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Abstract
The problem of rolling element bearing diagnosis can be viewed as that of extracting transient signals from

strong additive noise. In order to separate these two kinds of signals, the problem is formulated as the mini-

mization of an objective function which consists of two terms, a data fitting term, and a regularization term. The

data fitting term reflects the conservation of energy and the regularization term reflects the prior information

(initial supposition) on the objective signals to be separated. Since the objective is to separate two kinds of sig-

nals, a combined regularization scheme (distinct priori information for each signal with a target for separation)

is naturally investigated. In this paper, two kinds of strategies are considered : the first one is a combination of

two sparse regularization terms, and the second one is a combination of a low rank regularization term and a

sparse regularization term.

1 Introduction

Rolling element bearings are widely used in rotating machines and their failure is one of most frequent

reason for machine breakdown [1]. Spectral analysis has for long been used as a basic tool for the task of

detection and diagnosis ; nevertheless, being a tool dedicated to stationary signals, it is unable to capture changes

in time. Time-frequency analysis has been widely used for rolling element bearing diagnosis [2][3][4] due to

its good ’localization’ capability (Short Time Fourier Transform (STFT) [5]), ’Multi-Resolution’ (wavelet [4]),

’Adaptivity (wavelet pack [6])’, which is useful for extracting machinery fault information from measurements.

More recently, dictionary (dictionary provides a more flexible representation as compared with orthogonal

transforms of signal [7]) based sparse representation was brought in rolling element bearing diagnosis [8][9] ;

the principle is to select a small subset of functions (bases) from a general over-complete dictionary which

provides a more flexible decomposition of the signal. In this paper, combined regularization structures (in

contrast to single regularization in classical sparse representation model) are investigated for rolling element

bearing diagnosis which resort to obtaining a better separation result. An overview of this paper is given as

follows.

In order to separate two kinds of signals x = Ac1 and y = Bc2 from their mixture signal z = x+ y, where

A ∈ RN×N1, B ∈ RN×N2 and c1 ∈ RN1, c2 ∈ RN2, x ∈ RN , y ∈ RN , z ∈ RN , a general constrained optimization

problem (a similar and generalized structure can be found in mathematical optimization literature [10] [11]

[12]) is investigated in this paper :

Minimize Reg1(c1)+Reg2(c2)

Subject to Ac1 +Bc2 = z
(1)

where Ac1 + Bc2 = z is the data fitting term, which indicates the conservation of energy, and Reg1(c1) +
Reg2(c2) is the regularization term, which reflects prior information (initial supposition) assigned to each signal

to be separated. The specific forms of the prior Reg1(c1) and Reg2(c2) are elaborated in the following parts.

More specifically, in order to separate a transient signal x ∈ RN from strong additive stationary noise y ∈ RN

in measurement z ∈ RN , two kinds of combined regularization forms are investigated :
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• Sparse + Sparse Combination : it is assumed that x can be represented in an over-complete dictionary Ψ

as xN×1 = ΨN×MαM×1, where M ≫ N and αM×1 is a sparse vector, while α̃ is not sparse when yN×1 is

decomposed as yN×1 = ΨN×Mα̃M×1. Similarly, yN×1 can be represented by one over-complete dictionary

Φ as yN×1 = ΦN×Mβ M×1, where M ≫ N and β M×1 is a sparse vector, while, β̃ is not sparse when xN×1

is decomposed as xN×1 = ΦN×Mβ̃ M×1. The signal separation problem is then formulated as :

Minimizeα,β ∥α∥L0
+λ ∥β∥L0

Subject to zN×1 = ΨN×MαM×1 +ΦN×Mβ M×1
(2)

where L0 is defined as total number of non-zero elements in a vector [13], λ is a weight which serves

the purpose of adding a trade-off between ∥α∥L0
and ∥β∥L0

; model (2) is named Morphological Compo-

nent Analysis (MCA) in [14][15]. Unfortunately, the noise yN×1 can not be represented parsimoniously

under one dictionary (term λ ∥β∥L0
disappears), thus, in this paper, one modified model is proposed for

separating the transient signal from strong additive noise :

Minimize α ∥α∥L0

Subject to zN×1 = ΨN×MαM×1 +yN×1

∥Ψα∥L2

∥y∥L2

= c

(3)

where L2 denotes the Euclidean norm, and the small constant c denotes the ratio between the transient

signal and noise energies. It is noted that λ is a implicit ratio parameter in model (2) and c is a explicit

parameter in model (3) ; -more details are argued in section 3.2 .

