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A two-dimensional nematic phase of magnetic nanorods®

Kostyantyn Slyusarenko,* Doru Constantin,’®) and Patrick Davidson®
Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, UMR 8502, 91405 Orsay, France.

We report a hybrid mesophase consisting of magnetic nanorods confined between the non-ionic surfactant
bilayers of a lamellar phase. The magnetic field-induced ordering of the nanorods was measured experimentally
and modeled by a two-dimensional Onsager theory including the third virial coefficient. The nanorods are

strongly confined in layers, with no orientational coupling from one layer to the next.

At high volume

concentration they exhibit spontaneous in-plane orientational ordering and form a stack of independent two-
dimensional nematic systems. This isotropic-nematic transition is first-order.

PACS numbers: 82.70.Dd, 61.30.-v, 61.05.cf, 78.20.Fm

I. INTRODUCTION

Ordered phases in reduced dimensions are fascinat-
ing systems, with physical properties that can be qual-
itatively different from those of their three-dimensional
counterparts. One of the most (intuitively) straightfor-
ward examples would be the two-dimensional nematic
phase, with quadrupolar orientational order but no posi-
tional order. This deceivingly simple system has been the
topic of extensive theoretical®’? and numerical®® work,
with a particular emphasis on the first- or second-order
character of the isotropic-nematic transition.

There are however surprisingly few experimental re-
alisations of such phases. The first qualitative observa-
tion involved rigid phospholipid tubules at the air-water
interface®. Similar results were obtained for Langmuir-
Blodgett films of nanorods™®, but the particles could
only be observed after deposition on a substrate. An-
other strategy relies on inserting DNA molecules within
stacks of neutral®'® or charged!! lipid bilayers. These
disordered mixtures were studied by X-ray scattering and
the nematic phase was identified indirectly, by analyz-
ing the shape of the DNA interaction peak. It is not
clear whether these are purely two-dimensional phases
or whether there is some interlayer coupling. We empha-
size that the nematic order parameter was not measured
in any of the systems above.

In this paper, we present a system where rigid mag-
netic nanorods are inserted into a soft lamellar matrix of
nonionic surfactant. The resulting phase has three key
advantages:

e It is easily aligned by thermal treatment, so that
in the small-angle x-ray scattering (SAXS) images
we can clearly discriminate between the direction
of the smectic director and that in the plane of the
layers. We can thus explore the anisotropy of the
phase.
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e The nanorods have magnetic properties, hence
their orientation can be controlled using an applied
magnetic field.

e When the phase is aligned in homeotropic anchor-
ing, we can perform optical birefringence measure-
ments (in particular under magnetic field), which
yield a completely independent estimate of the ori-
entational order of the particles.

The formulation of the phase!? and its structural study'?
have already been presented. Here, we are concerned
with the orientational order of the particles under mag-
netic field, that we describe using an Onsager-type model
(up to the third virial coefficient), accounting for the elec-
trostatic effects and for an applied magnetic field.

We conclusively demonstrate a first-order phase tran-
sition between two-dimensional isotropic and nematic
phases, settling a long-standing debate in the theoreti-
cal and numerical literature® 1415,

1. MODEL AND ANALYSIS

The nanorods can be seen as parallelepipeds, with di-
mensions L x W x H and volume V = LWH. They
bear a permanent magnetic moment p along their long
axis and exhibit negative susceptibility anisotropy Ay =
X — X+ < 0. For simplicity, we will describe them
in the following as cylinders of length L and diameter
D= ./AWH/r.

The particle orientation is quantified by the distri-
bution f(f2), such that a fraction f(2)d§2 of particles
have their long axes e within the solid angle element df?
around direction Q.

Our main result concerns the orientational distribu-
tion of the particles under confinement, but we start the
discussion with their behavior in aqueous solution, a con-
figuration that we will use as reference.

