk in the limit I∗ → ∞
justifies the terminology of ‘fluid’ modes, while modes S1 and S2 which are not found
in the case of a fixed disk are clearly related to the degrees of freedom of the body
and can then legitimately be referred to as ‘solid’ modes.

To summarize, comparison of LSA predictions with available DNS results reveals
the relevance of the former approach which is found to properly recover the thresholds
and frequency of most unstable modes detected in the DNS near the first unstable
threshold. A noticeable gain with the LSA is the clear view it provides on the various
unstable branches of the eigensolutions and on their asymptotic behaviours in the limit
of small and large inertia ratios as well as on their possible crossings at specific values
of I∗. The main issue we identified is the difficulty of a direct distinction between the
ZZ and ZZ2 regimes which strongly differ by their amplitude in the saturated state but
may have similar frequencies in some range of I∗. We shall come back to this point
later by examining the spatial structure of the oscillating modes.

3.3. Global modes structure: segregation between fluid and body influences

In the present section we seek to identify some key features of the spatial structure of
the modes allowing us to assess, without performing full DNS computations, whether
or not an unstable mode induces a strong or a weak coupling between the fluid and
the body. For this purpose we select several points along the various branches of the
stability diagram in the (I∗, Re) plane. Points P1 to P5 marked in figure 5 are chosen
so as to gain some more insight into the nature of the observed disk motion and
characteristics of the fluid–body coupling. Figure 7 displays the real (left) and the
imaginary (right) parts of the global mode structure at each point Pi, normalized by

the inclination angle θ+ = θ̂z ± iθ̂y. Given this definition of the inclination, the left
column displays the modes in a state corresponding to the maximum of θz, whereas
the right column corresponds to a state with θz = 0 (and to a maximum θy in the
case the path is three-dimensional). Note also that when θz = 0, the z component of
the rotation rate is maximum. The major advantage of this representation is that it
provides a way to observe a given unsteady mode at two different instants of time;
the case of a steady mode is slightly more subtle and will be detailed in § 4.

Both the real and the imaginary parts of the F1 global mode at P1 exhibit an
alternation of positive and negative disturbances (emphasized by the streamline
pattern) which is a clear footprint of wake oscillations. This wake structure very
much resembles that behind a fixed disk (e.g. the ‘fluid’ mode at P5 displayed in
the last row), a feature worthy of interest since the point P1 corresponds to a low
value of I∗, i.e. to a situation where the disk is rather expected to be very sensitive
to flow disturbances. Although surprising at first glance, this characteristics is in line
with DNS observations where the first departure from the steady vertical fall in this
range of I∗ (I∗ . 3 × 10−3) corresponds to the low-amplitude (or quasi-vertical) ZZ2

regime (Auguste et al. 2013; Chrust et al. 2013), a regime that can hardly be properly
characterized in experiments owing to residual disturbances in the fluid (Fernandes
et al. 2007; Ern et al. 2012).

Although it corresponds to the same value of I∗, the F2 mode at P2 reveals an
utterly different behaviour. This mode has a clear oscillating nature, as evidenced



8

4

0

7

–6
34

–42

8

4

0

8

–6
160

–15

y

(a () b)

8

4

0

2.0

–0.3
8

–25

8

4

0
145

–2

y

(c () d)

8

4

0

1.5

0
1.8

–0.8

8

4

0

0.9

–0.3y

(e () f )

8

4

0

950

–1250
26 000

–22000

8

4

0

1000

–1400y

(i () j)

0.4

0

0.1

0
39.5

–0.2

y

(g () h)10

5

–5

0

10

5

–5

0

1.3

0

x x

104

0

2

0

–63 000

26 000

0 3 6 9 12 15 18 0 3 6 9 12 15 18

0 3 6 9 12 15 18

0 3 6 9 12 15 18

0 3 6 9 12 15 18

0 3 6 9 12 15 18

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

0 3 6 9 12 15 18 0 3 6 9 12 15 18

FIGURE 7. (Colour online) Global modes (m = 1) along the various branches of the
stability diagram displayed in figure 5. Each row in the figure corresponds to a single
point Pi, from i=1 at the top to i=5 at the bottom. The upper (respectively lower) half in
each snapshot displays the axial velocity (respectively axial vorticity); streamlines are also
drawn in the upper half. The left (respectively right) column show the real (respectively
imaginary) part of the modes that have been normalized by the complex inclination θ+.
The five investigated points have the following (I∗, Re) coordinates: P1 (2 × 10−3, 113),
P2 (2 × 10−3, 161.2), P3 (1.6 × 10−1, 33), P4 (50, 59.5), P5 (50, 273).

by the axial vorticity distribution in the near wake. However, the axial velocity
distribution dramatically depends on which instant is chosen to observe it: while it
takes the form of an elongated strip with a constant sign extending far downstream
when θz = 1, it reduces to a few rolls of alternating sign confined to the near wake
when θz = 0. Hence, unlike what we observed at P1, a dramatic reorganization of the
structure of the eigenmode within the wake takes place during the period of time
separating the two snapshots. We interpret this reorganization as the footprint of the
mutual coupling between the disk’s degrees of freedom and its wake, a feature that
appears to be much stronger on the F2 mode at P2 than in the previous case where
the wake dynamics barely affect the motion of the disk. This corroborates the DNS
results reported in figure 6. Indeed, for I∗ ≃ 1.5 × 10−3, the DNS map predicts a
transition from the A-regimes (enclosed within the thick line) to the large-amplitude
ZZ fluttering regime for Ar ≃ 55, a value that compares well with the threshold value
Ar = 53 predicted by the LSA at P2 (the LSA prediction for the Strouhal number,
St ∼ 0.29, also agrees well with the DNS result).



The above interpretation of the differences revealed through the real and imaginary

parts of the modes is also supported by what can be observed at point P3. Given

that the transition at P3 is known from DNS to yield a supercritical large-amplitude

ZZ regime despite a frequency (St ≃ 0.13) closer to that of mode F1 at P1 than to

that of mode F2 at P2, we conclude that the similarities in the spatial structure of the

associated global mode at points P2 and P3 allow us to anticipate that both of them

are characterized by a strong fluid–body coupling. However, based on the qualitative

degree of structural changes between the real and imaginary parts on the one hand and

on the maximum of velocity and vorticity isovalues on the other hand, this coupling

is likely to be stronger at P2 than at P3.