• Low rank + Sparse Combination : Spectrogram is defined as the operation of calculating signals spectro-

gram matrix. For signal z ∈ RN , Spectrogram{zN×1}= Spectrogram{xN×1}+Spectrogram{yN×1} can

be represented as MP×Q = LP×Q +SP×Q. Where LP×Q corresponds to the stationary noise signal and is

low rank, and SP×Q corresponds to the transient signal and is sparse. The signal separation problem is

then formulated as :
Minimize Rank(L)+λ∥S∥L0

Subject to L+S = M.
(4)

It is evident that model (4) is similar to form (1), where Ac1 = L , Ac2 = S and Reg1(c1) = Reg1(L), Reg2(c2) =
Reg2(S). The paper is organized as follows. The problem of separating a transient signal from strong additive

noise is formally stated in section 2. The Sparse + Sparse combination and Low Rank + Sparse combination

models are separately discussed in section 3 and section 4. Sections 5 and 6 presents simulation results and

draws the conclusion respectively.

2 Problem Statement

The problem of separating a transient signal x ∈ RN from strong additive noise y ∈ RN in measurement

z ∈ RN is described as

z = x+y (5)

In this work, the transient signal x is modelled as a generalised shot noise process x(k) = ∑k(Xk ∗ h(k− τk)),
k = 1...N, where h(k) is the impulse response resulting from a single impact and {Xk} and {τk} are sequences

of random variables which account for possibly random amplitudes and random occurrences of the impacts [3].

Noise y is assumed to be of zero mean and wide-sense stationary. A simple illustrative example is shown in Fig.

1, where the transient signal (in green color) is merged into strong additive noise (in blue color) : the challenge

is to separate the latter from the former.
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FIGURE 1 – Transient Signal x + Additive Stationary Noise y = Measured Signal z

3 Sparse + Sparse Combination Model

For the current problem (5), firstly, it is assumed that signal x can be represented in a over-complete dictio-

nary Ψ as x = Ψα , and α is a sparse vector, which is obtained by the following equation :

Minimizeα ∥α∥L0

Subject to x = Ψα
(6)

where ∥α∥L0
is a prior hypothesis for the coefficients distribution of the transient signal x, and the dictionary Ψ

can be built from existing time-frequency atoms or learned from a set of training samples (signals) [13]. In this

paper, dictionary Ψ is built from the discrete Gabor atoms [16] :

Ψ = {ψm,l[n] = g(n−m)exp(
i2πln

N
)}(m,l)∈R2 (7)

where g(n) is the Hanning time window of period N with unit norm ∥g∥= 1, centered at n = 0. The atom ψm,l

is translated in time sample m and frequency l, and each atom ψm,l corresponds to a Heisenberg rectangle with

a size (σt ,σω) which satisfies the uncertainty principle σtσω ≥ 1/2.

Secondly, it is also known that the transient signal x is buried in strong noise y so that the measured signal

reads z = x+y ; this condition is added into Eq. (6) to yield :

Minimizeα ∥α∥L0

Subject to z = Ψα +y
(8)

where z = Ψα +y is the data fitting constrain. Equation (8) is not sufficient to accomplish the separation task,

in order to approach the form of Eq. (2), thus, a prior hypothesis for the coefficient distribution of the noise y

decomposition is searched. It is noted that noise y can not be represented parsimoniously under one determined

Gabor dictionary Ψ, suggesting that the solution α̃ = Ψ†y († denotes pseudo inverse of a matrix) of equation

y = Ψα̃ is non-sparse (note that [17] claims that one realization of the noise can be represented parsimoniously

under one realization of Gaussian dictionary, which is different with the Gabor dictionary Ψ that was used

here), which is congruous with the noise being non-compressible. Because noise y can not be decomposed with

sparse coefficients, it seems that Eq. (8) is enough for separating the transient signal x from the strong additive

noise y. Nevertheless, the trivial solution of Eq. (8) is a zero vector, therefore, if the measurement signal is all

noise, the coefficient for representing the transient signal will be the most sparse (zero vector). Thus, one more

constrained condition is needed to guarantee a non-trivial solution to exist.