In isotropic solution at a volume concentration ¢ and

in the presence of a magnetic field (taken along the polar
axis, B = B2), f(Q2) can be described by an extended



Onsager model'®17:

f(Q) = %exp [KB cos @ + JB?Py(cos )
(1)
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with K = ;L7 and J = ﬁ%, where P; is the Legendre

polynomial of the second order, 7 is the angle between
two rods oriented along directions Q = (0, ¢) and ' =
(0", ), while
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is the spinodal concentration (above which the isotropic
state is absolutely unstable), X is an effective length
describing the electrostatic interaction between rods!'®
(X =(InA"+~v+1In2—-0.5)/k, with A’ the amplitude
of the electrostatic interaction, v ~ 0.577 Euler’s con-
stant, and k~! the Debye screening length), and A is a
normalization constant imposing [ f(£2)dQ = 1.

Equation (1) is implicit in f(€2) and must be solved
numerically. The resulting order parameter S is used to
fit the experimental data.

When the particles are confined in the lamellar phase
(with interlayer spacing d), we consider that within the
same layer they have the same effective interaction as
in solution so we model them using the 2D analogue of
Equation (1), but this time the polar axis is along the
director Z||n and the magnetic field is applied in the plane
of the layers Bln :

1
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where the in-plane angle ¢ is measured with respect to
the orientation of the magnetic field and 7,

_ 4¢d(L+ X)(D + X)
n= DL ’

is the effective surface fraction. By using D, we implicitly
consider that the particles can rotate freely along their
long axis, as in the isotropic solution. If they were to
adopt a particular configuration, for instance with the
largest face (L x W) in contact with the surfactant bi-
layer, the values of X and n would be slightly changed.
However, we have no experimental evidence for or against
this assertion and, for simplicity’s sake, we conserve the
“cylindrical” model used above.

In (3) the third and fourth terms on the right-hand
side describe the second and third virial coeflicients of
the Onsager interaction. The coefficient ko (¢, ¢’) has an
analytical form,

talione) = (A+ 3 lsinty = )]+ 201+ cosl = )],

L+ X

D+ X
the coefficient k3(p,¢’, ¢") is calculated numerically®.
Note that Onsager’s argument for neglecting higher-order
virial terms does not apply in 2D*!8, especially for rods
of moderate aspect ratio (such as those used in our ex-
periments). We therefore kept the third term in the virial
expansion.

As presented so far, the 2D model considers that parti-
cles in the same plane interact by the effective hard-core
model measured in solution, while particles in different
layers do not interact at all. This latter feature is indis-
pensable for having a true 2D phase, so it should be thor-
oughly checked. That is why we added in (3) a possible
orientational coupling!® between the nanorods in neigh-
boring layers, described by the last term (with M the
coupling amplitude). Below, we discuss possible physi-
cal origins for such a coupling, estimate its strength and
show that it is negligible.

where A\ = is the effective aspect ratio, and

A. X-ray scattering

The X-ray scattering form factor of an individual par-
ticle is:

_ . qLcos B\ ([ J1(gD/2sinj3)
F(q,B,L,D) = Fysinc ( 5 ) ( D25 )
(4)

where [ is the angle between the long axis of the rod
e and the scattering vector q: cosf = cosfsiny +
sin f cos 1 cos p (see also Figure 1).

For a monodisperse population, the scattering signal is
given by?Y:

27 /2
I(q.0) =2 / dy / fus(@)F2(g, ) sin(0)dd ()

while in the general (polydisperse) case Equation (5)
must be averaged over a radius distribution g(D) (the
polydispersity in the length L does not contribute over
the available ¢-range.) In (5) we approximate the orien-
tational distribution of the rods by the analytical Maier-
Saupe form:

exp(m cos? 6)

fus() = ST (6)

where Z is a normalization constant and fitted the data
with only one parameter m. The order parameter S can
be expressed analytically as a function of m.
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FIG. 1. Experimental geometry. The scattering object is a
rod with orientation e given by the polar angle 6 (measured
with respect to the nematic director n||2) and the azimuthal
angle ¢. The incident beam is along the ¢ axis. The detector
records in the (z, z) plane (normal to the incident beam) the
scattered intensity I(q,v) given by Equation (5)

B. Optical birefringence

The birefringence of the samples can generally be ex-
pressed as:

An = Ang,S(B)¢ (7)

where the field-dependent order parameter S(B) is the
uniaxial one S for the case of water suspensions and the
in-plane component %P of the biaxial order when the
particles are confined within the lamellar matrix. Anga
is the specific birefringence, depending on the geometry
of the particles and on their dielectric permittivity tensor.