Therefore, our general statement is that all regimes in which the path of the

disk exhibits large-amplitude horizontal deviations result from strong interactions

between the body and its wake and share the linear signature unambiguously

observed at point P3. This common signature is such that the associated global

mode successively exhibits disturbances of ‘sign alternating type’ (SAT) and of

‘sign preserving type’ (SPT). The former (figure 7f ) involve rolls corresponding to

clockwise and anticlockwise fluid motions which are intense only in the near wake,

say up to x ≈ 3, and then decrease downstream. In contrast the latter (figure 7e) take

the form of an elongated strip of constant sign located along the wake axis, with

only weak rolls aligned along the outer edge of this central region. The resemblance

between the SPT wake structure and that of the wake behind a fixed disk just

beyond the first bifurcation, which is known to yield non-zero stationary lift and

torque, suggests that the effect of the SPT disturbances is to deviate the wake from

its original orientation. When the disk moves freely, this deviation results in a drift

between its geometrical axis and its translational velocity. Therefore a periodic motion

of the disk can be understood from the succession of SAT and SPT disturbances, the

former being responsible for fluid oscillations in the wake at each disk inclination,

the latter modifying the disk inclination without much fluid oscillations.

The spatial structure of the global mode at P4 on S1 (figure 7g–h) is purposely

represented over a very large domain downstream of the disk. This allows us to

see the subtle switch from SPT to SAT structures that would be missed, had the

mode structure been displayed over the same domain as in the previous figures.

The snapshot in figure 7(h) shows that the wavelength of this SAT structure is very

large. It then results in very slow oscillations, in agreement with the low frequency

predicted by the QST. Moreover, the amplitude of the fluid velocity disturbance

associated with this mode is weak, which suggests that it acts more on the disk

than on the fluid. On the basis of the above criterion, this slow change from SPT to

SAT structures implies that the coupling is very weak, although non-zero, the disk’s

influence manifesting itself only over a ‘long’ time scale. This is consistent with

the separation of time scales at the root of the QST which qualifies this mode as

‘aerodynamic’ or ‘solid’, as opposed to the ‘fluid’ modes displayed in the snapshots

in figure 7(i,j). In contrast with the previous case, both the real and imaginary parts

of velocity and vorticity disturbances reach very large amplitudes in the wake at P5.

Therefore, the corresponding mode virtually acts only on the fluid, thus belonging to

the ‘fluid’ category. The θz-independent behaviour of the SAT rolls revealed by these

two snapshots confirms that there is almost no coupling between the disk and fluid

motions for such large inertia ratios.
Finally, we may note that all of these results indicate that a strong fluid–body

coupling is only observed with disks of low or moderate relative inertia, modes
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FIGURE 8. (Colour online) Neutral curves for a disk with χ = 10. The same conventions

are used as in figure 5. The dashed vertical line at I∗ = 4.908 × 10−3 in (a) corresponds
to disks with the same density as the fluid (ρ̄ = 1) and thus separates ‘light’ rising disks
from ‘heavy’ falling disks.

P2–P3 belonging to the range of moderate I∗ (say I∗ < 1.0) while P4 corresponds
to a large value of I∗. The peculiar case of P1 which belongs to the low-I∗ range
(I∗ = 2 × 10−3) but displays a weak coupling behaviour underlines the complexity of
the complete problem.

4. A thin disk with χ = 10

We now consider the case of a disk of finite thickness such that χ = 10. This
specific geometry was employed in several previous experimental and computational
studies, e.g. Fernandes et al. (2007) and Auguste et al. (2013) which focused on
density ratios slightly lower than unity, i.e. on inertia ratios in the range 4 × 10−3 6
I∗ 6 5 × 10−3. Selecting the same geometry will allow direct comparisons with these
data and facilitate the interpretation of the stability branches.

Figure 8 gathers the four unstable branches of the eigensolutions of (2.17); the
terminology used to identify them is similar to that of the previous section. Comparing
the neutral curves of figure 8 with those of figure 5 reveals striking differences. Not
only is the critical Reynolds number shifted towards higher values whatever I∗ (see the
general stability diagram in figure 12), but also the nature of the mode involved in the



first destabilization differs when I∗ is small. This is noteworthy because experiments
have long assumed that the disk aspect ratio does not play any role in the dynamics
of the system, provided that it is ‘sufficiently’ large, which led to the building of
regime maps gathering results obtained with disks of widely different aspect ratios,
most of which in the range 10 6 χ 6 102 (Willmarth et al. 1964; Field et al. 1997).
According to LSA predictions, the first bifurcation leading to a non-straight path for
a thin disk with χ = 10 is stationary for I∗ 6 2 × 10−2 (which corresponds to the
S2 branch in figure 8), leading to a SO path. This is in stark contrast with what we
observed in figure 5 where the first bifurcation in this range of I∗ is of Hopf type
and thus leads to an oscillatory path. That the nature of the first non-vertical path of
low-inertia disks crucially depends on their aspect ratio, even when it may be thought
to be ‘large’, is in full agreement with the conclusions of Auguste et al. (2013) who
provided a detailed comparison of the transition sequence for two disks with χ = ∞
and χ = 10, respectively, with I∗ ≃ 4 × 10−3 in both cases. Indeed they found that
the first non-vertical path of the latter is steady oblique while that of the former is
time-dependent.

The crossing of modes S2 and F1 and of modes F1 and S1 along the critical
marginal curve results in two frequency jumps (grey arrows in figure 8b). Again,
a destabilization–restabilization subregion is found to exist on the S1 branch in the
range 1.6 × 10−1 6 I∗ 6 4.5 × 10−1. For larger I∗, the stability diagram is qualitatively
similar to that of an infinitely thin disk, with branches S1, F1, S2 and F2 successively
crossed as Re increases. In the limit I∗ → ∞, the thresholds of branches F1, F2 and
S1 are found to be Re ≃ 138.6, Re ≃ 274 and Re ≃ 78.6, respectively. The independent
LSA study we performed for the flow past a fixed disk with χ = 10 confirmed the
former two values (which justifies that modes associated with branches F1 and F2 be
termed as ‘fluid’), while the latter was recovered using the QST approach.

