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Theory and identification of a constitutive model of induced1

anisotropy by the Mullins effect2

G. Machado, G. Chagnon∗, D. Favier3

UJF-Grenoble1, CNRS, TIMC-IMAG - UMR5525, Grenoble, France.4

Abstract5

Rubber-like materials present a stress softening phenomenon after a first loading known6

as the Mullins effect. Some recent experimental data on filled silicone rubber is presented7

in literature, using uniaxial and biaxial tests to precondition samples thus induce some8

primary stress softening. A generic modeling based on the polymer network decomposition9

into an isotropic hyperelastic one, and a stress-softening evolution one, is proposed taking10

into account the contribution of many spatial directions. A new stress softening criterion11

tensor is built by means of a tensor that measures the repartition of energy in space. A12

general form of the stress softening function associated to a spatial direction is written by13

the way of two variables: one, the maximal eigenvalue of the energy tensor; the other, the14

energy in the considered direction. Finally, a particular form of constitutive equation is15

proposed. The model is fitted and compared to experimental data. The capacities of such16

modeling are finally discussed.17

Key words: Mullins effect; stress-softening; strain-induced anisotropy; constitutive18

equation19

1. Introduction20

Rubber-like materials present a stress softening after a first loading cycle, known as21

the Mullins effect (Mullins, 1947). Different definitions have been given to the Mullins22

effect, in this paper the Mullins effect is considered as the difference between the first23

and second loadings. Moreover, different studies have highlighted that this phenomenon24

induces anisotropy, since the stress softening is strongly dependent on the second load25

direction.26
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In a first approach, many isotropic models were proposed in the literature to describe27

stress softening. First, physical models taking into account the evolution of the chain net-28

work were proposed. Govindjee and Simo (1991) proposed a model based on the macro-29

molecular network evolution by decomposition into a hyperelastic network and an evolving30

network. Marckmann et al. (2002) considered that the macromolecular network can be31

represented by the eight chains model (Arruda and Boyce, 1993). The model containing32

chain lengths and chain densities evolving with the maximal principal stretch. In another33

way, double network theory was developed (Green and Tobolsky, 1946) considering that34

the rubber-like material can be decomposed into a hard and a soft phase; the hard phase35

is transformed into soft phase with the stress softening. Different equations were pro-36

posed (Beatty and Krishnaswamy, 2000; Zuñiga and Beatty, 2002). At the same time, the37

damage theory was often used to describe the stress softening (Simo, 1987; Miehe, 1995;38

Chagnon et al., 2004). In another way, Li et al. (2008) associated the Mullins effect to the39

growth of cavities in the material and a compressible model was proposed. In a last point40

of view, Ogden and Roxburgh (1999) and Dorfmann and Ogden (2003) proposed models41

based on pseudo-elasticity. All these models fit experimental data more or less accurately42

in one loading direction, i.e., without changing loading direction between first and second43

loadings. For a more exhaustive review about these isotropic models, the reader can refer44

to Diani et al. (2009).45

To improve the modeling and to fit anisotropic stress softening, new approaches were46

developed taking into account the difference of stress softening in each strain direction.47

At first, Göktepe and Miehe (2005) generalized the approach proposed by Govindjee and48

Simo (1991) taking into account a spatial repartition of the chains. In the same way,49

Diani et al. (2006a) proposed a generalization of the Marckmann et al. (2002) model by50

means of chains oriented into 42 or more directions in space. Using a phenomenological51

damage function, this model can describe different stress softening in different directions,52

with permanent deformation after unloading. Dargazany and Itskov (2009) proposed a53

similar approach by taking into account the existence of different chains with different54

lengths in each direction. They integrate the density of probability in each direction,55

by taking into account the network evolution at each step. Shariff (2006) proposed an56

anisotropic damage model that describes transverse anisotropy of Mullins effect, taking57

into account different damages in the three principal strain directions using a second-order58
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damage tensor. In the same way, Itskov et al. (2010) proposed three damage evolution59

functions for the three principal strain directions. These functions are formulated in terms60

of material parameters that partly depend on the maximal principal stretch. Recently,61

