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Abstract. Further to previous 2D studies of flows in differentially heated cavities

filled with air, we are interested in stability of 2D natural convection flow in these

cavities with respect to 3D periodic perturbations. The basis of the numerical methods

is a time-stepping code using Chebyshev spectral collocation method and direct Uzawa

method for velocity-pressure coupling. Newton’s iteration, Arnoldi’s method and

continuation method have been used in order to respectively compute 2D steady-state

base solution, estimate the leading eigenmodes of the Jacobian and perform linear

stability analysis. Differentially heated air-filled cavities of aspect ratios from 1 to 7

were investigated. Neutral curves (Rayleigh number versus wave number) have been

obtained. It turned out that, only for aspect ratio 7, 3D stationary instability occurs at

slightly higher Rayleigh numbers than the onset of 2D time-dependent flow and that

for other aspect ratios 3D instability always takes place before 2D time-dependent

flows. 3D unstable modes are stationary and anti-centro-symmetric. 3D nonlinear

simulations revealed that the corresponding pitchfork bifurcations are supercritical

and that 3D instability leads only to weak flow in the third direction. Further 3D

computations are also performed at higher Rayleigh number in order to understand

the effects of the weak 3D fluid motion on the onset of time-dependent flow. 3D flow

structures are responsible for the onset of time-dependent flow for aspect ratios 1, 2

and 3 while for larger aspect ratios they do not alter the transition scenario which was

observed in 2D cases and that vertical boundary layers become unstable to traveling

waves.
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1. Introduction

The onset of time-dependent flows and transition to chaos of natural convection in

2D differentially heated cavities has been the subject of intensive research in the

past decades (see (Paolucci & Chenoweth 1989, Le Quéré 1987, Le Quéré & Behnia

1998, Paolucci & Chenoweth 1989, Xin & Le Quéré 1995, Mercader et al. 2005) among

others). Although there are more and more 3D investigations of natural convection

in cavities, it is still interesting and necessary to understand the validity of 2D flow

assumption. To this purpose we performed linear stability analysis of steady 2D natural

convection flows with respect to 3D disturbances.

In general natural convection flows were investigated by time-stepping codes (using

a time scheme to solve the unsteady Navier-Stokes equations). But time-stepping codes

are not able to obtain unstable steady flows which are base solutions of linear stability

analysis. Recently iterative techniques (Newton’s iteration, approximate exponentiation

of the Jacobian and Arnoldi’s method) making use of time-stepping codes have been

proposed (Mamun & Tuckerman 1995, Tuckerman & Barkley 2000) for steady-state

solving and linear stability analysis. We combined them with continuation method and

secant method to perform linear stability analysis of a two-dimensional base solution

with respect to both two- and tree-dimensional perturbations (Xin & Le Quéré 2001):

the codes are based on spectral Chebyshev collocation in space and a differentially heated

square cavity with conducting horizontal walls was revisited. The main conclusion is

that 2D flow assumption is valid for high Prandtl number as for small Prandtl number

the 2D base solution becomes unstable to 3D disturbances.

In a recent study (Xin & Le Quéré 2006) we revisited the onset of time-dependent

flows in air-filled cavities with adiabatic horizontal walls: accurate critical values of

Rayleigh number and angular frequency have been determined and furthermore multiple

steady solutions have been discovered for aspect ratio (height/width) about 3 by

combining steady-state solving with quadratic extrapolation.

In the present work we are interested in differentially heated air cavities with

adiabatic horizontal walls and, in particular, the stability of 2D steady-state solutions

with respect to 3D disturbances. The height/width aspect ratios considered range from

1 to 7. Linear stability analysis is first performed with respect to 3D disturbances

(3D stationary disturbances are more unstable than the 2D ones except for 7), 3D

nonlinear simulations are then realized for slightly supercritical Rayleigh numbers in

order to understand the behavior of the bifurcated 3D steady solutions and further 3D

computations are finally conducted for higher Rayleigh numbers so as to locate the

transition to time-dependent flow and know the influence of the weak 3D flows on the

transition mechanisms.

In the following we first specify the configuration of the physical problem

investigated, then give a brief description of numerical methods used and discuss the

numerical results obtained before giving finally the concluding remarks.
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2. Physical problem and governing equations

We are interested in air flows in differentially heated cavities with adiabatic horizontal

walls and suppose that they are governed by the Navier-Stokes equations under

Boussinesq assumption. Before investigating directly 3D configurations, the problem

of interest is divided into two distinguished but simpler configurations: a well-known

2D one is governed by the 2D Navier-Stokes equations and a 3D one is governed by the

linearized 3D Navier-Stokes equations of periodic disturbances in y direction.