Thirdly, it is observed that the noise energy σy
2 of noise y is much larger than the signal energy σx

2 of

signal x, and it is assumed that the signal-to-noise ratio σx

σy
=

∥x∥L2

∥y∥L2

=
∥Ψα∥L2

∥y∥L2

= c between the transient signal

and noise energies is a small constant. It is assumed that the signal-to-noise ratio is a known parameter, which

is considered as a constraint added to Eq. (8) to avoid a null sparse solution . Finally, all these constrains are

collected together and problem (5) can be solved by the following equation :

Minimizeα ∥α∥L0

Subject to z = Ψα +y

∥Ψα∥L2

∥y∥L2

= c

(9)
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3.1 Matrix-Free Matching Pursuit Algorithm

There exists one difficulty to solve Eq. (9) which is explained here by an example. It is assumed that

measurement z ∈ R10000, the dimension of the dictionary Ψ is 10000×K and K is much large than 10000,

which makes it is impossible to tackle this huge dimension matrix with a desktop computer. Thus, a matrix-

free algorithm based on Gabor transform is used to solve this problem. With this algorithm, the dictionary is

constructed implicitly by the Gabor transform. As a preparation, the discrete Gabor transform of a signal f of

period Nw is represented as [16]

f̂ [m, l] = GT ( f [n]) =
Nw−1

∑
n=0

f [n]gNw[n−mR]exp(
−i2πln

Nw
)

f [n] = IGT ( f̂ [m, l]) =
1

Nw

Nw−1

∑
m=0

gNw[n−mR]
Nw−1

∑
l=0

f̂ [m, l]exp(
i2πln

Nw
)

(10)

where Nw is the window length (Hanning window is used here), R is the overlapping length between two

continuous window blocks, and R is set to be a constant parameter in this paper for simplicity. An matrix free

algorithm is proposed : Firstly, the measurement signal z is assigned to ŷ (ŷ is set to be 0 initially). Then

execute steps 2− 6 until
∥ŷ∥L2

∥z∥L2
< (1− c). It is noteworthy that the trick is to calculate the Gabor transform

CNw×P = GT (ŷ,Nw) instead of calculating the matrix multiplication c̃N×1 = Ψ†ŷ, which avoids storing a huge

data matrix in memory. In step 3, c∗m∗,l∗ is the element with the highest value in matrix C, m∗ and l∗ denote the

position index in the matrix C, which is formally written as c∗m∗,l∗ = max|C| (|C| denotes absolute value for each

entry in matrix C). The calculation x̂i = dic
∗
m∗,l∗ (di denote the i-th atom in dictionary Ψ) is implemented by

inverse Gabor transform x̂i = IGT (c∗m∗,l∗ ,Nw,m∗, l∗) of the corresponding time sample m∗ and frequency l∗ .

Algorithm 1 Matrix Free Matching Pursuit Algorithm

Input:

Measured signal z ;

Signal-to-noise ratio c ;

Window length Nw ;

Output:

Estimated transient signal x̂ ;

1: Set ŷ = z ;

2: While
∥ŷ∥L2

∥ẑ∥L2
≥ (1− c) do

3: Compute CNw×P = GT (ŷ,Nw) and find c∗m∗,l∗ = max|C|, where 1 < m < P, 1 < l < Nw ;

4: x̂i = IGT (c∗m∗,l∗ ,Nw,m∗, l∗) ;

5: ŷ = ŷ− x̂i ;

6: End While

7: Compute x̂ = z− ŷ ;

3.2 Connection with Morphological Component Analysis

In this section, the connection between Morphological Component Analysis(MCA) [14][15] and the pro-

posed model (9) is explained. For the MCA model in Eq. (2), there are three essential considerations :

• Signal x can be represented by dictionary Ψ and the coefficients α are sparse. According to the uncer-

tainty principle[13][18], any two different representations of the same signal using an arbitrary dictionary

cannot be jointly sparse. Therefore, the coefficients under the dictionary Ψ for signal y is definitely dense.