Dorfmann and Pancheri (2012) proposed a phenomenological model, based on the theory62

of pseudo-elasticity, which includes scalar variables in the strain energy function to account63

for stress softening and changes in material symmetry.64

Most of the anisotropic models mentioned above are proposed by analyzing successive65

tensile tests performed along different directions. In spite of that, Machado et al. (2012a)66

has recently performed other original tests based on preconditioning with uniaxial tension67

and biaxial tension tests. Based on Machado et al. (2012a) experimental results using68

silicone rubber, this paper proposes a new approach for modeling the induced anisotropy69

by the Mullins effect. In Section 2, the global framework of the Mullins effect modeling70

is presented. In Section 3, a new approach is proposed to write constitutive equations by71

introducing a tensor that describes the strain energy repartition in the space directions.72

The conditions to be verified by the equations are detailed. In Section 4, a first constitutive73

equation is proposed. It is fitted and compared to experimental data. Finally, Section 574

contains some concluding remarks and outlines some future perspectives.75

2. Macromolecular approach to model Mullins effect76

2.1. Filled silicone behavior77

In the last few years, different tests highlighting the stress softening anisotropy have78

been presented in the literature for different rubber-like materials, see for example (Muhr79

et al., 1999; Besdo et al., 2003; Hanson et al., 2005; Diani et al., 2006b; Dorfmann and80

Pancheri, 2012). In this paper, attention is focused on the largest and most diverse81

database concerning Mullins effect anisotropy of a rubber-like material to the best of82

our knowledge. These data concern the results for the RTV3428 filled silicone rubber83

(Machado et al., 2010, 2012a).84

First classical experimental tests, i.e., cyclic experiments with an increasing deforma-85

tion after each cycle, were realized during tensile, pure shear and equibiaxial tensile tests.86

The data are reported in Machado et al. (2010). Second, stress softening anisotropy is87

presented in Machado et al. (2012a) induced by two distinguished preconditioning meth-88

ods. The first one (noted as TT in the following), consists in a first loading in tension and89
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a second loading also in tension, in four different directions. The second preconditioning90

method (noted as BT), consists in a first biaxial extension loading with constant principal91

strain direction. It is followed by a second loading in tension along the two principal strain92

directions of the first biaxial loading. The originality of these data is that loading states93

are very different between the first and second loads.94

These new experimental results question the existing anisotropic constitutive equations95

and the main reasons are detailed here. The first reason is, Diani et al. (2006a) and96

Dargazany and Itskov (2009) models present an important permanent deformation that97

is related to the stress softening. But here, the material exhibits an important stress98

softening without permanent deformation. The other reason, for a second tensile loading99

orthogonal to the first loading, the models of Shariff (2006) and Itskov et al. (2010) present100

a stiffer behavior than the virgin material, which is not the case of the filled silicone101

rubber. Last, all these models are based on a set of material directions and Mullins effect102

is controlled in each direction only by the maximum stretch reached during the deformation103

history along the considered direction. Recently, Merckel et al. (2011) analyzed the damage104

spatial repartition and proposed a softening criterion (Merckel et al., 2012) that is still the105

maximum stretch in each direction. Therefore, as pointed out in Machado et al. (2012a), a106

maximal deformation criterion that depends only on the considered direction is not enough107

to describe the stress softening for an arbitrary second load direction. This means that, if108

the maximal principal direction remains the same during the first and second load cycles,109

the strain energy can be a measure to quantify the Mullins effect in this direction. In the110

other directions, a coupling effect exists between different directions and it influences the111

stress softening. Under these circumstances, a new way to handle Mullins effect should be112

proposed at the sight of Machado et al. (2012a) experimental data.113

2.2. Two networks theory114

The results presented using silicone rubber-like materials highlight that unfilled silicone115

rubbers do not present stress softening (Rey et al., 2013) whereas filled silicone rubbers116

(Machado et al., 2010) present an important one. For this silicone rubber material, it can117

be argued that the Mullins effect is principally due to the presence of filler in the material,118

which is not the case for every rubber-like material. In the light of these findings, a model119

based on Govindjee and Simo (1991) theory is proposed. The main feature retained from120

their theory is the additive split of the strain energy into two contributions, motivated121
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by the micromechanical structure represented in the Fig.1. The hypothesis is based on122

distinguishing different macromolecular chains in the network, those that are linked to123

filler and those that are only linked to other macromolecular chains. It is assumed that124

only chains that are linked to fillers are concerned with Mullins effect. In Govindjee and125

Simo (1992) authors modified the initial approach into a phenomenological isotropic frame,126

introducing a normalized stress function that governs the damage level. Later, Göktepe127

and Miehe (2005) conceptually extend the isotropic theory of Govindjee and Simo (1992)128

to the anisotropic case where damage history is described by one scalar for each material129

direction.