I1l. RESULTS AND DISCUSSION

From electron microscopy and X-ray diffraction mea-
surements, the average particle dimensions are:

L=315nmx W =38nm x H =18nm, (8)

and the relative polydispersity is of the order of 0.3'3.
They correspond to cylinders with a diameter D =

VAW H /7 = 29.5 nm.

A. In solution

Under a magnetic field B, aqueous solutions of
nanoparticles become uniaxial, with a director n||B and
an order parameter S that can be positive or negative,
depending on the field amplitude'”.

From the SAXS images we determined the order pa-
rameter S(B) as a function of the field (Figure 2) by
fitting the data to Equation (5) and using for the orien-
tation distribution the Maier-Saupe form (6). The poly-
dispersity g(D) is estimated from the scattering spectrum
of a dilute suspension in the absence of the field.

0.1

0.0

-0.1

- 0.2

-0.3

0.4

|

OS5+—TF——TF— T T 1

0 200 400 600 800 1000 1200 1400 1600
B (mT)

FIG. 2. Order parameter S(B) (determined from the SAXS
images) for the aqueous suspensions of nanorods at various
concentrations ¢ (symbols). The curves are fits derived from
Equation (1) with parameter values (9)

The order parameter is then computed over the distri-
bution f(6) determined from the complete model (1) as
a function of B and ¢, yielding estimates for the material
constants K and J.

The spinodal concentration ¢* = 7.1% was estimated
from the independent measurement of the phase diagram
of the aqueous suspension in zero field: ¢* ~ 0.95¢§VD ,
where ¢3F is the volume concentration of the nematic
phase at coexistence (in aqueous solution). From (2) we
then obtain X = 72 nm.

We also measured the birefringence An(B) of the so-
lutions (Figure 3) and fitted it to Equation (7), which
involves the additional constant Angas.

Finally, we obtain the material constants:

K=82+05T"!

J=-1384+1T72
Angat = 0.8

¢"=71% = X =T72nm

582
o o
— N N

—~
NeJ
oL

that we use alongside the particle dimensions (8) to study
the hybrid system (particles inserted in the lamellar ma-
trix).

B. In the lamellar phase

The SAXS measurements can be performed in either
homeotropic or planar anchoring, giving access to both
S and P, but the optical birefringence can only be de-

termined in the homeotropic configuration (sensitive to
P).
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FIG. 3. Birefringence An(B) of the aqueous suspensions of
nanorods at various concentrations ¢ (symbols). The curves
are fits derived from Equations (7) and (1) with parameter
values (9)

In the planar configuration, with B = 0, for ¢ = 0.5%,
1.5%, and 3.5% we obtained S = —0.44, —0.46, and
—0.47, respectively, very close to the perfect confinement
limit S = —0.5. We conclude that, even in the absence
of the field, the particles are practically contained within
the plane of the layers (and the optical axis is along n).
If we now apply a field B_Ln the system becomes biaxial,
with a second order parameter P.

In the following we treat the system as purely two-
dimensional, with S = —0.5. The particle population is
then completely described by the orientation distribution
f (), determined from the model (3) as a function of B,
M, and ¢. The material constants are those measured
in aqueous solution (9), the periodicity of the lamellar
phase d = 45nm,'3 and M is the sole fitting parameter.

1. Isotropic two-dimensional phase

We describe the birefringence An(B) using Equa-
tion (7) (with S(B) replaced by (2/3)P(B)) coupled
with (3). The simultaneous fit of the three curves yields
M = (=3 £ 3)kpT see Figure 4, and the resulting or-
der parameter is compared to that measured by SAXS in
Figure 5. The M values for the individual fits at 1.5 and
3.5 % are shown in Figure 7. At 0.5 % the uncertainty
on M is very large, so we excluded this point from the
analysis.