Let us now investigate the structural features of these modes at points Pi of the
various branches of the stability diagram in figure 8(a). The axial velocity and vorticity
of these modes are displayed in figure 9 using the same normalization as in figure 7.
The first row corresponding to point P1 shows that the structure of the associated
primary mode requires a non-zero θz, since its imaginary part is uniformly null in our
unit-inclination normalization. This global mode is thus tied to the tilt of the body
and any disturbance in the fluid is merely a consequence of the disk being inclined.
Since the SPT and SAT disturbances do not exist in this case, our previous criterion
to assess the strength of the fluid–body coupling does not properly apply here, since
there is no actual instant of time at which the body is uninclined. Nevertheless, it
is clear that the stationary mode at P1 corresponds to a one-way coupling, the wake
being enslaved to the body.

The stationary mode consists of two time-independent counter-rotating vortices,
leading to a permanent drift of the disk. This results in the so-called SO path whose
occurrence and characteristics were predicted by Fabre et al. (2012) through a weakly
nonlinear analysis. While the axial velocity strip well visible in figure 9(a) for x & 3
results from the non-zero incidence angle of the disk, the existence of the standing
eddy in the near wake (x. 2) helps explain how the zero-torque condition is satisfied
along this steady path. Owing to the antisymmetry of modes m = ±1, the negative
axial velocity disturbance seen in the upper half of figure 9(a) for x. 2 is positive in
the lower half-plane, so that the negative velocities in the primary toroidal eddy are
strengthened above the symmetry axis and weakened below it, yielding a larger drag
on the disk in the upper half-plane and thus a positive torque tending to increase



–29 000

y

1.9

–0.8

–46

0

(a)

0

2

–2

y

3.1

–0.3

–21

18

(c) 1.2

–1.2

–15

30

0

2

–2

y

1.4

–1.4

–1

5

(e) 0.6

–0.6

y

2

–2

–0.02

0.21

0.1

–0.1

–0.2

26.8

0

2

–2

y

4700

–4100
18 000

–28 500

4400

–4508
23 500

(i)

0

2

–2

0

2

4

–4

–2

x x

0

28

(g)

(b)

(d)

(f)

( j)

(h)

0

2

–2

0

2

–2

0

2

–2

0

2

–2

0

2

4

–4

–2

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 120 2 4 6 8 10 12

FIGURE 9. (Colour online) Global modes along the various branches of the stability
diagram displayed in figure 8. Same convention as in figure 7. The five investigated
points have the following (I∗, Re) coordinates: P1 (5 × 10−3, 144.2), P2 (5 × 10−3, 231.4),
P3 (2.5 × 10−1, 65.4), P4 (25, 78.6), P5(25, 138.6).

the disk’s inclination. This effect is balanced by the so-called ‘restoring’ added-mass
torque which tends to realign the disk’s velocity and symmetry axis, yielding an
inclined path with a zero net torque.

Still for the same value of I∗, the structure of the global mode at P2 shows that
crossing the F2 branch in this range of inertia ratios would lead to path oscillations
caused by a rather strong mutual coupling between the body and fluid since the axial
velocity disturbance switches from a SPT structure in the snapshot in figure 9(c) to
a SAT structure in the snapshot in figure 9(d). This suggests rather large saturated
amplitudes, in line with the DNS results which predict a ZZ flutter after a succession
of A-regimes starting with the above steady oblique path. The correspondence with
DNS predictions extends to the threshold and frequency: LSA predicts the F2 mode
to become unstable with St = 0.22 at Re ≃ 231.4 (corresponding to Ar ≃ 66.8), which
compares fairly well with the DNS predictions St = 0.205, Ar ≃ 63.5 (Auguste et al.

2013) and experimental observations St = 0.24, Ar = 70 ± 3 (Fernandes et al. 2007).
The slightly lower threshold detected in the DNS is due to the subcritical nature of the
corresponding bifurcation which was evidenced by Auguste et al. (2013) and Chrust
et al. (2013).



The structures of the modes at P3 and P4 is displayed in the snapshots in figure 9(e–
h). Both points belong to the S1 branch along which St evolves as I∗−1/2 at large I∗.
This low frequency is revealed by the large streamwise spacing between successive
SAT disturbances in figure 9(h,j) which looks qualitatively similar to figure 7(g,h). The
F1 mode at P5 (figure 9(i,j)) is qualitatively similar to its counterpart in figure 7: it is
a pure fluid mode with virtually no influence on the disk motion (see the magnitude
of the normalized velocity and vorticity disturbances), whose characteristics match
those of the first oscillating mode past the disk held fixed. It is important to note
that, although P2 and P5 both belong to the same F2 branch, modes found along this
branch deserve to be termed ‘fluid’ only in the large-I∗ limit, since we found that the
unstable mode at P2 bears the mark of a significant mutual fluid–body coupling. Note
that, on the basis of the differences in the geometry of the axial velocity and vorticity
isocontours and in the corresponding isovalues, this coupling at P2 is expected to be
weaker than that at P3, but stronger than that at P4. This variation in the strength
of the coupling with I∗ in similar to that noticed in the case of an infinitely thin
disk: the moderate-I∗ range is that where the coupling appears to be the strongest,
followed by the low-I∗ range (say I∗ 6 5 × 10−3) and last by the range corresponding
to large inertia ratios (say I∗ > 1.0). This suggests that, in the same spirit as for the
QST, a low-I∗ theoretical model might be derived on the ground of a weak-coupling
hypothesis.

5. A thick disk with χ = 3

We finally consider a thick disk with an aspect ratio χ = 3. This particular geometry
has been used in several experimental and computational studies with an inertia ratio
I∗ = 1.6 × 10−2 corresponding to a body-to-fluid density ratio of 0.99. Although
specific to this value of I∗, the corresponding findings provide a basis of comparison
for the LSA results.