The 2D configuration is an air-filled cavity of height H and width W in the

x − z plane. Its vertical walls are submitted to a constant temperature difference

∆T = Th − Tc and its horizontal walls are adiabatic. It depends on Rayleigh number

(Ra = (gβ∆TH3)/(να), Prandtl number (Pr = ν/α, 0.71 for air flow) and aspect

ratio (A = H/W ) where g, β, ν and α represent respectively gravity acceleration,

thermal expansion coefficient, kinematic viscosity and thermal diffusivity. Note that in

3D nonlinear cases A = H/W will be denoted by Ax. Using the following reference

quantities: H for length, αRa1/2/H for velocity and H2Ra−1/2/α for time and defining

a reduced temperature Θ = (T − T0)/∆T with T0 = (Th + Tc)/2, the unsteady 2D

Navier-Stokes equations read in dimensionless form :
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The boundary conditions are no-slip for velocity and Θ(0, z) = 0.5, Θ(1/A, z) = −0.5

and adiabatic on horizontal walls for temperature, i.e.
∂Θ

∂z
(x, 0) =

∂Θ

∂z
(x, 1) =

0. 2D solutions verify the following centro-symmetry (CS): (Θ, U,W )(x, z) =

−(Θ, U,W )(1/A− x, 1− z).

Periodic 3D disturbances characterized by k, a wave number in the third

direction (y direction), are then governed by the 3D Navier-Stakes equations linearized

about (Θ, U,W ). 3D periodic perturbations are written as follows: θ(x, z) cos(ky),

u(x, z) cos(ky), v(x, z) sin(ky) and w(x, z) cos(ky). The eigenmodes are centro-

symmetric (CS) when (θ, u, v, w)(x, z) = (−θ,−u, v,−w)(1/A − x, 1 − z) and anti-

centro-symmetric (ACS) when (θ, u, v, w)(x, z) = (θ, u,−v, w)(1/A − x, 1 − z). If 3D

disturbances are amplified in time, 2D base solution is unstable with respect to periodic

3D disturbances; on the other hand if they are damped in time, it is stable. In this way

one can perform linear stability analysis of a 2D base solution with respect to periodic

3D disturbances.

Finally, solving the 3D unsteady Navier-Stokes equations is necessary to understand

nonlinear behavior of the bifurcations related to 3D periodic perturbations and perform

numerical study at higher Rayleigh numbers. The linearized and fully 3D Navier-Stakes
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equations are omitted here and details can be found in (Xin & Le Quéré 2001, Xin &

Le Quéré 2002).

3. Numerical methods

All of our codes use spectral Chebyshev collocation methods and Fourier series for spatial

discretization (Canuto et al. 1988, Bernardi & Maday 1992, Peyret 2000, Boyd 2000).

Direct Uzawa method (Canuto et al. 1988, Bernardi & Maday 1992) is employed to

ensure fluid incompressibility (velocity-pressure coupling) except for the 3D nonlinear

cases in which projection method (Guermond & Quartapelle 1998) is used.

3.1. 2D time-stepping code

Equations (1) are traditionally solved by time-stepping codes making use of time

schemes. These 2D codes have been widely used to study the onset of time-dependent

flows in cavities and are also used in the present work in order to initialize steady-state

solving through Newton’s iteration. The time-stepping code combines a second-order

Backward Differencing Formula (BDF2) for linear part with a second-order Adams-

Bashforth extrapolation for the convective terms. The resulted 2D Helmholtz equations

for the unknowns are solved by a direct method based on full diagonalization of the

second-order partial derivatives (Haidvogel & Zang 1979).

3.2. Steady-state solving through Newton’s iteration

Time-stepping codes, though widely used, suffer from several drawbacks for performing

stability analysis. One should resort to Newton’s iteration to obtain unstable steady-

state solutions and fortunately iterative techniques for solving Newton’s iteration,

avoiding explicit building of the Jacobian, are now available (Mamun & Tuckerman

1995, Tuckerman & Barkley 2000). These techniques have been coded and applied

successfully to natural convection flows in (Xin et al. 1997, Xin & Le Quéré 2001, Xin

& Le Quéré 2002).

