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Abstract

When a vehicle equipped with tire is manoeuvred on the ground, the tires

are submitted to a number of forces - longitudinal force when driving or

braking torque is applied to the wheel and/or lateral force when the wheel is

steered to turn at a corner. Pacejka model describes these forces that repre-

sent the reaction of the road onto the tire. This nonlinear model depends on

correlated parameters such as the friction coefficient, the vertical load, the

cornering stiffness, . . . which have to be identified from some measurements.

The sensitivity of Pacejka model to these correlated parameters are studied

using an approach based on polynomial chaos. It consists in decorrelating

the parameters using the Nataf transformation and then, in expanding the

model output onto polynomial chaos. The sensitivity indices are then ob-

tained straightforwardly from the algebraic expression of the coefficients of

the polynomial expansion.
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chaos expansion, tire model

1. Introduction

In the automotive and aeronautical fields, modelling the tire/road inter-

face is fundamental. Indeed, the tire model is one of the major elements to

integrate into a ground vehicle or aircraft model, as the tires are the only

contact surface with the road. When a vehicle equipped with tires is ma-

noeuvred on the ground, they are subject to a number of forces - longitudinal

force when driving or braking torque is applied to the wheel and lateral force

when the wheel is steered to turn at a corner. The tire models available in

the literature describe the efforts and moments corresponding to the road

reaction of the tire (see for instance [1, 2, 3, 4]).

One of the most famous model was proposed by Pacejka ([1]) and is of-

ten used ([5]) nowadays by industrials (Michelin, SAE, Adams tire software,

...). This model is nonlinear, complex and depends on a certain number of

parameters (friction coefficient, vertical load, side slip angle, ...) that can be

obtained from experimentation. Unfortunately, experimental data are often

sparse or incomplete, especially in the aircraft domain and their measure-

ments are very expensive. On the one hand, some parameters only have

a negligible influence on the model response and therefore, do not need to

be determined accurately. On the other hand, some others are relevant for

the model response and thus influence its uncertainty significantly. These

parameters may require additional measurement effort in order to be esti-

mated with relatively high accuracy. In order to prepare and plan future

experiments, it is necessary to perform a sensitivity analysis of the Pacejka
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model.

Several studies have focused on the global sensitivity analysis of nonlinear

models with independent inputs (for instance, [6, 7, 8, 9, 10, 11, 12]). They

rely on variance-based sensitivity indices also known as Sobol’ indices ([7]).

They measure the contribution of input parameters to the model response

variance. Such a contribution can be due to a parameter alone or to a

group of parameters. Sobol’ indices are unique and easily interpretable when

the parameters are independent. But, it is more challenging when they are

dependent. Indeed, if a function (i.e. model response) structurally depends

on parameter p1 and not on p2, and if p1 and p2 are correlated, classical

Sobol’ indices will lead to the conclusion that both are relevant inputs. Even

though actually p2 is influential only because of its correlation with p1.

It may be of high interest to distinguish whether an input is relevant

regarding its correlations with the other ones [13]. This information may

be of great help for the experimenter in order to guide future experiments.

Mara and Tarantola ([14]) have derived a set of variance-based sensitivity

indices to cope with parameters dependency. They also proposed a com-

putational method for their estimation. The proposed approach relies on

the use of polynomial chaos expansion ([15]) in conjunction with a Gram-

Schmidt based decorrelation procedure. They also indicate that Nataf ([16])

or Rosenblatt ([17]) transformations can be used.

This study is part of a french national project involving several industrial

partners (Airbus, Messier-Dowty, Turbomeca, etc) and research centers, in

particular the Modélisation Intelligence Processus Systèmes (MIPS) labo-

ratory. The aim of the project is to take advantage of performances of the
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modern simulation tools by providing new models and developing tools which

allow the simulation of systems and physical phenomenon in the aeronautical

fields. More precisely, the laboratory works to develop models for simulat-

ing the tyre-road interaction characteristics with respect to the aircraft run

types. In this framework, the aim of the paper is to analyze the well-known

Pacejka tire model, which is a basic function of the Magic Formula ([1]).

Pacejka model is widely used in the automotive and aeronautical fields. The

model depends on correlated parameters (friction coefficient, cornering stiff-

ness, vertical load, ...) which must be identified from measurement data.

The most relevant parameters on the lateral force are highlighted, using the

approach proposed in [14].

The paper is organised as follows. Section 2 presents the Pacejka tire model.

Section 3 recalls the expression of the Sobol’ sensitivity indices for model with

independent parameters and their estimation based on polynomial chaos.