2. Nematic two-dimensional phase

The most concentrated system, with ¢ = 8 vol % in the
lamellar phase is a biaxial nematic, with a spontaneous
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FIG. 4. Birefringence An(B) of the suspensions of nanorods
in lamellar phase at various concentrations ¢ (symbols). The
curves are fits derived from Equations (7) (with S(B) replaced
by (2/3)P(B)) and (3) with the material parameters in (9),
d=45nm, and M = —3kgT.
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FIG. 5. Second order parameter P(B) (determined from the
SAXS images) of the suspensions of nanorods in lamellar
phase at various concentrations ¢ (symbols). The curves are
fits derived from Equation (3) with the material parameters
in (9),d =45nm, and M = —3kpT.

second order parameter P. It can thus be seen as a stack
of two-dimensional nematic layers. To measure P we ap-
plied a small magnetic field of 30 mT in the plane of the
layers to orient all nematic domains along the field, and
measured the dependence of the x-ray scattering intensity
I on +. Fitting I(1)) by the Leadbetter method?!, which
takes into account the interaction between nanorods (and
is more appropriate at high concentration than the model
(5)), we obtained P = 0.51.

Both in aqueous solution and in the lamellar phase



the isotropic-nematic transition is first-order, as the two
phases can coexist over a certain concentration range.
By preparing several samples within this domain and es-
timating the fraction occupied by each phase we deter-
mine the nematic concentration at coexistence ¢3” (in
the aqueous solution) and ¢y (for the two-dimensional
nematic). In our system, these two distinct parameters
happen to have the same numerical value, 7.540.5 vol %.
In the lamellar phase, the isotropic-nematic coexistence
range is approximately ¢ = 4.5 — 7.5 vol %, correspond-
ing to n = 0.38 — 0.62!3. A sample at coexistence, with
¢ = 6.6vol %, i.e. n = 0.54, is shown in Figure 6. The in-
terface is not sharply defined, mainly due to the presence
of the lamellar defects which create arbitrarily shaped
domains of the two phases.

FIG. 6. Sample at coexistence (¢ = 6.6 vol %, n = 0.54). The
dashed line (with a greyed uncertain area) delimits the 2D
isotropic phase I /L, (upper left) from the 2D nematic phase
N/Lq (lower right). The width of the capillary is 1 mm.

The two-dimensional model (3) does indeed predict a
first-order isotropic-nematic transition, with a ¢y that
corresponds to the experimental one (¢N° = 7.5 £
0.5vol %) for M = (0.5 £ 0.5) kgT. For our most con-
centrated sample, with ¢ = 8vol %, the same model
reproduces the order parameter P = 0.51 for M =
(0.07 £ 0.01) kgT. These two values correspond to the
high-concentration points in Figure 7.

3. Coupling

The coupling coefficient M is not significantly different
from zero: at low concentration (in the two-dimensional
isotropic phase) M = (—3+£3) kgT from the birefringence
data and at high concentration (in the two-dimensional
nematic phase) M = (0.5 & 0.5) kgT from the tran-
sition concentration and M = (0.07 £ 0.01) kgT from
P(¢ =0.08). We conclude that, within the experimental
precision, the orientation of particles in different layers is
uncoupled, see Figure 7. Is this result in agreement with
the theoretical estimations?

M (k,T)

0o 1 2 3 4 5 6 7 8 9 10

FIG. 7. Best estimate of M for various concentrations ¢. For
¢ = 1.5 and 3.5 % we used the birefringence data (Figure
4). The two high-concentration points are obtained from the
transition concentration and from P(¢ = 0.08) (see text).