3.3. Linear stability analysis

Once a steady-state 2D solution is obtained, its linear stability can be investigated by

integrating, with very small time step, the linearized 3D Navier-Stokes equations and

using Arnoldi’s method as solution at one time step is the action of the approximate

exponential transformation of the Jacobian on the solution at a previous time step. A

large number of iterations is generally needed to separate the eigenmodes due to very

small time-step and the corresponding computation may be still expensive.

One idea for improving accuracy and efficiency of the computations is to use the

results of Arnoldi’s method as initial estimates of the eigenmodes and work, by using a

continuation technique, on the eigensystem (Keller 1977). This approach was already
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followed in (Winters 1987). We propose to apply it to the eigensystem governing 3D

periodic disturbances and details can be found in (Xin & Le Quéré 2001, Xin & Le Quéré

2002).

3.4. 3D time-stepping code

Once critical values corresponding to 3D perturbations are calculated accurately, 3D

time-stepping codes are needed to study the nature of instabilities induced by the 3D

eigenmodes and the nonlinear behavior of the critical mode. The 3D time-stepping code

uses also a second-order Backward Differencing Formula (BDF2) and the resulted 3D

Helmholtz equations are also solved by a direct method (Haidvogel & Zang 1979).

3.5. Convergence criteria and accuracy

The convergence criterion used for Newton’s iteration is that the || · ||
∞

of the correction

becomes smaller than 10−7. Its quadratic convergence in the neighborhood of the

searched root means that || · ||
∞

of the next solution increment will be at round-off level.

Discrete steady-state dimensionless solutions whose ranges lie in [−0.5, 0.5] for reduced

temperature and (−0.25, 0.25) for dimensionless velocity field are therefore converged

to round-off level.

Continuation method applied to the eigensystem is also solved by Newton’s iteration

and the convergence criterion is also that || · ||
∞

of the correction be smaller than 10−7:

the corresponding change in Ra is smaller than 10. But due to the computation cost,

a coarse resolution in k was used and critical Rayleigh number is only given with 4

significant figures.

For fully 3D numerical simulations, accuracy of numerical solutions can be measured

by spectral coefficients of the highest polynomial degrees of temperature field, for

example. Their || · ||
∞

in each direction have been checked : in the periodic y direction

|| · ||
∞

≤ 10−10 and in the other two Chebyshev directions || · ||
∞

≤ 10−5.

4. Results and discussions

Generally speaking, linear stability analysis of a 2D base solution can be performed

for either 2D or 3D periodic disturbances. The onset of 2D time-dependent flows is

characterized by 2D oscillatory perturbations.

In order to illustrate the difference between 2D and 3D periodic disturbances, we

recall first critical values corresponding to the onset of 2D time-dependent flows and

present then numerical results obtained for 3D periodic perturbations.

4.1. 2D perturbations: onset of time-dependent flow

The onset of time-dependent flows in differentially heated air-filled cavities has been

intensively studied by time stepping codes. But critical values determined in this way
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Table 1. Critical values of 2D oscillatory and 3D stationary disturbances versus aspect

ratio, A. Ra2Dc -critical Rayleigh number of 2D modes, ωc-angular frequency of the 2D

critical mode, Ra3Dc -critical Rayleigh number of 3D modes, kc-critical wave number in

y direction, ACS-Anti-Centro-Symmetry, CS-Centro-Symmetry.

2D oscillatory disturbances 3D stationary disturbances

A Ra2Dc ωc Symmetry NI ×NK Ra3Dc kc Symmetry

1 1.825× 108 0.2930 ACS 100× 100 1.5504× 107 19.2 ACS

2 1.587× 108 0.2823 ACS 80× 100 1.637× 107 19.1 ACS

3 1.113× 108 0.3327 ACS 40× 80 1.140× 107 18.5 ACS

4 1.032× 108 2.5399 CS 40× 80 2.141× 107 22.7 ACS

5 0.970× 108 2.7940 CS 40× 80 4.180× 107 26.75 ACS

6 1.109× 108 3.4752 CS 40× 90 7.628× 107 30.90 ACS

7 1.261× 108 3.9353 ACS 40× 90 1.274× 108 34.70 ACS

8 1.568× 108 4.0732 ACS

are not accurate. We revisited recently these cavities by performing linear stability

analysis for aspect ratios ranging from 1 to 8 and provided accurate critical values (Xin

& Le Quéré 2002, Xin & Le Quéré 2006). Table 1 summarizes the results obtained.