The stability diagram gathering the four neutral curves is displayed in figure 10.
As with the previous two geometries, three of these curves are associated with a
Hopf bifurcation while the fourth corresponds to a steady bifurcation. The critical
curve is found to consist of the F1 branch for I∗ . 0.28, then the S2 branch until
I∗ ≃ 1, and finally the S1 branch for larger I∗. The frequency associated with this
curve experiences two jumps encountered at those values of I∗ corresponding to the
two successive branch crossings. In contrast with the case of ‘thin’ disks, the stability
diagram does no longer display any destabilization–restabilization region. In the whole
range of inertia ratios, the S1 branch is associated with low Strouhal numbers such that
St 6 0.05, while such a range was only encountered when I∗ > 1 for ‘thin’ disks. Last
but not least, in the limit I∗ → ∞, the thresholds corresponding to the three unsteady
branches are exactly recovered by the QST which predicts Rec ≃ 114.7 for the S1

branch and Rec ≃ 177.5 and Rec ≃ 300 for the F1 and F2 branches, respectively.
The spatial structure of a few modes corresponding to points P1 to P3 in figure 10

is displayed in figure 11. The snapshots in figure 11(a,b) suggest that the Hopf
bifurcation at P1 on the F1 branch involves a non-negligible but moderate coupling
between the disk and its wake. This moderate coupling at low-I∗ values is similar to
what we observed with thin disks (compare with the snapshots in figure 9(c,d)).

Considerable changes are noticed between the two snapshots in figure 11(c) and (d)
corresponding to point P2 on the S1 branch. Therefore, we expect this low-frequency
mode (St ≃ 0.039) to involve a strong fluid–body coupling, certainly stronger than that
at P1. This contrasts with the behaviour of the thin disks considered so far, for which
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FIGURE 10. (Colour online) Neutral curves for a disk with χ = 3. Same conventions as
in figure 5.

a low-frequency regime was only encountered on the S1 branch in the large-I∗ range
where the St ∝ I∗−1/2 relation holds. In those cases, the unstable modes correspond
to the quasi-static limit and hence induce only weak interactions between the body
and its wake (e.g. figures 7g,h and 9g,h). What is qualitatively similar to the previous
observations with thin disks and thus emerges as a general rule is that the strength
of the fluid–body coupling reaches its maximum in the moderate-I∗ range 5 × 10−3 6
I∗ 6 1.0 to which P2 belongs. That such a strong coupling, thus presumably leading to
large-amplitude saturated oscillating motions with a Strouhal number as low as 0.04,
may exist for a disk with χ = 3 is not unlikely since planar ZZ regimes with Strouhal
numbers in the range 0.025–0.045 have been observed with light falling spheres, both
in DNS (Jenny et al. 2004) and in experiments (Veldhuis & Biesheuvel 2007). Hence,
these low-frequency, yet with strong coupling, oscillating regimes seem to be specific
to ‘thick’ bodies.

Finally, the snapshots in figure 11(e,f ) display the unstable mode at P3 along the F2

branch. Although the large-I∗ limit is not yet reached at this point, this mode behaves
as if this were already the case: its structure being entirely made of SAT disturbances,
it belongs to the ‘fluid’ type and barely affects the disk, as confirmed by the large
values reached by the normalized vorticity disturbance.
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6. Final discussion and conclusions

In this study, we have considered the path instability of a disk of arbitrary thickness
rising or falling in a viscous fluid due to buoyancy/gravity in the framework of a
global linear analysis. Three specific configurations corresponding to disks of aspect
ratio χ = ∞, 10 and 3 have successively been examined, the latter two been thought
of as prototypes of thin and thick axisymmetric bodies, respectively. Using the
axisymmetric flow past a disk moving broadside on as the base flow, we showed
existence at any value of the inertia ratio I∗ of four critical global modes with an
azimuthal wavenumber |m| = 1. Three of them occur through a Hopf bifurcation
while the fourth is associated with a stationary (pitchfork) bifurcation. The stability
diagrams in the (I∗, Re) and (I∗, St) planes revealed rich and non-trivial behaviours,
including several points corresponding to a codimension-two bifurcation, frequency
jumps along the marginal curve and local regions where, for increasing Reynolds
numbers, a restabilization can follow a destabilization.

The LSA results have frequently been compared with those of available DNS
and experiments. We showed that they agree quantitatively well with previous
findings regarding the primary destabilization, both on the thresholds and frequencies.
Qualitatively, the spatial structure of the global modes normalized by the disk’s
inclination angle and visualized through its real and imaginary parts, made it possible
to assess qualitatively the strength of the fluid–body coupling. We found that modes
involving a moderate-to-strong (respectively weak) coupling generally induce large-
(respectively small-)amplitude displacements of the disk in the saturated regime.
Although this statement may appear quite strong at first glance, it was proved to be
robust since our inferences based on LSA results match DNS predictions remarkably
well. The transitions with a non-negligible mutual coupling were observed to have
a common linear signature, namely a clear variation of the arrangement of axial
velocity disturbances in the wake between the two different instants of time at which
the corresponding mode is real or imaginary, respectively.
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In agreement with the recent weakly nonlinear analysis of Fabre et al. (2012),
we found that the stationary mode predicted by the LSA in the freely moving disk
problem, which exhibits an I∗-independent threshold, differs from its counterpart for
a fixed disk, even in the large-I∗ limit. It is worth noting that, still in the large-I∗

limit, this mode is not the first to be destabilized whatever the disk aspect ratio.
This contrasts with the fixed-body problem in which the wake always loses its
axisymmetry through the stationary bifurcation. Again in the limit of large inertia
ratios, LSA predicts existence of two unstable oscillating modes which are nothing
but those associated with the linear wake instability past a fixed disk. These modes
have been found to involve a negligible fluid–body coupling, the wake structure being
independent of the disk’s inclination, which led us to qualify them as ‘fluid’. The
general agreement between LSA predictions and DNS results proves unambiguously
that the non-vertical regimes, be they SO or zigzag (either ZZ or ZZ2), do not merely
result from the dynamics of the sole wake but are intrinsic features resulting from
the fully coupled fluid + disk problem, even though the coupling may in some cases
be weak.