Figure 1: Representation of the silicone organization with macromolecular chains and filler particles

130

The same additive split from Govindjee and Simo (1991) is considered here, that means131

that the strain energy density (per unit of undeformed volume) over a representative132

elementary volume (REV) is decomposed into two parts133

W = Wcc +Wcf (1)

whereWcf and Wcc denote the energy densities of chains linked to filler network and chains134

linked to other chains network, respectively. On one hand, as it is considered that chains135

linked to other chains do not undergo Mullins effect, Wcc is therefore represented by an136

isotropic hyperelastic energy density. On the other hand, Wcf represents the anisotropy of137

stress softening induced by Mullins effect contributions in different directions of the REV.138
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3. Choice of the governing parameters of the Mullins effect139

3.1. Analysis of literature experimental data140

The different conclusions identified by Machado et al. (2012a) are analyzed and the141

consequences for the modeling are here in detail. During TT tests (uniaxial tension precon-142

ditioning followed by second tensile tests) it is shown that whatever is the second loading143

orientation, the strain-stress curves come back on the first loading curve at the same point144

corresponding to the maximum tensile stretch encountered during the first tensile loading.145

Nevertheless the amount of stress softening depends on the angle between the first and146

second loadings. This means that the return on the tensile virgin curve is controlled by the147

maximal tensile stretch. However, the amount of stress softening depends on the relative148

orientation of first and second loadings.149

The BT tests (biaxial tension followed by second tensile test) use preconditioning cir-150

cular bulge test. Displacement and strain fields were obtained using three-dimensional151

image correlation measurements. In the preconditioning step, the circular bulge test spec-152

imen underwent biaxial loadings with different biaxiality ratios along a meridian. At the153

top of the bulge specimen, an equibiaxial loading is generated whereas a planar tension154

state is generated near the grips. Between these two points different biaxial states are155

generated (Machado et al., 2012b). For different points along the bulge meridian, pairs of156

specimens were cut along circumferential and meridional directions and they were tested157

in tension. For each pair, the two different second stress-strain tensile curves, in the same158

way of TT tests, come back at the same point on the virgin tensile loading curve but159

with a different amount of stress softening according to the direction (circumferential or160

meridional). The conclusions are thus the same as TT tests but with a biaxial loading as161

the preconditioning test.162

These results encourage to consider that the strain energy in the maximal principal163

strain direction is the governing parameter for the come-back on the first loading curve164

whatever is the second loading. Moreover, the stress softening amount in the other di-165

rections are linked to this parameter but it is attenuated if the direction of the maximal166

principal strain is not the same between first and second loadings. A measure for these167

quantities should thus be introduced.168
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3.2. New measure definition to quantify the stress softening169

The strain energy is often used to describe the Mullins effect (see references in Machado170

et al. (2010); Diani et al. (2009)) but its use is limited to the isotropic approach, since171

energy is a scalar global measure of the deformation state. Therefore, to compare the172

strain energy in different directions can be the clue. It is thus proposed to introduce a173

measure of the strain energy given by the contribution of each material direction.174

Figure 2 illustrates the kinematics of an infinitesimal cone element extracted from the175

initial spherical representative volume element centered in P of radius dR0. In the initial176

configuration the slant height, surface area and volume are dR0, dS0 and dV0 =
1
3 dR0 dS0177

respectively; the unity vector a0 defines the material direction in the undeformed REV.178

Considering the point Q, lying within an infinitesimal neighborhood of P , defined by the179

vector dx0 = dR0 a0. Under the deformation, this vector is mapped into dx = F dx0,180

where F is the deformation gradient. Thus, one obtains the following relation181

dx = F dx0 = dR0Fa0 (2)

In the deformed configuration points p and q are referenced by the position vectors x182

and x + dx respectively; and the vector normal to the deformed surface dS given by the183

Nanson’s relation184

n̂ = det(F)
dS0

dS
F−Ta0. (3)

The velocity field within the infinitesimal neighborhood of x, with respect the reference

a
0

dx0

P

Q
an̂

â
dx

p

q

dS

F

dS0

dV0

dV

Figure 2: Kinematics of an infinitesimal cone element from the spherical REV.