Critical Rayleigh numbers of 2D disturbances listed in Table 1 are all of order 108

and critical angular frequencies divide the cavities into two groups: One group of low

aspect ratios with low angular frequency and another of high aspect ratio with higher

angular frequency. With low ωc the critical modes fill almost completely the cavities

and are due to flow structure at the exiting corners of vertical boundary layers, which

has been called internal hydraulic jump. The critical modes of higher angular frequency

are of boundary layer type and are located mainly along the cavity walls. In terms

of symmetry, 2D steady-state base solutions are centro-symmetric (CS), some critical

modes keep this symmetry and some break it.

Note that for aspect ratio about 3 there were observed multiple steady-state

solutions. For certain aspect ratios between 3 and 4 there exists two critical Rayleigh

numbers, one per solution branch. More details can be found in (Xin & Le Quéré 2006).

4.2. 3D perturbations: linear stability

One of the difficulties encountered in studying 3D perturbations is that there is one

more unknown, the wave number k. As there is no a priori information about the critical

Rayleigh number and critical wave number, the only way to do it is the test-and-error

method: after obtaining a steady-state solution at a fixed Rayleigh number, the 3D

linearized Navier-Stokes equations are integrated in time for several wave numbers in

order to observe whether perturbations are amplified. Once a wave number for which 3D

perturbations are amplified in time is found, we calculate the critical Rayleigh number

for the wave number considered and construct neutral curves versus wave number. In

order to make sure that the minima of these neutral curves correspond really to the
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critical Rayleigh numbers, one must check that there is no more unstable modes below

these minima.

In a previous study (Xin & Le Quéré 2002) air-filled cavity of aspect ratio 8 has been

investigated in detail. It was shown that air flow in this cavity becomes first unstable to

2D oscillatory perturbations and that 3D periodic perturbations are less dangerous than

2D perturbations. Therefore it is meaningful to perform 2D analysis for air-filled cavity

of aspect ratio 8 at least up to the onset of time-dependent flows. For this aspect ratio

it is the 2D time-dependent solutions that become unstable to 3D periodic disturbances

in y direction (Xin & Le Quéré 2002).
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Figure 1. Neutral curve of the 3D unstable mode (left) and iso-surfaces of eigen-

temperature (right) obtained for 3D periodic perturbations in y direction in a square

cavity (A = 1). Critical values are Ra3Dc = 1.55 × 107 and kc = 19.2, the unstable

mode is stationary and it corresponds to a pitchfork bifurcation.

In this work, aspect ratios from 1 to 7 were investigated in detail. It turned

out that in a square cavity 3D periodic stationary perturbations are more dangerous

than 2D oscillatory perturbations. We display in Figure 1 the neutral curve and the

corresponding eigen-temperature obtained with a spatial resolution of 70 × 70. The

critical Rayleigh number is equal to 1.550 × 107 and the critical wave number 19.2.

Spatial distribution of eigen-temperature indicates that the critical mode is anti-centro-

symmetric (ACS, i.e. breaking the symmetry of base solution) and linked to the flow

structure at the exiting corners of the vertical boundary layers as was the case for 2D

oscillatory perturbations. But the 3D periodic critical mode is stationary (zero angular

frequency). Note also that the critical Rayleigh number of 3D periodic perturbations is

one order of magnitude smaller than the one of 2D oscillatory perturbations. In order to

know grid dependence of the results, a higher spatial resolution of 100× 100 was used:

at k = 19.2 the critical Rayleigh number is equal to 1.5504 × 107, which confirms the

accuracy of the results obtained with a grid 70× 70.

A spatial resolution of 80 × 100 was used to investigate the cavity of aspect ratio

A = 2. Critical Rayleigh number and wave number are equal to respectively 1.637×107

and 19.1. The critical mode is also stationary and anti-centro-symmetric, its structure

is similar to that found in a square cavity (Figure 2).
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Figure 2. 3D critical modes (eigen-temperature) obtained for A = 2, 3, 4, 5, 6, and 7

(from left to right). The unstable modes are concentrated in the top and bottom parts

and this indicates that the corresponding instabilities are related to horizontal flow in

these cavities.
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Figure 3. Examples of neutral curves of the 3D unstable modes obtained for 3D

periodic perturbations in y direction.