Section 4 presents the approach used to study the sensitivity for models

with correlated parameters. Then, the sensitivity analysis of the Pacejka tire

model is performed.

2. Pacejka tire model

Tires in motion on the ground are subject to a number of forces. For

example, a longitudinal force is developed when driving or braking torque is

applied to the wheel. A lateral force appears when the wheel is at an angle

or when it is steered to turn at a corner. The model considered in this study

accounts for the longitudinal force (driving or braking force) and the lateral

force. In the present study, we will exclusively focus on the model expression
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for the lateral force developed in the case of a cornering manoeuvre in steady-

state condition, as represented in figure 1.

Side slip 

angle α

Wheel plane

Wheel direction 

of motion

y

x

F
y

Sliding zone of the tire Adhesion zone of the tire

Wheel direction 

of motion

α

Figure 1: Pure cornering - General view of the tire deformation in the contact patch

In pure cornering condition, an interpolation function, called Magic Formula

([1]), is proposed for the lateral force. The Pacejka model presented here is

a basic function of the Magic Formula. In this case, the lateral force is given

by:

Fy = D sin[C arctan(B(α + Sh)− E(B(α + Sh)− arctan(B(α + Sh))))] + SV

(1)

The model output of interest Fy is the lateral force, road reaction in the

lateral direction. The parameter α is the side slip angle, that is the angle

between the wheel plane and the wheel direction of motion (see figure 1).
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The parameter D represents the maximum value that Fy can reach and C, E,

Sh and Sv are empirical fitting parameters. Figure 2 depicts the relationship

between the lateral force Fy and the side slip angle α. In figure 2, the product

B×C×D, corresponding to the cornering stiffness, is the slope at the origin.

α

Fy

Figure 2: Lateral force vs. side slip angle

The parameters E, Sh and Sv are known and set as follows, E = 0.2, Sh =

0.003 and Sv = 3000. These are common values in the aeronautical field.

The parameters B, C, D and α are uncertain. The aim of this study is to

determine the contribution of B, C, D and α to the variation of Fy. The set

of parameters (B,C,D) is dependent since B and D are expressed as:

B =
K

DC
, D = −3.4× 10−7F 2

z + 0.74Fz. (2)
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where K is the cornering stiffness and Fz the vertical load. The ratio D/Fz

represents the lateral friction coefficient µ that characterizes the road state.

The uncertain parameters Fz, α, C and K are independent. The ultimate

aim of this study is to perform the sensitivity analysis of Fy to the parameter

set (B,C,D, α) because the model response directly depends on these four

macro-parameters. But, let first analyze the contribution of the independent

parameters (α, Fz, K, C) on Fy.

Data collected from the aeronautical field experimentation during the MIPS

project framework and specifications from manufacturer leads to the distribu-

tions of the parameters C, α, K, FZ , given in Table 1. All parameters follow

a normal distribution with mean and standard deviation given in Table 1.

Parameters Normal distributions: N (mean; standard deviation)

C N (1.5; 0.1)

α N (0.1739; 0.0360)

K N (6.7208× 105; 9.7010× 104)

Fz N (9.0034× 104; 5.5803× 103)

Table 1: Distribution of the independent parameters

The next section recalls the expression of the Sobol’ indices for models

with independent parameters.
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3. Sensitivity analysis for models with independent inputs

3.1. Sobol’ indices

Let y = f(p) be a square integrable function of a set of n independent

random inputs p = (p1, . . . , pn) ∈ R
n. Sobol’ proved that f can be expanded

as a sum of orthogonal functions of increasing dimensionality:

f(p) = f0 +
n

∑

i=1

fi(pi) +
n

∑

j>i

fij(pi, pj) + . . .+ f1···n(p1, · · · , pn) (3)

and that this decomposition is unique ([7]).

Thanks to the orthogonality of the functions in equation (3), it is straight-

forward to decompose the variance of y, denoted Vy:

Vy =
n

∑

i=1

Vi +
n

∑

j>i

Vij + . . .+ V1···n (4)

with:

Vi1...is = V ar(fi1...is) (5)

where V ar is the variance operator.

As explained in [7], the Sobol’ sensitivity indices are obtained by renormal-

ising (5) with the total variance Vy:

Si1...is =
Vi1...is

Vy

, 1 ≤ i1 ≤ . . . ≤ is ≤ n. (6)

Si1...is represents the amount of Vy due to the interaction between (pi1 , . . . , pis).