Finally, this study shed light on the crucial influence of the disk aspect ratio. This
influence is summarized in figure 12 which gathers the critical curves and associated
frequencies obtained for the three aspect ratios we considered. Figure 12(a) reveals
that for I∗ . 2 × 10−2, the thick disk with χ = 3 deviates from a steady vertical path
at a lower Reynolds number than the thin disk with χ = 10, the infinitely thin disk
being the most unstable of the three. In contrast, for larger inertia ratios, the primary
instability threshold is a monotonically decreasing function of the aspect ratio, the
system becoming unstable through a low-frequency mode in all cases. This decrease
of Rec as χ increases may be physically understood by noting that the larger χ the
smaller the amount of fluid that must be displaced by the body to move edgewise.
Hence, for given Re and I∗ and a given disturbance in the disk’s wake, one expects
that the thicker the disk the less disturbed its motion. Thus, thick disks require
larger wake disturbances, i.e. a larger Reynolds number, to start moving edgewise.
Figure 12(b) shows that the oscillation frequency at the threshold is insensitive to
the aspect ratio for I∗ & 1 since, in agreement with the scaling predicted by the QST,
all curves collapse on the master curve St ≈ 5.8 × 10−2I∗−1/2. According to (D 1),
the existence of this master curve implies that, for a large enough relative inertia,
the variation of the dimensionless torque experienced by the disk with respect to a
change in its inclination (the coefficient M,α in (D 1)) does not depend on χ . The
QST approximation also predicts that the threshold, Rec, does not depend on I∗.
However, as the comparison of the two subfigures shows, the latter prediction holds
over a more narrow range of I∗ than the former for the St − I∗ relation, a trend
already noticed with two-dimensional plates (see figure 6 of Assemat et al. (2012)).

The transition scenario was found to be much more complex for low-inertia disks
with two key features deserving further comments. One of these is that, although a
disk with χ = 10 may be thought of as thin, its behaviour still differs from that
of an infinitely thin disk. In particular, the first unstable mode of the former in the
low-I∗ limit corresponds to a SO path while that of the latter results in a small-
amplitude ZZ2 fluttering motion. The other is that both of these modes induce bare
lateral displacements of the disk, in contrast with the first unstable mode obtained for
a thick disk with χ = 3 which, still in the low-inertia limit, was observed to yield a
ZZ regime corresponding to large-amplitude edgewise motions.

Differences between ‘thin’ and ‘very thin’ disks were already discussed by Auguste
et al. (2013) and there is not much we can add here. From a physical point of view,
the key reason we see for this influence of χ for already ‘thin’ disks is the 180◦

bending of the streamlines associated with flow disturbances around the edge: the
thinner the body, the larger the local curvature of these streamlines. It would be of
interest to determine beyond which aspect ratio the critical curve in figure 12 does
not change significantly. We did not explore this question here. Nevertheless we
may recall that the weakly nonlinear analysis of Fabre et al. (2012) showed that the
stationary bifurcation from the base axisymmetric regime to the SO regime switches
from supercritical to subcritical for χ ≈ 52. Hence, we expect the critical curve to
remain of the same type as that corresponding to χ = 10 in figure 12 for aspect ratios
of several tens, until it eventually becomes qualitatively similar to that obtained with
χ = ∞.

Regarding contrasts in the magnitude of the body displacements for thin and thick
disks in the low-inertia limit, we believe that it essentially finds its roots in the
way the added-mass loads vary with χ . This may be appreciated by splitting the
total hydrodynamic force and torque in (2.13)–(2.14) into added-mass contributions
resulting from the non-penetration condition of the fluid at the body surface, and



vortical contributions keeping account of all viscous and wake effects (Howe 1995;
Mougin & Magnaudet 2002a; Magnaudet 2011). Owing to the vanishing of the
added-mass coefficient associated with edgewise translations in the limit χ → ∞, it
may be shown that, for I∗ → 0, the in-plane projection of the force balance (2.13)
indicates that the lateral component of the vortical force drives the inclination of the
body but has no effect on its lateral drift (Fernandes et al. 2008), the latter being then
entirely regulated by the torque balance through the so-called restoring added-mass
torque. In contrast, when the two translational added-mass coefficients have a similar
order of magnitude as is the case for O(1) aspect ratios, the body primarily reacts to
a lateral force disturbance through an edgewise acceleration, its inclination then being
a direct consequence of the torque disturbance. Performing a perturbative analysis
of (2.13)–(2.14) with I∗ = 0 reveals that, for a given set of lateral force and torque
disturbances, the lateral velocity of the body increases with its thickness. In other
words, the decrease of the in-plane added-mass coefficient as χ → ∞ restricts the
ability of thin bodies with negligible inertia to perform significant lateral oscillations,
thus favouring the emergence of small-amplitude A-regimes.

Although inspection of the structure of the eigenmodes allows us, to a certain extent,
to disentangle the ‘fluid’ and ‘solid’ contributions to the dynamics of the system in
the vicinity of the primary thresholds, predicting the super/subcritical nature of the
transitions and the amplitudes of the saturated states remain open questions which
cannot be answered by linear theory. Thus, the next step beyond this work will be its
extension to the weakly nonlinear regime, in the spirit of Meliga et al. (2009a) for
fixed bodies and Fabre et al. (2012) for oblique steady paths. This extension should
also allow us to consider modes interactions in the vicinity of the codimension-two
points found at the crossings of primary branches for the three aspect ratios considered
here. Such modes interactions are thought to be responsible for some complex features
observed in DNS, especially for the existence of low-amplitude ‘A-regimes’ for thin
disks in some subranges of I∗.

Another limitation of the present approach is the choice of the broadwise vertical
fall as the base state. Studying the stability properties of the edgewise fall could
also provide interesting results, especially for thick disks. Indeed, both broadwise
and edgewise motions were observed to be stable through DNS (Auguste 2010)
for disks with χ = 1. Both extensions will require performing the LSA in a fully
three-dimensional framework, which is numerically quite challenging.
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Appendix A. Grid sensitivity

We already discussed the sensitivity of the computational approach used to solve
the generalized eigenvalue problem to grid characteristics in previous papers (Assemat
et al. 2012; Tchoufag et al. 2013). Here we present some additional tests performed
to select the grid employed in the present study. Several grids were tested by varying
successively the position of the inlet (L1), outlet (L2) and top (H) of the domain with
respect to the body (see figure 2), as well as the number Nt of triangles involved
in the discretization. Table 2 displays the variations of some quantities of interest



Grid L2 L1 H Nt CD(Re = 117) λS1 λF1 λS2 λF2

G1 76 23 33 20 693 1.197 2.469 × 10−3 ± 1.573i 6.264 × 10−3 ± 0.667i 3.395 × 10−3 4.580 × 10−3 ± 1.248i