For the current problem, the transient signal x is represented by the Gabor dictionary Ψ where the coef-

ficients α are sparse, while noise y can not find a sparse representation under any dictionary. Thus, the

coefficients under the dictionary Ψ for noise y is also dense.

• Signal y can be represented by dictionary Φ where coefficients β are sparse. Similarly, the coefficients

under the dictionary Φ for signal x are definitely dense according to the uncertainty principle. For the

current problem, this part (λ ∥β∥L0
) disappears because the noise y can not find a sparse representation

under any dictionary.
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• A constant parameter λ is used to balance the ratio between the energy of signal x and the energy of

signal y implicitly. The physical meaning is that the weight is assigned to the prior hypothesis and the

these two combined prior hypothesis (regularization terms) terms are not equally important. When λ is

increased, ∥β∥L0 is given more weight, which means that the signal-to-noise ratio is increased. In fact, it

is important to note that if λ was assigned to ∥α∥L0 (formally written as λ ∥α∥L0
+∥β∥L0

), the opposite

conclusion would have been obtained : when λ is increased, ∥α∥L0 is given more weight, which means

that the signal-to-noise ratio is decreased. For the current problem, the additional condition
∥Ψα∥L2

∥y∥L2

= c is

used to balance the ratio between the energy of the transient signal x and the energy of noise y explicitly.

When c is increased, it suggests that the signal-to-noise ratio is increased.

4 Low Rank + Sparse Combination Model

For the rolling element bearing diagnosis problem (5), it is evident that the transient signal is sparse com-

pared to the noise y. Based on this assumption, Eq. (2) can be reformulated as follows [19][20] :

Minimize ∥β∥L0 +λ∥x∥L0

Subject to z = x+Φβ .
(11)

It is noted that the noise y can not be represented parsimoniously under one dictionary Φ, thus, Eq. (11) can be

further reformulated as follows. Define matrix Y ([Y]m,l denotes the elements of matrix Y) the Gabor transform

of noise signal y, that is [Y]m,l = ŷ[m, l] = GT (y[n]). The noise y is assumed to be stationary, thus L = E{|Y|2ml}
can be recognized as a low rank matrix, as a matter of fact Rank(L) = 1 (see proof for more detail). Matrix X

is defined as the Gabor transform of transient signal x, which denotes as [X]m,l = x̂[m, l] = GT (x[n]) and it is

obvious that S = E{|X|2ml} is a sparse matrix. Matrix Z is defined as the Gabor transform of measured signal

z, denoted as [Z]m,l = ẑ[m, l] = GT (z[n]) and the Spectrogram M = E{|Z|2ml} of signal z can be represented

as M = L+S . L corresponds to stationary noise signal which is low rank, and S corresponds to the transient

signal which is sparse. Thus, the signal separation problem can be solved by :

Minimize Rank(L)+λ∥S∥L0

Subject to L+S = M.
(12)

The minimization of the Rank and the L0 norm function are both NP-hard problem, therefore Eq. (12) is relaxed

into Eq. (13) entitled Robust Principal Component Analysis (RPCA) in the literature [21] :

Minimize ∥L∥∗+λ∥S∥L1

Subject to L+S = M
(13)

where ∥L∥∗ := ∑n
k=1 σk(L) is the nuclear norm of matrix L computed on the singular values σ1(L)≥ σ2(L)≥

...σn(L), and ∥S∥L1 = ∑
i=P, j=Q
i=1, j=1 |Si j|. Nevertheless, matrix S can not be directly used to reconstruct the transient

signal x because the phase information is lost. However, the latter can be recovered by taking over the phase

information of matrix Z, denoted by [X]m,l =
√

[S]m,le
∠[Z]m,l and [Y]m,l =

√
[L]m,le

∠[Z]m,l . It is noteworthy to

point out that the sparse matrix X is often contaminated by noise when λ is chosen to be small (it suggests that

some amount of noise is decomposed as sparse components). Therefore, a filter can be further used to refine

the final results which is written as follows :

[F]m,l =

{
1 if |[X]m,l|> G|[Y]m,l|
0 if |[X]m,l| ≤ G|[Y]m,l|

(14)

where G is a parameter to control the amplitude gain ratio between |[X]m,l| and |[Y]m,l|, similar filter was used

in singing-voice separation scenario [22]. The purpose of this filter is to reduce noise in the sparse matrix X.