185
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an̂

â

dx

p

q

dS

vp

vq

Ldx

t

dV

Figure 3: Force end velocity vectors in the deformed REV.

frame R is given by186

vq (x+ dx)/R = vp (x, t)/R + L (x, t)/R dx (4)

with L (x, t)/R = W (x, t)/R +D (x, t) where L, W and D are the velocity gradient, spin187

and rate of deformation tensors. In any motion, the velocity field is locally decomposed188

as a sum of a rigid velocity vp (x, t)/R+W (x, t)/R dx and a straining velocity D (x, t) dx.189

Considering Figure 3, the power P/R = t · (vq)/R is expended by a force t = σn̂ dS190

acting at point q, where σ is the Cauchy stress tensor. The interest is the expended191

power associated only with deformations. Then, it is possible to write the strain energy192

increment dM during a time increment dt, excluding rigid velocity, by the scalar product193

dM = σn̂ dS ·Ddx dt (5)

where Ddx is the straining velocity field associated exclusively to the rate of deformation194

tensor D. Replacing Eq. (3) into Eq. (5), one obtains195

dM = 3dV0 det(F)
[
F−1σDF

]
: (a0 ⊗ a0) dt (6)

Finally, the strain energy contribution in the a0 direction is written, per unity of unde-

formed volume dV0, as

M(a0) = 3

[∫ t

0
det(F)F−1σDF dt

]
: (a0 ⊗ a0) = 3Ma0 · a0 (7)

This permits to introduce a tensor M in Eq. (7), defined in the reference configura-196
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tion. It is decomposed into a symmetric Msym and skew-symmetric Mskew part. Note197

that the product of a symmetric tensor and a skew-symmetric tensor has zero trace, i.e.,198

Mskew : (a0 ⊗ a0) = 0. Thus, in a general formulation, Msym describes the contribution199

of each material direction in the total strain energy. As symmetric tensor Msym possesses200

three real eigenvalues (MI > MII > MIII), where the maximal principal value MI is201

connected with an eigenvector determining the direction of maximum strain energy. Dif-202

ferent noticeable parameters can be defined. The maximum strain energy for each conical203

elementary volume in direction a0 along the history is204

Mmax(a0) = max
τ≤t

M(a0, τ) (8)

At the current time t, the maximum instantaneous strain energy in any direction is defined205

as206

I(t) = MI(t) (9)

And last, the maximum strain energy in any direction in the history is defined as207

G = max
τ≤t

MI(t). (10)

3.3. Construction of the evolution equation208

An evolution function F is introduced along each direction, it describes the evolution209

of the network in the considered direction. The global strain energy is then rewritten as210

W = Wcc +

∫
V REV
0

F(a0)Wcf (a0) dV0. (11)

where V REV
0 is the undeformed REV volume. At the sight of the silicone filled rubber211

experimental data, the function F(a0) can be written as a function of the characteristic212

energy measures previously introduced213

F(a0) = F(M(a0),Mmax(a0), I,G) (12)

The main difference with the models from the literature is that the function F does not214

only depend on what happens in the considered direction a0 but also on the global strain215

energy in the material, i.e., I and G. Then, different forms can be proposed.216
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In this paper, the concept for evolution function (Beatty and Krishnaswamy, 2000;217

Zuñiga, 2005; Zuñiga and Rodŕıguez, 2010) is used. This concept describes the Mullins218

effect by comparing the current deformation state and the maximum one, that means219

that the evolution function depends on the difference between the maximum and current220

deformation state. Thus, the value of introduced function remains one during the first221

load and it decreases when the current state differs from the maximum state. Thus, during222

a first loading I = G the function F(a0) should not evolve if the material is stretched in223

a given direction for the first time, then224

F(M(a0),Mmax(a0), I = G,G) = 1 (13)

During a second loading curve the function evolves, as the difference between the current225

and the maximum strain increases, in the interval given by226

F(M(a0),Mmax(a0), I,G) ∈ [0, 1] (14)

This approach leads to a dependence in (G−I) and (Mmax(a0)−M(a0)) of the constitutive227

equation. Moreover, the amount of stress softening is directly linked to the orientation228

of the loading, the ratio of what happens in each direction compared to the maximum229

deformation should be taken into account. In this way, a general form is proposed as230

follows231

F = 1−F1(G − I) F2(Mmax(a0)−M(a0)) F3

(
Mmax(a0)

G

)
(15)

where F1, F2 and F3 are functions to be determined. This multiplicative decomposition,232

also used in Rebouah et al. (2013), is principally phenomenological, since stress softening233

is treated as a multiplicative function of the strain energy, see Eq. 11. The conditions234

evoked in Eq. (13) lead to235

F1(G − I) = 0 if G = I (16)

F2(Mmax(a0)−M(a0)) = 0 if Mmax(a0)= M(a0). (17)

Now, different constitutive equation forms can be proposed for each function F1, F2 and236