G2 101 23 33 22 091 1.196 2.804 × 10−3 ± 1.571i 6.373 × 10−3 ± 0.667i 3.417 × 10−3 5.030 × 10−3 ± 1.248i

G3 76 44 33 21 963 1.196 2.618 × 10−3 ± 1.572i 6.259 × 10−3 ± 0.667i 3.410 × 10−3 4.862 × 10−3 ± 1.248i

G4 76 23 55 23 849 1.197 2.216 × 10−3 ± 1.572i 6.252 × 10−3 ± 0.667i 3.346 × 10−3 4.746 × 10−3 ± 1.248i

G5 76 23 33 29 970 1.197 2.221 × 10−3 ± 1.572i 6.330 × 10−3 ± 0.667i 3.526 × 10−3 4.846 × 10−4 ± 1.248i

TABLE 2. Influence of grid characteristics on some selected quantities of interest. The values of the critical Reynolds number for modes S1,
F1, S2 and F2 are Re ≃ 106, 114, 143 and 168, respectively.



when considering the instability past an infinitely thin disk with I∗ = 4 × 10−2;
the corresponding growth rates and frequencies are displayed in figure 4. The drag
coefficient CD in the base flow right at the threshold of the first instability, Rec = 117
(corresponding to figure 3), and the imaginary part of the three complex eigenvalues
S1, F1 and F2 slightly above the corresponding threshold are found to be almost
insensitive to the variations of grid parameters in the range explored in table 2.
The growth rate reveals some variations, especially regarding modes S1 and F2. We
combined these results with a similar determination of the (negative) growth rates
just below the thresholds. Based on these various results, we concluded that grids 2
and 3 are slightly less accurate than the other three and we finally selected grid 1 as
the best compromise between accuracy and computational time. All results discussed
in the paper were obtained with that grid.

Appendix B. The generalized eigenproblem for the coupled fluid–body system

The set of linear equations to be solved is given by (2.11)–(2.15). Seeking solutions
in the form of normal modes (2.16) and defining I∗∗ as I∗/(1 + (4/3)χ−2) yields

λv̂ = −(V0 − U0) · ∇mv̂ − (v̂ − (û + ω̂ × r)e−imϕ) · ∇V0 − ω̂e−imϕ × V0

− ∇mp̂ + Re−1∇2
mv̂, (B 1)

0 = ∇m · v̂, (B 2)

16λI∗∗û = −16I∗∗ω̂ × U0 + D0(θ̂zy − θ̂yz)

+
∫

S

[f̂xx + (f̂r cos ϕ − f̂ϕ sin ϕ)y + (f̂r sin ϕ + f̂ϕ cos ϕ)z]eimϕ dS, (B 3)

λI∗ · ω̂ =
∫

S

[rf̂ϕx +
(

(rf̂x − xf̂r) sin ϕ − xf̂ϕ cos ϕ

)

y

+ ((xf̂r − rf̂x) cos ϕ − xf̂ϕ sin ϕ)z]eimϕ dS, (B 4)

λξ̂ = ω̂. (B 5)

where ∇m = (∂r, im/r, ∂x) and (f̂r, f̂ϕ, f̂x)
T = t̂m · n, t̂m =−p̂I + Re−1(∇mv̂ + (∇mv̂)T) being

the disturbance stress tensor relative to mode m.
The boundary conditions to be satisfied by the fluid components of the problem on

the symmetry axis Sa depend on the value of the azimuthal wavenumber. After some
inspection one finds:

(i) for m = 0: v̂r = ∂rv̂x = ∂rp̂ = 0;

(ii) for |m| = 1: ∂rv̂r = ∂rv̂ϕ = v̂x = p̂ = 0.

Finally, projecting (B 3)–(B 5) onto each axis of the moving frame of reference
(x, y, z) yields different sets of rigid-body motion equations, depending on the value
of m under consideration. These equations are detailed in the following subsections.

B.1. Case m = 0

Since this mode preserves axial symmetry (possibly with swirl), only ûx and ω̂x can
be non-zero provided λ 6= 0. Noting that nx is non-zero (actually nx = ±1) only on the
front and back faces of the disk where dS = r dr dϕ, while nr is non-zero (actually
nr = 1) only on its lateral surface where dS = dx dϕ/2, the eigenproblem reduces to

8I∗∗λûx = π

∫

S

[

(−p̂ + 2Re−1∂xv̂x)nxr dr + 1

2
Re−1(∂rv̂x + ∂xv̂r)nr dx

]

, (B 6)



λI∗∗ω̂x = πRe−1

∫

S

[

(∂xv̂ϕ)nxr
2 dr + 1

2

(

∂rv̂θ − v̂ϕ

r

)

nr dx

]

. (B 7)

This problem may be recast in the generic form

λB0q̂0 = A0q̂0 (B 8)

by defining

A0 =







−C0(·, V0) + Re−1∇2
0 (·) −∇0(·) ∂x (V0rer + V0xx) −V0reϕ

∇0 · (·) 0 0 0
F v(·) F p(·) 0 0
M v(·) 0 0 0






, (B 9)

B0 =







I 0 0 0
0 0 0 0
0 0 8I∗∗ 0
0 0 0 I∗∗






and q̂0 =







v̂

p̂

ûx

ω̂x






, (B 10)

with Cm(v̂, V0) = (V0 − U0) · ∇mv̂ + v̂ · ∇V0, F v (respectively M v) and F p being the
operators that generate the viscous and pressure contributions to the hydrodynamic
force (respectively torque). Here F v(v̂0) and F p(p̂0) correspond to the right-hand
side of (B 6), while M v(v̂0) corresponds to that of (B 7). In the eigenproblem
(B 8), the boundary conditions are imposed through a penalization method. For
instance, the no-slip condition on the disk surface is satisfied by inserting the
equation εp

−1[v̂ − ûxx − rω̂xeϕ] = 0 with εp ≪ 1 in the rows of the matrices A0

and B0 corresponding to boundary nodes, i.e. by replacing the first row of A0

(respectively B0) with (ε−1
p , 0, −ε−1

p x, −ε−1
p reϕ) (respectively 0). In this way, the

boundary condition is satisfied if εp is selected small enough for O(ε−1
p ) terms to

dominate all other terms at these nodes.