An illustrative example is seen in Fig. 2 : Fig. 2 (e) shows a matrix L that is rank-1, however, sparse matrix S

is corrupted by noise in Fig. 2 (f). X is also corrupted by noise since the difference between S and X is only

that the phase information is added to X by [X]m,l =
√
[S]m,le

∠[Z]m,l as compared to S (the noisy X figure is not

shown in this paper). Figure. 3 shows the results after the filter operation F⊙X, where ⊙ denotes Hadamard
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product. The parameter λ in Eq. (13) is a trade-off between the low rank matrix and sparse matrix. When λ

is decreased , the decomposed matrix L has lower rank and S is less sparse, and vice versa. In Fig. 2 (a)(b),

λ is chosen to be 0.4, it is observed that no sparse components are decomposed (S is a zero matrix). In Fig. 2

(c)(d), λ is decreased to be 0.1, it is found that more sparse components are decomposed for matrix S. When λ

is further decreased to be 0.01, the rank-1 matrix L is fully decomposed, but the matrix S is no longer sparse

due to the noise corruption resulting in the utilization of filter. Finally, the algorithm procedure for separating

transient signal from noise is presented as follows :

Algorithm 2 Algorithm Procedure For Low Rank + Sparse Combination Model

1: Calculate spectrogram matrix M of measured signal z by Eq. (10).

2: Decompose spectrogram matrix M into low rank real matrix L and sparse real matrix S by Eq. (13).

3: Recover sparse complex matrix X by [X]m,l =
√

[S]m,le
∠[Z]m,l .

4: Filter the noisy X by operation X̂ = F⊙X, where X̂ is the filtered result.

5: Calculate Inverse Gabor Transform (IGT) of sparse complex matrix X̂ to reconstruct transient signal x by

Eq. (10).

It is noteworthy to mention that without the expected value, matrix L in Eq. (12) is not a low rank matrix in

practice. However, it is found that Eq. (13) is still close to the reality since the eigenvalues of matrix L decrease

exponentially with the numerical index (more details about this are omitted here for the sake of brevity).

5 Simulation Experiment

• Simulation setup : a simulation setup to produce one transient signal x that is buried in the strong noise y

is built by using the following equation :

s[n] =
Nm

∑
m=0

δ (n−mDT ) for n = 1, ...N (15)

H[z] =
1

1−2cos(2π ·0.37)rz−1 + r2z−1
(16)

Firstly, an impulse signal s[n] (time duration is 1s, sampling frequency is 104Hz) with length N = 104

is produced by Eq. (15) where DT = 5× 102 and Nm = 19. Secondly, the impulse signal s[n] is passed

through a filter H[z] in Eq. (16) with r = 0.98 to synthesize the transient signal x[n]. Finally, the sim-

ulated measured signal z[n] is synthesized by adding the transient signal x[n] to Gaussian noise y[n] ∼
N (0,0.5).

• Simulation results for Sparse + Sparse model : in this simulation experiment, the parametric analysis

focuses on the window length Nw and signal-to-noise ratio parameter c. Firstly, the Hanning window

length is fixed to Nw = 256, and the ratio c is increased from 0.05 and 0.10 to 0.15. It is observed that

more and more transient signal components are separated , see Fig. (4)(a)(c)(e). Secondly, the Hanning

window length is set to Nw = 1024, and similar phenomenon is also observed, see Fig. (4)(b)(d)(f). It is

also observed that the separation results are noisier with the increase of window length from Nw = 256

to Nw = 1024.

• Simulation results for Low Rank + Sparse model : Fig. 5 shows the separation results with different

parameters by Low Rank + Sparse model. In Fig. 5 (a)(b)(c)(d), window length Nw = 64 and gain G = 6

are set to be constant, and it is observed that more and more transient signal is captured with the decrease

of λ from 0.02 to 0.001. It is noted that Fig. 5 (a) fails to capture the transient signal since too many

sparse components in X are recovered (λ is set too small) , which can be verified by Fig. 3 (a). Figure 5

(e)(f) show the results when the widow length is increased to Nw = 256.