In particular, the first-order sensitivity index, denoted Si, that represents the

individual contribution of the parameter pi to the variance of y, writes:

Si =
Vi

Vy

(7)
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Finally, we define the total sensitivity index of parameter pi, denoted STi,

that includes its individual as well as its collective contributions to Vy as

follows:

STi =
∑

i∈ui⊆{1,...,n}

Sui
(8)

As a result, Si ≤ STi ∈ [0, 1]. A parameter is irrelevant if STi = 0 and does

not interact with the other parameters if STi = Si. The previous sensitiv-

ity indices can be calculated using Monte Carlo simulations ([7]) or Fourier

analysis ([8]). Using Monte Carlo simulations with a sample size of N for a

model with n parameters leads to N×2n evaluations of the model function to

compute all the indices. This can be very costly to manage. An alternative

consists in casting the orthogonal functions in expansion (3) onto orthogonal

polynomials known as polynomial chaos (PC). Indeed, it was shown in [18, 19]

that the sensitivity indices could be evaluated as analytical expressions of the

PC coefficients. Hence, the cost of computing the sensitivity indices is the

one of evaluating the PC coefficients and requires only N model evaluations.

3.2. Polynomial chaos expansion (PCE)

In [15], it was shown that the homogeneous chaos expansion could be

used to approximate any function in the Hilbert space of square-integrable

functions. Therefore, the model output y can be decomposed as follows:

y =
+∞
∑

j=0

αjΦj(p) (9)

where the multivariate polynomial Φj of degree j is given by the tensor

product of the corresponding one-dimensional Hermite polynomials φ
a
j

k
:

Φj(ξ) =
n
∏

k=1

φ
a
j

k
(pk) (10)
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with ajk ∈ N the degree of φ
a
j

k
, such that |aj| =

n
∑

k=1

ajk. The theorem of

Cameron and Martin ([20]), ensures that an expansion as (9) converges in

the L2-sense. The convergence rate is optimal when the parameters are nor-

mally distributed. For other parameters distribution, the authors in [21] in-

troduced the generalized polynomial chaos to ensure an optimal convergence

rate (Legendre polynomials for uniform distribution, Jacobi polynomials for

Beta distribution, . . . ).

In practice, the PC expansion (9) is truncated up to a finite degree d and

the number of coefficients in the expansion equals:

M + 1 =
(n+ d)!

n!d!
(11)

The optimal degree d could be selected by incrementing its value until

a target accuracy, for instance the determination coefficient R2, is reached.

However, this can lead to a large number N of model evaluations to compute

the PC coefficients when increasing d because N has to be greater than M .

To overcome this problem, an adaptive scheme has been proposed in [22] to

build up a sparse PC expansion.

The deterministic PC coefficients (i.e. the αj’s) are the unknowns and sev-

eral non-intrusive approaches are proposed in the literature to compute them.

They can be classified as regression techniques (e.g. [18, 23, 24]) or projec-

tion techniques (for instance [19, 25]). In the case of the regression method,

it is generally advisable to use an over-sampling to determine the sample size

N , resulting in a least squares solution for the over-determined system. It is

proposed to use N = 2(M+1) in [26] and N = (n−1)(M+1), in [18], stating
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that taking more points does not improve the accuracy of the results. In light

of the dependence of M on the PC order and the number n of parameters,

the PC representation will be computationally efficient when small values of

N and d are sufficient for an accurate representation of the random variables.

The computation of Sobol’ indices is straightforward once computed the PC

coefficients. Indeed, let define Ik1,...,ks the set of multi-indices j such that:

Ik1,...,ks = {0 ≤ ajk ≤ d, ajk = 0 ∀k ∈ {1, . . . , n}\{k1, . . . , ks}} (12)

The first-order sensitivity index Si of parameter pi is estimated as follows:

Ŝi =

∑

j∈Ii

α2

jE(Φ2

j(pi))

M
∑

j=1

α2

jE(Φ2

j(p))

(13)

where E is the expectation operator and the set Ii corresponds to the poly-

nomials depending on pi only, with the exception of all the others. Higher

order sensitivity indices can be obtained in the same manner:

Ŝi1,...,is =

∑

j∈Ii1,...,is

α2

jE(Φ2

j(pi1 , . . . , pis))

M
∑

j=1

α2

jE(Φ2

j(p))

(14)

The total sensitivity index is given by:

ŜT i =

∑

j∈I
i+

α2

jE(Φ2

j(pi))

M
∑

j=1

α2

jE(Φ2

j(p))

(15)
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with Ii+ the set of multi-indices j defined by:

Ii+ = {0 ≤ aj ≤ p, ajk 6= 0, ∀k = i} (16)

The set Ii+ corresponds to polynomials Φi depending on parameter pi and

possibly on the other parameters.