The cavities of A = 3 and 4 were studied using a grid of 40 × 80. For A = 3, the

critical wave number, kc, is equal to 18.5 and the critical Rayleigh number, Ra3Dc , is

equal to 1.140 × 107. For a cavity of A = 4, kc = 22.7 and Ra3Dc = 2.141 × 107. The

corresponding critical modes are also stationary and have the anti-centro-symmetry

which breaks the centro-symmetry of the 2D base solution.

Grids used to investigate A = 5, 6 and 7 were respectively 40 × 80, 40 × 90 and

40 × 90. The critical wave numbers are equal to respectively 26.75, 30.90 and 34.70.

The corresponding critical Rayleigh numbers are equal to 4.180× 107, 7.628× 107 and

1.274× 108. It is to note that these stationary critical modes are really similar in terms

of spatial structure and that they are all anti-centro-symmetric.

The spatial resolutions used above are inspired by the previous 2D works (Xin &

Le Quéré 2001, Xin & Le Quéré 2002, Xin & Le Quéré 2006). In fact, for 1 ≤ A ≤ 8,

heat transfer and boundary layer thickness depend only on the Rayleigh number based

on cavity height. When working on a particular Ra based on cavity height, one can

use less collocation points in x direction for larger A: this is why with increasing A less

collocation points are used. As 70 or 80 collocation points in z direction are enough for

A = 1 and 2 at Ra ≈ 107, 80 collocation points in z direction are kept for A = 3, 4 and
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5. Because Ra3Dc increases rapidly with higher A and boundary layer becomes thinner,

higher spatial resolution is used in z direction while 40 points are kept in x direction.
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Figure 4. Comparison of the critical Rayleigh numbers established for 2D and 3D

perturbations and aspect ratios between 1 and 8. 3D periodic perturbations are more

unstable for A ≤ 6 and 3D simulations are thus necessary.

Table 1 summarizes also spatial resolution used and important features of the

numerical results obtained for 3D disturbances. More neutral curves are given as

examples in Figure 3 and the unstable modes from A = 2 to A = 7 are displayed

in Figure 2 in terms of eigen-temperature. For the aspect ratios investigated all the

3D periodic modes are found to be stationary and anti-centro-symmetric and they

correspond to therefore pitchfork bifurcations. The critical modes of A = 1 and 2

have similar spatial structure which is due to the so-called internal hydraulic jump

at the exiting corners of the vertical boundary layers and the critical values remain

almost constant. For larger aspect ratios, the critical 3D modes are also related to flow

structures near the horizontal walls, both the critical Rayleigh number and the critical

wave number increase with aspect ratio. All the critical Rayleigh numbers of 3D modes

are smaller than those of 2D oscillatory perturbations (Table 1) except for the aspect

ratio 7 (Figure 4). This means that, for A ≤ 6, 2D steady natural convection flows in

differentially heated air-filled cavities will become steady and three-dimensional before

becoming time-dependent if there is enough space in y direction. These results indicate

that future 2D studies should be conducted carefully in order to remain meaningful.

As all the 3D unstable modes are concentrated on the top and bottom parts in

the cavities, they are related to the flow structure there. The common flow feature

in the cavity top parts is that fluid goes up, turns around the corner, follows the

horizontal wall and joins the downward boundary layer. This takes place smoothly

for A = 3 − 7 but with an internal hydraulic jump for A = 1 and 2: after turning

around the corner, fluid rebounds first downwards and moves then upwards while flowing

towards the cold wall. In these flows fluid particles follow curving trajectories and a

possible instability mechanism is centrifugal-flow instability because fluid particles are

submitted to centrifugal force. Generally speaking, centrifugal force results in curvature

deformation in the transverse direction and centrifugal-flow instability corresponds to
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Table 2. Slightly supercritical Rayleigh numbers investigated and numerical

parameters used for 3D simulations. Aspect ratio-Ax, wave length-Ay = 2π/k, spatial

resolution-NI ×NJ ×NK.

Aspect

ratio (Ax)

Rayleigh

number

Wave length

(wave number)

Spatial

Resolution

Time

step

1 1.8× 107 0.33 (19.04) 80× 30× 80 1× 10−2

2 1.8× 107 0.33 (19.04) 60× 30× 80 1× 10−2

3 1.4× 107 0.34 (18.48) 40× 30× 80 1.5× 10−2

4 2.5× 107 0.28 (22.44) 40× 30× 80 1.4× 10−2

5 5.0× 107 0.24 (26.18) 40× 30× 80 1× 10−2

6 8.5× 107 0.20 (31.42) 50× 30× 90 1× 10−2

secondary flow of the main flow. Centrifugal-flow instability does occur in cavity flows:

it is well-known in lid-driven cavities (see (Ramanan & Homsy 1994, Albensoeder et al.