6 Conclusion

In this paper, two kinds of combined regularization structures have been investigated to separate transient

signals from strong additive noise in rolling element bearings diagnosis. First, the Sparse + Sparse combined
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Sparse decomposition S (lambda = 0.1)
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Low rank decomposition L

Time(seconds)

F
re

qu
en

cy
(H

z)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

15

20

25

30

(e)

Sparse decomposition S (lambda = 0.01)
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FIGURE 2 – Spectrogram M is decomposed into a low rank matrix L and a sparse matrix S with different

parameters λ : (a) Low rank decomposition L with λ = 0.4, (b) Sparse decomposition S with λ = 0.4, (c) Low

rank decomposition L with λ = 0.1, (d) Sparse decomposition S with λ = 0.1, (e) Low rank decomposition L

with λ = 0.01, (f) Sparse decomposition S with λ = 0.01,
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Sparse decomposition X (Nw = 64 lambda = 0.005)
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Sparse decomposition X (Nw = 64 lambda = 0.015)
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Sparse decomposition X (Nw = 64 lambda = 0.02)
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(d)

Sparse decomposition X (Nw = 256 lambda = 0.01)
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(e)

Sparse decomposition X (Nw = 256 lambda = 0.02)

Time(seconds)

F
re

qu
en

cy
(H

z)

0.5 1 1.5 2 2.5 3 3.5

20

40

60

80

100

120

(f)

FIGURE 3 – Reconstructed sparse complex matrix X with different parameters : (a) Nw = 64, c = 0.005, (b) Nw

= 64, c = 0.01, (c) Nw = 64, c = 0.015, (d) Nw = 64, c = 0.02, (e) Nw = 256, c = 0.01, (f) Nw = 256, c = 0.02,

8



0 2000 4000 6000 8000 10000
−3

−2

−1

0

1

2

3
Nw = 256 c = 0.05

Sample Number

A
m

pl
itu

de

 

 
Measurements
Transient Signal
Separated Transient Signal

(a)

0 2000 4000 6000 8000 10000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Nw = 1024 c = 0.05

Sample Number

A
m

pl
itu

de

 

 
Measurements
Transient Signal
Separated Transient Signal

(b)

0 2000 4000 6000 8000 10000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Nw = 256 c = 0.1

Sample Number

A
m

pl
itu

de

 

 
Measurements
Transient Signal
Separated Transient Signal

(c)

0 2000 4000 6000 8000 10000
−3

−2

−1

0

1

2

3
Nw = 1024 c = 0.1

Sample Number

A
m

pl
itu

de

 

 
Measurements
Transient Signal
Separated Transient Signal

(d)

0 2000 4000 6000 8000 10000
−3

−2

−1

0

1

2

3
Nw = 256 c = 0.15

Sample Number

A
m

pl
itu

de

 

 
Measurements
Transient Signal
Separated Transient Signal

(e)

0 2000 4000 6000 8000 10000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Nw = 1024 c = 0.15

Sample Number

A
m

pl
itu

de

 

 
Measurements
Transient Signal
Separated Transient Signal

(f)

FIGURE 4 – Separation results of transient signal with different parameters by Sparse + Sparse model (a) Nw

= 256, c = 0.05, (b) Nw = 1024, c = 0.05,(c) Nw = 256, c = 0.1,(d) Nw = 1024, c = 0.1,(e) Nw = 256, c = 0.15,

(f) Nw = 1024, c = 0.15,
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FIGURE 5 – Separation results of transient signal with different parameters by Low Rank + Sparse model : (a)

Nw = 64, c = 0.005, (b) Nw = 64, c = 0.01, (c) Nw = 64, c = 0.015, (d) Nw = 64, c = 0.02, (e) Nw = 256, c =

0.01, (f) Nw = 256, c = 0.02,
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regularization is investigated. It is found that this model can not be directly used in current problem, thus, a

modified Sparse + Sparse combined regularization is proposed instead. Second, Low Rank + Sparse combined

regularization is investigated and the connection with the Sparse + Sparse combined regularization is elucidated

(two models are investigated in a uniform framework). The following topics can be further investigated :

• Is the Gabor dictionary good enough to represent the transient signal ? More specifically, how to choose

a better dictionary ?