It can be worth noting that sensitivity indices can be computed from the

PC coefficients with almost no additional cost. Indeed, only elementary

mathematical operations are needed to compute the indices from the PC

coefficients.

3.3. Sensitivity of Pacejka model to (α, Fz, K, C)

3.3.1. Numerical details

Consider the set of independent parameters p = (α, Fz, K, C). Samples

of parameters are generated using the well-known Latin Hypercube Sampling

(LHS)[27, 28]. Alternative sampling methods exist in the literature (max-

imin LHS, low discrepancy sequences [29, 30], ...) but LHS is particularly

well adapted to create correlated samples as shown in [31]. Besides, it is easy

to implement.

As these parameters are normally distributed, Hermite polynomials are em-

ployed. The number of parameters is n = 4 and a third degree PC expansion

is investigated (d = 3). Consequently, the number of terms in the decom-

position (number of unkowns) is M + 1 = 35, according to Eq.(11). The

35 coefficients αj are determined by least-squares regression after evaluating

the model with a LHS of size N = 4096. With a third degree PC, the de-

termination coefficient is of 0.9994. Moreover, the relative error between the
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model response computed using Pacejka model directly vs using PC decom-

position does not exceed 4%, showing good accuracy of the results. To avoid

overfitting, the variances of the Pacejka model response and of the PCE are

compared (the ratio is of 0.9786). This shows that a third degree PC is suf-

ficient here.

The sensitivity indices are computed using equations (13)-(15). The results

are summed up in Table 2.

3.3.2. Results and discussion

α Fz K C

Ŝα ŜFz
ŜK ŜC

0.45 0.31 0.17 0.02

ŜT α ŜT Fz
ŜTK ŜTC

0.49 0.33 0.21 0.02

Table 2: First-order and total sensitivity indices

The side slip angle is the most influential parameter on the lateral force

of Pacejka model, followed by Fz and K, while C is not relevant. Conse-

quently, the fitting parameter C can be set at a nominal value of its interval

of variation, with no consequence on the variance of Fy. As a result, the

parameter Fz determines the maximum value that the lateral force Fy can

reach for a given side slip angle α while K determines the lateral deflection

of the tyre. This can explain the relative importance of these parameters.

These indices are consistent with the results expected in the tire domain.

Note that, the sum of the first-order indices is about 0.95 which means that
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the contribution due to the interactions is low or put in other words, the

model is almost additive.

However, the lateral force depends directly on the macro-parameters (B,C,D).

Hence, the analysis of the contribution of the dependent parameter set (B,C,D, α)

is of high interest for the designer. The next section is focused on sensitivity

analysis of models with correlated parameters.

4. Sensitivity analysis for models with correlated parameters

Let us consider now a model f with non normally distributed and corre-

lated parameters. We assume that the parameters are defined by a Gaussian

copula characterized by a correlation matrix ρ assumed known. We further

assume that the parameters margins hi (margin of pi) and the associated

cumulative density functions (CDF) Hi are also given.

In [14], it is shown that several PC expansions (and consequently ANOVA

decompositions) of the model response can be performed by firstly decorre-

lated the inputs with the Nataf transformation. These PCEs lead to the defi-

nition of variance-based sensitivity indices for models with correlated inputs.

Given that Nataf transformation yields several independent parameters sets

([32]), several PCEs can be derived and several sensitivity indices be defined.

This is explained in the next subsections.

4.1. Nataf transformation

The Nataf transformation ([33, 34, 35]) allows the transformation from

original space to mutually independent standard normal one, under Gaussian

copula assumption for the joint distribution of the random input vector [36].
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It does not require the joint probability density function (PDF) of the pa-

rameters. However, the marginal PDF of each parameter and the correlation

matrix must be known, which is often the case in engineering.

The Nataf transformation is divided into two steps. The first one consists in

renormalizing each non normal correlated variable pi into a normal correlated

variable zi. This renormalization is a CDF matching condition:

zi = Ψ−1(Hi(pi)), i = 1, . . . , n (17)

where Ψ−1 is the inverse CDF of a standard normal variable. Note that zi

contains the same information than pi.

The correlation matrix ρ
′

of z is symmetric definite positive and can be

decomposed as:

ρ
′

= RRT (18)

where R is the lower triangular matrix obtained from Cholesky decomposi-

tion of ρ
′

.