2001) among others) and it is also observed in a differentially heated square cavity

filled with low-Pr fluids (Xin & Le Quéré 2001). Figure 2 indicates clearly that 3D

unstable modes are secondary flow of the main flow stream and that they are centered

on the curving main flow. For A = 1 and 2 the main flow curvature is particular due

to the internal hydraulic jump and the unstable modes follow exactly this curving flow

structure. For A ≥ 3 curvature of the main flow is modified and the unstable modes

display then a different structure. This change in structure can also explain the brutal

change observed in Ra3Dc between A = 2 and A = 3 (Figure 4).

4.3. 3D perturbations: nonlinear behavior

In order to understand nonlinear behavior of the 3D unstable modes, 3D numerical

simulations using 3D time-stepping code were performed and randomly perturbed 2D

base solutions were used as initial conditions. Table 2 summarizes Rayleigh numbers

studied and the corresponding numerical parameters. Note that two aspect ratios,

Ax = H/W (A in 2D cases) and Ay = 2π/k (wave length), are used for these 3D

simulations and that spatial resolution corresponds to NI × NJ × NK in respectively

x, y and z directions.

Steady-state solutions after bifurcations are displayed in Figures 5 and 6 in terms

of iso-surfaces of temperature and u velocity. As predicted by linear stability analyses

performed, 3D structures are located in the top and bottom regions. As base solutions

are only 2D (V is thus equal to zero), in full 3D cases v velocity is simply perturbations

and it can represent the amplitude of the unstable mode. Its time evolution gives an

insight into signs of the coefficients in the normal-form model of a pitchfork bifurcation.

Time evolutions of v velocity indicate that all the pitchfork bifurcations are supercritical:

an example with Ax = 4 is given in Figure 7. Note nevertheless that 3D flows are very

weak in y-direction: v velocity is one order of magnitude smaller than u and w velocities

that lie in respectively [−0.1, 0.1] and [−0.22, 0.22]. These pitchfork bifurcations have
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Figure 5. Iso-surfaces of temperature and u velocity obtained by 3D time-stepping

simulations for Ax = 1 and Ay = 0.33 at Ra = 1.8 × 107 (left) and Ax = 2 and

Ay = 0.33 at Ra = 1.8× 107 (right)

only weak influence on the global flow structure and heat transfer.
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Figure 6. 3D nonlinear results in terms of iso-surfaces of temperature and u velocity

for Ax = 3 (Ra = 1.4 × 107 and Ay = 0.34), Ax = 4 (Ra = 2.5 × 107 and Ay = 0.28)

Ax = 5 (Ra = 5 × 107 and Ay = 0.24) and Ax = 6 (Ra = 8.5 × 107 and Ay = 0.20)

(from left to right).
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Figure 7. Time evolution of v velocity (left) and the corresponding log-scale display

(right) in a cavity of Ax = 4. v velocity represents perturbations and the pitchfork

bifurcation is supercritical. The same stands also for other Ax.

4.4. 3D time-dependent flow

As the 3D unstable modes result in weak 3D flows at slightly supercritical Rayleigh

number, an interesting question is to know whether these weak flows persist at higher
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Table 3. Summary of the transition to time-dependent 3D flow. Aspect ratio-Ax,

aspect ratio-Ay, spatial resolution-NI ×NJ ×NK, RaS-the last Rayleigh number at

which steady-state solution is obtained, RaT -the first Rayleigh number at which time-

dependent (periodic) solution is observed, Π-dimensionless period of time-dependent

solution at RaT and ω-the corresponding angular frequency. The transition point is

located in [RaS , RaT ].

Ax Ay

Spatial

Resolution

Time

step
RaS RaT Π ω

1 0.33 80× 40× 80 8× 10−3 4.0× 107 4.5× 107 143.68 .04373

2 0.33 60× 40× 80 8× 10−3 4.0× 107 4.5× 107 389.24 .01614

3 0.34 48× 50× 80 8× 10−3 8.5× 107 9.0× 107 97.08 .06470

4 0.28 40× 50× 80 5× 10−3 1.02× 108 1.05× 108 2.30 2.73

5 0.24 40× 30× 80 5× 10−3 1.02× 108 1.05× 108 2.27 2.76

6 0.20 40× 30× 120 5× 10−3 1.1× 108 1.2× 108 1.82 3.45

7 0.18 40× 30× 120 5× 10−3 1.2× 108 1.3× 108 1.60 3.93

Ra and understand their effects on the onset of full 3D time-dependent flow. Further

3D nonlinear simulations have thus been conducted at higher Ra for Ax = 1 to 7.