F3 in Eq. (15).237
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4. The anisotropic constitutive equation238

4.1. Hyperelastic constitutive equation239

The advantage of such formulation is that the first loading curve is independent of the240

evolution function on the contrary of damage mechanics (Lemaitre and Chaboche, 1990).241

Thus, the choice of the hyperelastic energy only depends on the first loading curves. In a242

first approach, it is proposed to use the classical Mooney (1940) constitutive equation to243

represent the isotropic energy density, then244

Wcc = C1(I1 − 3) + C2(I2 − 3) (18)

For the anisotropic part of the constitutive equation the material could be represented245

by an infinite number of directions, introducing a probability density. But in this study, it246

is preferred to use a distribution of n−direction a
(i)
0 oriented in any direction throughout247

the three-dimensional space instead of an integral formulation (Eq. 11). Bazant and Oh248

(1986) proposed different orientation schemes, that define the set of vectors a
(i)
0 with249

different weight ω(i) for each direction to obtain a material as close as possible to an250

isotropic material when all the chains have the same mechanical behavior. Wcf is then251

written as252

Wcf =
n∑

i=1

ω(i)F (i)W(i)
cf (a

(i)
0 ) (19)

where n is the number of considered directions and W(i)
cf (a

(i)
0 ) is the hyperelastic strain253

energy of the chain in the initial direction a
(i)
0 . The classical centrally symmetric n = 2×21254

scheme was chosen to represent the material directions. The vector and weight of each255

direction can be found in Bazant and Oh (1986). All the other direction distribution256

schemes could also be used. A comparative study of recently proposed integration schemes257

in application to a full network model of rubber can be found in Ehret et al. (2010).258

The non-Gaussian theory is classically used to capture the anisotropy. Diani et al.259

(2006a) and Dargazany and Itskov (2009) use the Langevin chain representation for W(i)
cf260

energy. The great advantage of this choice is that it brings physical understanding to the261

modeling and it presents two main consequences. The first is that the zero-stress state is262

only ensured by the compensation of all the directions contribution as ∂W(λ(i))/∂λ(i) ̸= 0263

if λ(i) = 1. Hence, this formulation could hardly be used for an initially non-isotropic264

11



material. The second one is that it allows to capture an important permanent deforma-265

tion of the material after a loading cycle. However, in filled silicone experiments, it was266

shown that the permanent deformation is quite negligible. To this purpose, the classi-267

cal hyperelastic anisotropic approach using the strain invariant I
(i)
4 = a

(i)T
0 Ca

(i)
0 is used,268

where C = FTF is the right Cauchy-Green strain tensor. The function should verify the269

following conditions270

W(i)
cf (I

(i)
4 ) = 0 if I

(i)
4 = 1 (20)

∂W(i)
cf (I

(i)
4 )

∂I
(i)
4

= 0 if I
(i)
4 = 1. (21)

In a first approach, an ordinary constitutive equation is used, considering that the chains271

are only stretched by tensile stresses. Otherwise, it is considered that compressive stretches272

lead to buckling. Thus, one may write273

W(i)
cf =

K(i)

2

(
I
(i)
4 − 1

)2
if I

(i)
4 ≥ 1 else 0. (22)

This formulation can be adapted to non-initially isotropic materials by choosing different274

functions for W(i)
cf . As the filled silicone rubber is initially isotropic, every W(i)

cf is initially275

the same in all directions, i.e., ∀i, j K(i) = K(j).276

4.2. stress softening constitutive equation277

In part 3.3, a multiplicative decomposition was postulated in Eq. (15). The use of278

simple power functions, for F1, F2 and F3, is proposed to represent the stress softening,279

given by280

F (i) = 1− η

√
G − I
G

√
M(i)

max −M(i)

G

(
M(i)

max

G

)2

(23)

where η is a material parameter. The functions F1 and F2 are normalized according to281

the maximum strain energy G to ensure a normalized evolution function for each second282

loading curve. It is important to note that, even if the objective is to describe Mullins effect283

anisotropy, the constitutive equation for stress softening only depends on one parameter η.284

All the other parameters describe the hyperelastic first loading. The evolution functions285

have the same form in all directions, but this approach could be extended to non-isotropic286

stress softening function by defining different values for the parameter η in the different287
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directions.288

There remains to verify that the presented model is in agreement with the requirements289

of thermodynamics (see e.g. Coleman and Gurtin, 1967). If only isothermal processes is290

considered, the Clausius-Duhem inequality must be satisfied by the conditions291

− ∂W
∂M(i)

max

Ṁ(i)
max > 0 (24)