B.2. Case m = ±1

In this mode, ûx = ω̂x = 0 provided that λ 6= 0, so that

16λI∗∗ûy = 16I∗∗U0ω̂z + D0θ̂z

+ π

∫

S

[

1

2
(−p̂ + 2Re−1∂rv̂r)nr dx + Re−1(∂rv̂x + ∂xv̂r)nxr dr

]

∓ iπRe−1

∫

S

[

1

2

(

∂rv̂ϕ − v̂ϕ

r
± i

r
v̂r

)

nr dx

+
(

∂xv̂ϕ ± i

r
v̂x

)

nxr dr

]

, (B 11)

16λI∗∗ûz = −16I∗∗U0ω̂y − D0θ̂y

± iπ

∫

S

[

1

2
(−p̂ + 2Re−1∂rv̂r)nr dx + Re−1(∂rv̂x + ∂xv̂r)nxr dr

]

+ πRe−1

∫

S

[

1

2

(

∂rv̂ϕ − v̂ϕ

r
± i

r
v̂r+

)

nr dx +
(

∂xv̂ϕ ± i

r
v̂x

)

nxr dr

]

,

(B 12)



λI∗ω̂y = ±iπ

∫

S

r

[

(−p̂ + 2Re−1∂xv̂x)nxr dr + 1

2
Re−1(∂rv̂x + ∂xv̂r)nr dx

]

∓ iπ

∫

S

x

[

1

2
(−p̂ + 2Re−1∂rv̂r)nr dx + Re−1(∂rv̂x + ∂xv̂r)nxr dr

]

− π

∫

S

x

[

1

2
Re−1

(

∂rv̂ϕ − v̂ϕ

r
± i

r
v̂r

)

nr dx

+ Re−1

(

∂xv̂ϕ ± i

r
v̂x

)

nxr dr

]

, (B 13)

λI∗ω̂z = − π

∫

S

r

[

(−p̂ + 2Re−1∂xv̂x)nxr dr + 1

2
Re−1(∂rv̂x + ∂xv̂r)nr dx

]

+ π

∫

S

x

[

1

2
(−p̂ + 2Re−1∂rv̂r)nr dx + Re−1(∂rv̂x + ∂xv̂r)nxr dr

]

∓ iπ

∫

S

x

[

1

2
Re−1

(

± i

r
v̂r + ∂rv̂ϕ − v̂ϕ

r

)

nr dx

+ Re−1

(

∂xv̂ϕ ± i

r
v̂x

)

nxr dr

]

, (B 14)

λθ̂y = ω̂y, (B 15)

λθ̂z = ω̂z. (B 16)

Using the U(1)-coordinate transformation û± = ûy ∓ iûz, θ̂± = θ̂z ± iθ̂y and ω̂± = ω̂z ±
iω̂y, the y and iz projections can be added so as to reduce the body equations for
helical disturbances to

16λI∗∗û± = ±16iI∗∗U0ω̂± ± iD0θ̂±

+ 2π

∫

S

[

1

2
(−p̂ + 2Re−1∂rv̂r)nr dx + Re−1(∂rv̂x + ∂xv̂r)nxr dr

]

∓ 2iπRe−1

∫

S

[

1

2

(

∂rv̂ϕ − v̂ϕ

r
± i

r
v̂r

)

nr dx +
(

∂xv̂ϕ ± i

r
v̂x

)

nxr dr

]

,

(B 17)

λI∗ω̂± = ∓2π

∫

S

r

[

(−p̂ + 2Re−1∂xv̂x)nxr dr + 1

2
Re−1(∂rv̂x + ∂xv̂r)nr dx

]

± 2π

∫

S

x

[

1

2
(−p̂ + 2Re−1∂rv̂r)nr dx + Re−1(∂rv̂x + ∂xv̂r)nxr dr

]

− 2π

∫

S

x

[

1

2
Re−1

(

∂riv̂ϕ − iv̂ϕ

r
∓ v̂r

r

)

nr dx

+ Re−1

(

∂xiv̂ϕ ∓ v̂x

r

)

nxr dr

]

, (B 18)

λθ̂± = ω̂±. (B 19)

Comparing (B18) with (B13)–(B14) shows that ω̂± = 2ω̂z = ±2iω̂y, so that (B19)

and (B15)–(B16) imply θ̂± = 2θ̂z = ±2iθ̂y. Introducing these results into (B11)–(B12)
and comparing with (B17) finally shows that û± = 2ûy = ±2iûz. This could have



been inferred from the fact that the transformation (ûy, ω̂z, θ̂z) → ±i(ûz, ω̂y, θ̂y)

for m = ±1 interchanges the y and z projections. Taking the above relations
into consideration and introducing the U(1)-coordinate transformation in the fluid
equations, the eigenproblem may finally be written in the form

λB±1q̂±1 = A±1q̂±1 (B 20)

with
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(B 21)

B±1 =











I 0 0 0 0
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0 0 16I∗∗ 0 0
0 0 0 I∗ 0
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and q̂±1 =











v̂

p̂

û±
ω̂±
θ̂±











, (B 22)

where F v(v̂1) and F p(p̂1) (respectively M v(v̂1) and M p(p̂1)) correspond to the right-
hand side of (B17) (respectively (B18)).

Appendix C. The m = 0 modes

In this appendix we comment on the thresholds and spatial structures of the m = 0
mode. Although this family of modes cannot lead to path instability for reasons
discussed in § 2, it may be of importance in future weakly nonlinear studies. To
illustrate the behaviour and structure of the m = 0 modes, we solve (B 8) in the case
of an infinitely thin disk. We select two values of the inertia ratio corresponding
to points P1 (I∗ = 5 × 10−3) and P5 (I∗ = 5 × 101) in figure 5. Three axisymmetric
global modes are observed. They are all found to be stationary (St = 0) and stable as
illustrated by their negative growth rates displayed in figure 13, even though two of
them are almost neutral in the limit I∗ → ∞ (see the inset in figure 13).