Table 3 summarizes computations performed about the onset of time-dependent

3D flows. Numerical simulations have been conducted using aspect ratio Ay based

approximately on the critical wave length 2π/kc. Critical Rayleigh number is between

4×107 and 4.5×107 for Ax = 1 and 2 and about 108 for other aspect ratios. In terms of

period of time-dependent flows, waves of long period (in the order of 100 dimensionless

time units !) are observed for small aspect ratios (Ax = 1, 2 and 3) while for larger

aspect ratios waves of short period (in the order of 1) are observed.

Figure 8. Iso-surfaces of instantaneous temperature fluctuation for Ax = 1 (left,

Ra = 4.5× 107 and Ay = 0.33), Ax = 2 (middle, Ra = 5.0× 107 and Ay = 0.33), and

Ax = 3 (right, Ra = 9× 107 and Ay = 0.34).

Figure 8 displays instantaneous temperature fluctuations obtained for Ax = 1,

2 and 3 and reveals that temperature fluctuations are located in the flow structure

which is called internal hydraulic jump and becomes first unstable to 3D stationary

perturbations. Note that for Ax = 3 internal hydraulic jump did not occur at Ra = 107

when flow becomes 3D. In 2D case forAx = 3, internal hydraulic jump takes place
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at higher Ra (about 5 × 107) through two turning points (Xin & Le Quéré 2006).

This seems to be also the case here for 3D flows (Figure 9 displays multiple solutions

obtained at Ra = 6×107.), but 3D flow structure persists and results in a low frequency

Hopf bifurcation. Note also the angular frequencies of these time-dependent flows are

much lower than those of the 2D critical modes (Table 1). What happens here is quite

similar to the phenomena observed in a differentially heated cubic cavity (Labrosse

et al. 1997, de Gassowski et al. 2003) in which very low frequency is responsible for the

onset of time-dependent flows. Flow visualization and further computation show that at

Ax = 1 and 3 the unstable modes are not traveling waves and that wave periods do not

depend on the Rayleigh number, Hopf bifurcations are thus responsible for the onset of

time-dependent flow. For Ax = 2 the unstable mode is traveling waves in y direction

and its period depends on Ra studied (Figure 10). This seems to indicate that the

onset of time-dependent flow at Ax = 2 is due to a drift pitchfork bifurcation breaking

O(2) symmetry in y direction. As wave speed proportional to ω depends linearly on√
Ra− Rac in the case of a supercritical bifurcation, ω2 versus Ra is also displayed in

Figure 10: the linear relationship confirms a supercritical drift pitchfork bifurcation.

Figure 9. Multiple steady solutions obtained for Ax = 3 at Ra = 6× 107 in terms of

iso-surfaces of temperature(first, iso-values of ±0.35) and u velocity (second, iso-values

of ±0.02): solution without internal hydraulic jump (left) and solution with internal

hydraulic jump (right).
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Figure 10. Time evolutions of temperature for several Ra (left) and relationship

between ω2 and Ra (right). The linear relationship between ω2 and Ra indicates a

supercritical drift pitchfork bifurcation.
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Figure 11. Iso-surfaces of instantaneous temperature fluctuation (first) and v velocity

(second) for Ax = 4 (Ra = 1.05 × 108 and Ay = 0.28), Ax = 5 (Ra = 1.05 × 108 and

Ay = 0.24), Ax = 6 (Ra = 1.2 × 108 and Ay = 0.20), and Ax = 7 (Ra = 1.3 × 108

and Ay = 0.18) (from left to right). Iso-surfaces of v velocity indicate that 3D flow

persists.
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Figure 12. Time evolutions of temperature at a point in the exiting corner of the

hot boundary layer. Ax = 3 (top left, Ra = 9 × 107 and Ay = 0.34), Ax = 4 (top

right, Ra = 1.05 × 108 and Ay = 0.28), Ax = 5 (bottom left, Ra = 1.05 × 108 and

Ay = 0.24), and Ax = 7 (bottom right, Ra = 1.3× 108 and Ay = 0.18).