• How to choose the regularization parameter wisely since the separation performance highly depends on

it ?

A Proof of Low Rank Property For Matrix L

Let us define the autocovariance R2y[n−n
′
] = E{y[n]y∗[n

′
]} and k = n−n

′

L = [Y2]m,l = E{|Y|2ml}= ∑
n

∑
n
′

ψ∗
ml [n

′
]ψml[n]E{y[n]y∗[n

′
]}

= ∑
n

∑
n
′

gN [n−m]gN [n
′
−m]exp{

i2πl(n−n
′
)

N
}R2y[n−n

′
]

= ∑
n

∑
k

gN [n−m]gN [n− k−m]exp{
i2πlk

N
}R2v[k]

= ∑
k

(∑
n

gN [n−m]gN [n− k−m]

︸ ︷︷ ︸

RNN [k]

)exp{
i2πlk

N
}R2y[k]

= ∑
k

RNN [k]exp{
i2πlk

N
}R2y[k]

= ∑
k

RNN [k]R2y[k]exp{
i2πlk

N
}

(17)

The final results depends only on l. Thus, the matrix L is low rank.

B Accelerated Proximal Gradient Algorithm

In this paper, Accelerated Proximal Gradient (APG) algorithm [23] is used to solved Eq. (13), which is

rewritten as a penalized formulation as follows :

Minimize µ(∥L∥∗+λ∥S∥L1)+
1

2
∥M−L−S∥2

F
(18)

where µ is a regularization parameter which is used as a trade-off between the regularization term ∥L∥∗ +
λ∥S∥L1 and the data fitting term 1

2
∥M−L− S∥2

F . It is also observed that the regularization term is a non-

differentiable function and the data fitting term is a smooth function with Lipschitz gradient (Lipschitz constant

L f = 2). A soft thresholding operator S λ µ
L f

for any matrix Q is defined as :

S λ µ
L f

(Q) = max(|q|−
λ µ

L f

)sgn(q) (19)

where q denotes each entry of the matrix Q and sgn() is the sign function. A soft thresholding D µ
L f

for any

matrix Q is defined as :

D µ
L f

(Q) =US µ
L f

(Σ)V T
(20)

where matrix Q =UΣV T is decomposed by Singular Values Decomposition (SVD). Therefore, the accelerated

proximal gradient algorithm can be iteratively written as algorithm 3. The iteration stops when SC ≤ ε , where

11



the stopping criterion SC and CL, CS are defined as :

SC =
∥[CL,CS]∥F

L f max{1,∥[CL,CS]∥F}

CL = L f (G
k
L −Lk+1)+(Lk+1 +Sk+1 −Gk

L −Gk
S)

CS = L f (G
k
S −Sk+1)+(Lk+1 +Sk+1 −Gk

L −Gk
S)

(21)

where [CL,CS] denotes the matrix constructor operator that vertically concatenates CL and CS, and ∥∥F denotes

the Frobenius Norm. For the simulation in this paper, the parameters are chosen fixed as : µ = 10−3, η = 0.9
and ε = 10−7.

Algorithm 3 Accelerated Proximal Gradient Algorithm

Input:

Spectrogram matrix M and parameter λ and µ

Output:

Low rank real matrix L and sparse real matrix S

1: Set L0 = L1 = 0, S0 = S1 = 0, t0 = t1 = 1, µ0 = ∥M∥F

2: While not converged do

3: Gk
L = Lk +

tk−1−1
tk

(Lk −Lk−1)

4: Gk
S = Sk +

tk−1−1
tk

(Sk −Sk−1)

5: Lk+1 = D µk
L f

[Gk
L −L f

−1(M−Gk
L −Gk

S)]

6: Sk+1 = S λ µk
L f

[Gk
S −L f

−1(M−Gk
L −Gk

S)]

7: tk+1 =
1
2
(1+

√

1+4t2
k )

8: µk+1 = max(ηµk,µ)
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