The second step of the Nataf transformation consists in transforming the

correlated normal variables z into uncorrelated standard normal variables u:

u = R−1z. (19)

It is worthwhile to note that R−1 is also lower triangular. As a conse-

quence, u1 is proportional to z1 and so equivalent to p1. The new variable u2

is a linear combination of z1 and z2 but is not correlated to u1 (i.e. p1), so u2

represents p2 without its correlation with p1. In the same manner, u3 can be

interpreted as the residual part of p3 not due to (p1, p2) and so on... Finally,

un is the proper residual part of pn uncorrelated with the other parameters.
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It can be noted that the computational cost of the Nataf transformation is

related to the dimension of the correlation matrix and is
1

3
n3, where n is the

number of parameters.

4.2. Variance-based sensitivity indices

Now that we have obtained a set of independent random variables u =

{u1 . . . , un}, their variance-based sensitivity indices can be computed via

PCE, as explained in section 3.2. According to the previous discussion, we

can infer that:

• (S1, ST1) the correlation ratio and total effect of u1 are those of p1.

These indices are also called full marginal and total contribution of

p1 to the variance of y because they include both its correlated and

uncorrelated contributions. Indeed, p1 is correlated to all the other

parameters {p2, . . . , pn}.

• (S2, ST2) the correlation ratio and total effect of u2 are those of p2

without its correlative contribution with p1. In the sequel, we will use

the following notations (S2−1, ST2−1).

• ...

• (Sn, STn) the correlation ratio and total effect of un are those of pn

without its correlative contribution with the other parameters. They

represent pn’s proper contributions and are denoted (Su
n, ST

u
n ).

The sensitivity indices so defined are so interpreted because of their order

in the set. Indeed, the above discussion is true for the canonical order, that

is, p = {p1, p2, . . . , pn}. For a different ordering, the new sensitivity indices
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are interpreted in the same way. For instance, with the set {p2, . . . , pn, p1},

(S2, ST2) and (Su
1 , ST

u
1 ), among others, can be computed. The complete

set (Si, STi) and (Su
i , ST

u
i ) can be computed by circularly permuting the

parameters order prior to the Nataf transformation.

The sensitivity indices so defined rank within [0, 1]. If ST u
i = 0 but STi

is high, then it means that pi is only relevant because of its correlations with

the other variables. In a sense, this means that the uncertainty of pi can

be ignored because its impact on the model response is already embedded

in the other inputs uncertainties. On the opposite, if STi = 0 but ST u
i is

high, which occurs in presence of negative correlations, pi is a parameter to

account for in the model.

4.3. Sensitivity analysis of Pacejka model to (α,B,C,D)

4.3.1. Numerical details

Let us consider now the set of parameters (α,B,C,D). It is worth noting

that the analysis that follows is performed with the same sample generated

in section 3.3. Analysis of the parameters sample provides the following

correlation matrix:

ρ̂ =

α B C D
















1 0.00 0.00 0.00

0.00 1 −0.39 −0.35

0.00 −0.39 1 0.00

0.00 −0.35 0.00 1

















α

B

C

D

(20)

We first start with the parameters set ordering (α,D,B,C). Using the ap-

proach described in the previous section, the variance-based sensitivity in-

dices have been computed. The results are summed up in Tables 3 and 4.
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α D B C

Ŝα ŜD−α ŜB−αD Ŝu
C

0.45 0.30 0.11 0.07

Ŝu
α ŜD ŜB−D ŜC−DB

0.45 0.30 0.11 0.07

Ŝα−BC Ŝu
D ŜB ŜC−B

0.46 0.44 0.03 0.03

Ŝα−C ŜD−Cα Ŝu
B ŜC

0.45 0.30 0.18 0.01

Table 3: First-order sensitivity indices

α D B C

ŜTα ŜTD−α ŜTB−αD ŜT
u

C

0.50 0.32 0.15 0.09

ŜT
u

α ŜTD ŜTB−D ŜTC−DB

0.50 0.32 0.15 0.09

ŜT α−BC ŜT
u

D ŜTB ŜTC−B

0.50 0.44 0.07 0.04

ŜT α−C ŜTD−Cα ŜT
u

B ŜTC

0.50 0.32 0.23 0.02

Table 4: Total sensitivity indices
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4.3.2. Results and discussion

As previously, the results show that α has the highest sensitivity index and

therefore is the most relevant parameter. As compared to the previous anal-

ysis, its sensitivity indices remain unchanged since it is not correlated to the

other parameters. The following most relevant parameter is D. Since its con-

tribution is mainly due to its uncorrelated part (Ŝu
D = 0.44 and Ŝc

D = −0.14)

and D = µFz, D has almost the same influence as the independent parameter

Fz on Fy. As explained previously, D, and so Fz, determines the maximum

value of the force Fy, for a given side slip angle α. This explains the relative

high contribution of these parameters to the lateral force Fy. However, there

is also a contribution of its correlative part with B, which cannot appear in

the first study.