For larger aspect ratios (from Ax = 4 to 7), weak 3D flows persist at higher Ra and

waves responsible for time-dependent flows are Tollmien-Schlichting waves traveling in

the boundary layers along cavity walls (Figure 11), their frequencies (Table 3) are similar

to those of the 2D unstable modes (Table 1) and the corresponding critical Rayleigh

numbers differ only slightly from those of the 2D perturbations. It means that for these

aspect ratios modifications brought by the first 3D stationary unstable modes are not

important enough to alter the transition scenario, observed in 2D cases, that vertical

boundary layers become unstable to traveling waves to give birth to time-dependent

flows. Although the unstable mode, traveling waves, should cope with the fact that the

base solution is not 2D but 3D, they display mainly 2D features.

Finally, note that the 3D numerical simulations are very time consuming. One
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period at Ax = 1 needs 17960 time steps and for Ax = 3 it needs 12135 time steps. Even

for larger aspect ratios, computation at one Rayleigh number may also need thousands of

dimensionless time units. This fact prevents from searching systematically for multiple

time-dependent flows. Several examples of time evolutions are given in Figure 12.

5. Summary and concluding remarks

In this study was first investigated linear stability of 2D steady natural convection flows

in air-filled differentially heated cavities of aspect ratios from 1 to 7 with adiabatic

horizontal walls, with respect to 3D periodic perturbations. On the one hand, 3D

periodic unstable modes are found to be stationary and lead to pitchfork bifurcations

and on the other hand they are anti-centro-symmetric and break the centro-symmetry

of the 2D base solution. The 3D unstable modes are concentrated in the cavity top and

bottom parts and are related to the curving structures of the main flow. In curving flow

structures, centrifugal force plays an important role and can result in secondary flows. It

is believed that the instability mechanism is centrifugal-flow instability. In comparison

with previous 2D works, only for aspect ratios 7 and 8, 2D perturbations are more

dangerous than the 3D periodic ones. For other aspect ratios, 3D periodic stationary

perturbations are more dangerous. This suggests that the onset of 2D time-dependent

flows is not meaningful for most of the aspect ratios considered if there is enough space

in the periodic y direction and that 2D assumption should be used with caution.

3D nonlinear simulations have been performed at slightly supercritical Rayleigh

numbers and indicate that the pitchfork bifurcations are surpercritical. Furthermore

steady-state solutions after bifurcations are weak in y direction: v velocity is one order

of magnitude smaller than u and w velocities.

Further numerical simulations have been performed at higher Ra in order to

understand if these weak flows in y direction affect the onset of time-dependent flows.

For Ax ≤ 3 it is these weak 3D flows, in form of internal hydraulic jump, that become

unstable to perturbations of very low frequency: wave period, in the order of 100 time

units, is much longer than those of the 2D unstable modes. The onset of time-dependent

flows is due to Hopf bifurcations for Ax = 1 and 3 and due to a supercritical drift

pitchfork bifurcation for Ax = 2. For larger Ax (from 4 to 7), it is the vertical boundary

layers that become unstable to Tollmien-Schlichting waves traveling along the cavity

walls. Both the critical Rayleigh numbers and the structures of the unstable modes

are similar to what have been observed in 2D cases. But the unstable modes should

cope with the fact that the base solution is no more 2D. For these aspect ratios the

weak 3D flow persists and it is not important enough to change the transition scenario

that traveling waves in the vertical boundary layers are responsible for the onset of

time-dependent flows.

Let’s finally stress that, in order to perform this kind of studies, a number of

numerical tools are necessary: a nonlinear 2D time-stepping code (the 2D unsteady

incompressible Navier-Stokes equations), a 2D steady-state solving code combined with
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quadratic extrapolation, a linearized 2D/3D time-stepping code associated with Arnold’s

method, a steady-state solving code working on the eigensystem and using continuation

method, and a 3D periodic time-stepping code (the 3D periodic unsteady Navier-Stokes

equations). The basic tool is the 2D time-stepping code on which the 2D steady-state

solving code using Newton’s iteration is based. The interesting idea is to use Arnoldi’s

method to estimate the leading eigenpairs, determine them accurately by the steady-

state code solving the eigensystem and using continuation method, and calculate the

critical point using a secant method. The combination of these tools is shown to be

efficient in studying stability of 2D natural convection flows with respect to both 2D

and 3D perturbations. This methodology can also be applied to other flow types.
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