From the structure of (B 7), (B 9) and (B 10), one can separate the axisymmetric
modes into two families: URX and UP. The first (respectively second) family is made
of modes whose velocity components lie along êr and êx (respectively êϕ) and thus
yield a purely azimuthal (respectively axial and radial) vorticity field. On this basis we
find that, whatever the inertia ratio, two series of modes belong to URX and only one
belongs to UP. Their structure at Re = 328 is displayed in figure 14 where, for obvious
reasons, URX (respectively UP) modes have been normalized by ûx (respectively ω̂x).

The large isovalues of the axial velocity and azimuthal vorticity observed for the
URX mode displayed in the snapshot in figure 14(f ) indicate that the corresponding
mode has a ‘fluid’ nature, i.e. it could also have been obtained by studying the wake
of a fixed disk (this is why the corresponding curve is labelled ‘F’ in figure 13). In
contrast the two almost neutral modes displayed in the snapshots in figure 14(b,d)
are tied to the body degrees of freedom and could also be retrieved by using the
QST summarized in appendix D. Their small growth rates result from the |λr| ∼ I∗−1
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for I∗ = 4 × 10−3 (left) and I∗ = 5 × 101 (right). For both values of I∗, the stability of
the global mode increases from top to bottom. Modes (a,d,e,f ) belong to the URX family
and are normalized such that ûx = 1, while those in (b,c) belong to the UP family and
are normalized such that ω̂x = 1. For URX (respectively UP) modes, the upper half of each
snapshot displays the axial (respectively azimuthal) velocity while the lower half displays
the azimuthal (respectively axial) vorticity.

relationship (D 2). The mode displayed in the snapshot in figure 14(d) was also
observed with two-dimensional plates and rods by Fabre et al. (2011). It was termed



‘back-to-terminal-velocity’ (BTV) because it tends to dampen any perturbation that
changes the relative velocity between the body and fluid in the base flow. For a
similar reason, the mode displayed in the snapshot in figure 14(b) which is of UP

type can be termed ‘back-to-zero-rotation rate’ (BZR). These two terminologies are
used in the inset of figure 13 where the growth rate of the corresponding modes
is shown. While past studies tend to ignore the role of axisymmetric modes in the
dynamics of bluff bodies wakes, the BTV and BZR modes reported here deserve
some attention. Indeed, being very weakly damped, they may influence the nonlinear
evolution of the system by interacting with the unstable low-frequency F1 mode.
At low inertia ratios, the distinction between ‘fluid’ and ‘solid’ (or ‘aerodynamic’)
modes generally makes no sense. At first glance the structure of the mode displayed
in the snapshot in figure 14(a) looks very similar to that in figure 14(f ), suggesting
that the ‘F’ branch exists for all I∗. However, the mode in figure 14(a) cannot be
considered as purely ’fluid’ since the corresponding isovalues of the axial velocity and
azimuthal vorticity indicate a non-negligible coupling between the fluid and the disk’s
degrees of freedom. The snapshots in figure 14(c) and (e) reveal spatial structures
very different from those of the snapshots in figure 14(b) and (d). Hence, one has to
conclude that the aforementioned BZR and BTV modes ‘disappear’ at low enough I∗.
This is not unlikely since, according to figure 13, the two branches corresponding to
the snapshots in figure 14(c) and (e) are much more damped than the branches BTV

and BZR observed at large I∗.

Appendix D. Summary of the QST

The QST presented by Fabre et al. (2011) was derived through a rigourous
asymptotic expansion to predict analytically the instability characteristics of a freely
falling two-dimensional body in the limit of large solid-to-fluid density ratios. It is
mainly based on the idea that in this limit an unsteady body motion happens on
a time scale much larger than those governing the flow dynamics. This assumption
allows the so-called ‘aerodynamic’ modes tied to the body to be computed with
the flow considered quasi-steady. Since the present problem with |m| = 1 can be
reduced to an almost two-dimensional problem by using the U(1) coordinates, the
two-dimensional QST formulation still holds. Therefore, equation (15) from Fabre
et al. (2011) may be applied and the most unstable eigenvalue reads at criticality

λLF = 1

2I∗

(

L,α

16
+ M,ω

)

±
√

M,α

I∗ , (D 1)

where LF stands for ‘low frequency’, L,α (respectively M,α) denotes the lift force
(respectively torque) due to a change in the incidence angle (defined as the angle
between the disk translational velocity and its symmetry axis) and M,ω denotes the
torque induced by a weak rotation of the disk about one of its diameters. These
coefficients can be computed by solving a series of elementary problems, following
the procedure described by Fabre et al. (2011) for two-dimensional bodies.

When the right-hand side of (D 1) is complex (i.e. M,α is negative), searching for
the value of Ar at which the real part vanishes provides the corresponding threshold;
note that this threshold does not depend on I∗. Fabre et al. (2011) showed that such
a threshold exists for two-dimensional square rods above Re = 48, yielding the onset
of an unstable oscillating mode characterized by a strong coupling between the body
and its wake. A more thorough study of the QST for three-dimensional bodies will



be the subject of a future paper. Here, it is enough to say that the S1 mode observed
in the present study for the three aspect ratios we considered is the counterpart of the
mode observed for the aforementioned square rod, and that the conclusions of the two-
dimensional study regarding this mode are globally applicable here. However, a central
difference in the compared behaviour of two- and three-dimensional bodies must be
pointed out: in the limit of large inertia ratios, we found the ‘solid’ S1 mode to be
more unstable than the ‘fluid’ modes for disks, while in the case of the square rod
the former was found to be slightly less unstable than the latter (namely, the classical
von Kármán shedding mode which emerges at Re ≈ 44).

Finally, let us mention that the QST also predicts an antisymmetric ‘back-to-vertical’
(BV) and an axisymmetric ‘back-to-terminal-velocity’ (BTV) stationary mode whose
growth rates may be shown to be always negative. As discussed in appendix C, in
the present three-dimensional case there is also an axisymmetric ‘back-to-zero-rotation
rate’ (BZR) global mode which is stationary and stable. The growth rates of these last
two damped modes are

λBTV = − D,u

16I∗∗ , λBZR = −
M x

,ω

2I∗∗ , (D 2)

where D,u stands for the drag variation due a change in the body velocity, M x
,ω

denotes the axial torque due to a weak rotation about the disk axis, and again
I∗∗ = I∗(1 + (4/3)χ−2)−1.
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