The contribution of the uncorrelated part of B is Ŝu
B = 0.18 and the one of its

correlated part is Ŝc
B = −0.15. It can be worth noting that the correlations

being negatives, the sensitivity indices due to the correlation are also nega-

tives. These indices are almost equal, but opposite in sign, leading to a small

full marginal index (ŜB = Ŝu
B+Ŝc

B = 0.03). This analysis shows the influence

of the correlative part of the stiffness factor B to D and consequently to the

vertical load Fz. This cannot be highlighted from the previous analysis of

the set of independent parameters (α, Fz, K, C).

It is the same case for the parameter C (Ŝu
C = 0.07, Ŝc

C = −0.06 and

ŜC = 0.01). Its influence is low but not negligible, contrary to the previ-

ous analysis of independent parameters. This is due to the fact that it is

correlated to B that contributes significantly to the output variance.
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As previously, the total indices ŜT i are close to the marginal indices Ŝi,

showing that there are few interactions between the parameters and their

influence is mainly due to their individual contribution.

It has been shown that α is the most influential parameter. Lateral force

is, in general, a nonlinear function of the slip angle α (figure 2). The rela-

tionship between lateral force and slip angle is initially linear with a constant

slope determined by the cornering stiffness. In this region, the tread band

is supposed to be in complete adhesion with the road surface. As slip angle

grows, eventually the force starts to saturate due to the limited friction on

the road, entering the nonlinear region and a sliding zone appears. The limit

of handling is defined by the maximum available lateral force µFz. Here, this

occurs for α ≈ 15◦.The sliding zone increases with the slip angle up to full

sliding (see figure 3).

In the following, sensitivity analysis has been performed for the adhesion

zone defined by α ∈ [0; 15◦] and for the sliding zone defined by α ∈ [15◦; 20◦].

The other parameters are kept in their initial variation interval. This leads

to the sensitivity indices Ŝα = 0.5871 in the adhesion zone and Ŝα ≈ 0 in

the sliding zone. It shows that α is more influential in the adhesion zone.

In the sliding zone, Fy is almost constant with respect to α, explaining the

insignificant influence of α.

In order to plan the experiments for cornering manoeuvre, this study has

shown that it is important to sufficiently excite the side slip angle and the

vertical load which influences the stiffness factor, especially in the adhesion
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Figure 3: Lateral force vs. side slip angle

zone. Consequently, the following is focused on the adhesion zone.

For the adhesion zone, the 95% confidence interval of the mean lateral force

F̄y is computed and is of 43.5%. Simulations have been made with hypothetic
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reductions of the variation interval of α. The results are presented in Table

5.

Interval reduction of α 95% confidence interval of Fy

5% 32.98%

10% 31.88%

15% 31.5%

Table 5: Hypothetical interval reductions of α

It reveals that a reduction of 15% of the variation interval of α implies a

reduction of 12% of the confidence interval of F̄y.

On the other hand, the previous study has shown that the second most influ-

ent parameter is D, followed by B. These parameters are dependent on Fz

and K. Hypothetic reductions of the variation interval of Fz have been made

combined with the 15% reduction of α. Then, reductions of the interval of

K have been made combined with a 15% reduction of Fz. The results are

shown in Table 6.

Finally, reducing the variation interval of C does not lead to a significant

reduction of Fy, since C is very few influent on Fy. In conclusion, acting on

the most influent parameters allow to reduce the confidence interval of the

mean lateral force of almost the half of its initial value.

The next step will be to extend the sensitivity analysis of the Pacejka model,

taking into account the dynamic characteristic of the tire, during transient-
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Interval reduction of Fz 95% confidence interval of Fy

5% 29.39%

10% 28.5%

15% 28%

Interval reduction of K 95% confidence interval of Fy

5% 24.4%

10% 23.6%

15% 22.8%

Table 6: Hypothetical interval reductions of Fz and K

state, when driving cases as taxiing are considered.
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