The main difference between the particles in lamel-
lar phase and those in isotropic solution is that the for-
mer are constrained to lie in parallel planes, and thus
can more easily become parallel. Magnetic and electro-
static interaction might then be stronger than in three
dimensions. We estimate their amplitude in the two-
dimensional nematic phase, at ¢ = 8 vol %:

The magnetic interaction between the permanent
dipole moments of the particles Wyq favors an antiparal-
lel orientation and its magnitude is:

Waa _ pop® _ poK?kpTo

I~ I~ =6-1 -6
kT  4nr3kpT ArLDH 6-1077,

where 7 is an average interparticle distance.
The electrostatic twist energy?? per molecule Wi,
(which favors a perpendicular orientation) is given by?3:

Wtw htW ! / /
T ”2 //ktw(so,w)f(w)f(w Ydede',  (10)

where hiy, = (kX) 1. The coefficient ki (i, ¢') is:

1 . .
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with
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J [ 1sin(e — ¢')|dpdy’
The main uncertainty is in evaluating the Debye length:

%! = 2—14nm, where the lower value was measured in a
different goethite batch'” and the higher one corresponds

~ 0.3065.

o =



to an ionic strength of 1 mM (the minimum possible at
pH = 3). We then have Wiy, ~ (4 —25)-1073kgT. Both
effects are therefore negligible compared to the thermal
energy, in agreement with our experimental findings.

IV. CONCLUSION

We formulated stable anisotropic materials where
goethite nanorods are confined between the bilayers of
a soft lamellar phase. The nanorods form a nematic sys-
tem with director along the director of the lamellar phase
and a negative order parameter S< — 0.45 (to be com-
pared with S = —0.5 for perfect confinement).

At low volume concentration ¢ < 7.5vol %, the system
is uniaxial in the absence of a magnetic field and forms a
two-dimensional isotropic phase. Under a small magnetic
field (0 < B < 350mT) parallel to the layers, the distri-
bution of the nanorods acquires a biaxial character (the
long axis is preferentially oriented along the field), with
a low order parameter P (P < 0.05 for ¢ = 3.5vol %).

At higher concentration ¢ > 7.5vol % the biaxial order
is spontaneous, yielding a two-dimensional nematic phase

in the plane perpendicular to n, with an order parameter
P ~0.51.

We modelled the magnetic field-induced ordering of the
nanorods P(B) by a two-dimensional Onsager theory and
obtained good agreement with the experiment. In the
simulation we took into account the magnetic properties
of the nanorods and the effect of the electrostatic inter-
action and expanded the free energy to the third virial
coefficient. We also included a possible orientational cou-
pling M between nanorods in neighboring layers.

We conclude that M is not significantly different from
zero (and, at any rate, much smaller than kpT) and
that the phase is a stack of isolated layers. The par-
ticles can be modelled as rigid rectangles with aspect
ratio 3.8; at low concentration they exhibit a two-
dimensional isotropic phase which (on increasing the con-
centration) undergoes a first-order phase transition to a
two-dimensional nematic phase with an order parameter
P ~ 0.5. This result is in very good agreement with
numerical simulations®?24.

In our analysis, we chose a particular effective shape
(rigid rectangles) for the particles, mainly due to its
tractability (very important for including the third virial
coefficient).  Other choices can lead to a different
phase diagram, in particular to a second-order phase
transition?®, in contrast with the experimental findings.
We also ignored the effect of polydispersity, which could
have profound consequences?®. Hopefully, our experi-
mental results will motivate further theoretical and nu-
merical research in the field of two-dimensional ordered
phases.
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the distribution f(2)) and can be written in the princi-
pal axis frame as (Palffy-Muhoray and Hoatson?2’, Eq.

—3(S-P) 0 0
Qap = 0 -3(5+P) 0 (11)
0 0 S

In spherical coordinates, with the polar axis along 2,
the values of P and S are related to the distribution
function f(6, ) via:

S = g//f(ﬁ,cp)sin6‘00826‘d9d90—%

(12)
P= g// £(0, ) sin® 6 cos(2¢) dfde

For a uniaxial system the distribution f depends only on
the polar angle, f(2) = f(#), P = 0 and S is defined
via the simplified formula: S = 2 [ f(6)sin 6 cos?6df —
%. In the “complete confinement” case (relevant for the
lamellar system), f(€2) = 6(0 — 7/2)f(¢), S = —3, and
P reduces to: P =32 [ f(p)cos(2¢) de.