−∂W
∂G

Ġ > 0 (25)

where Ṁ(i)
max > 0 and Ġ > 0. By means of straightforward manipulations of Eqs. (11), (24)292

and (25) one can easily establish the above relations in terms of the evolution function293

F (i). It is also important to show that294

∂F (i)

∂M(i)
max

6 0, ∀i (26)

∂F (i)

∂G
6 0, ∀i. (27)

Considering the form of Eq. (23), the explicit form for Eq. (26) is given by295

−η

√
G − I
G

1

G

1
2

(
M(i)

max−M
G

)− 1
2
(
M(i)

max

G

)2

+ 2

(
M(i)

max

G

)√
M(i)

max−M
G

 6 0, ∀i.(28)

First, an elementary study of the Eq.(28) shows that all fractions terms are positive.296

Second, when the stress softening evolves, i.e., G increasing, the maximum instantaneous297

strain energy I is equal to the maximum G. Thus, the function remains equal zero and298

the condition of Eq. (26) is automatically satisfied. In this way, the choice of F respects299

the conditions of Eqs.(26) and (27) and consequently the Clausius-Duhem inequality is300

satisfied.301

4.3. Comparison of the modeling with experimental data302

The model is fitted on all the experimental data presented in Machado et al. (2010,303

2012a), i.e., tests where the principal stretch directions remain unchanged during first304

and second load or tests where the principal stretch directions are not necessarily the305

same during first and second loads. First, the parameters of the hyperelastic constitutive306

equations are fitted on the different first loading curves. Different parameters can be307

chosen according to the repartition of the strain energy between Wcc and Wcf .308
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Considering a second tensile loading immediately before the sample rupture, the most309

stress softening level is obtained and this state corresponds to the strain energy of chains310

that were not affected by the Mullins effect. Thus, to ensure a good balance between Wcc311

and Wcf the portion Wcc, i.e., the Mooney model, is fitted on the beginning of the second312

tensile loading curve at the higher deformation achieved before rupture.313

Next, the part of Wcf is fitted to complete the stress amount of the first loading curves.314

The fitted parameters are presented in Table 1.315

Table 1: Values of the constitutive equation parameters

Parameter Value

C1 0.05MPa
C2 0.03MPa

∀i K(i) 0.20MPa
η 1.0

The last parameter that describes the stress softening is fitted on the second loading316

curves for all the tests, the value η = 1.0 is obtained. The condition in Eq. (14) must be317

satisfied, and as explained the function F (i) cannot be negative. If its softening is too318

large, i.e., F (i) < 0, the value F (i) = 0 is imposed. That means that in the considered319

direction a great number of chain–filler links were broken. In the second load, for the320

same direction, the suspended chains are no longer acting enough to impose a force on321

the macromolecular network, i.e., they do not contribute to the network entropic energy322

any more and their energy is thus lost (Dargazany and Itskov, 2009). This assumption323

is consistent with the two networks theory and justified for relative short chains. Note324

that for longer molecular chains bonded at different places to fillers this assumption can325

be relaxed, for example, to take into account permanent set.326

The simulations of the cyclic uniaxial tensile, pure shear and equibiaxial tensile tests327

are presented in Fig. 4. Concerning the first load, it appears that the model describes328

adequately uniaxial and pure shear tests whereas equibiaxial tests are underestimated.329

This phenomenon is due to the hyperelastic equation and not to stress softening equation.330

As pointed out by Marckmann and Verron (2006) and Boyce and Arruda (2000), there331

are very few hyperelastic constitutive models able to simultaneously simulate the both332

multi-dimensional data with a unique set of material parameters. Concerning the cyclic333

behavior, the form of the stress softening for all tests is quite well described. For uniaxial334
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tensile and pure shear curves, the model has a slight tendency to underestimate stress335

softening and it is even more pronounced for equibiaxial tensile test.336

Figure 4: Comparison of the model (solid lines) with experimental data from Machado et al. (2010) (dotted
lines) for: (a) cyclic uniaxial tensile test, (b) cyclic pure shear test and (c) cyclic equibiaxial test.

Next, tensile tests with a change of loading direction between the first and second337

loads are confronted. A simulation of the modeling is presented in Fig. 5(a). It appears338

that the trend of simulations are exactly what experimentally happens. All the second339

loading curves come back on the same point of the first loading curve and the amount of340

stress softening is directly linked to the angle between the principal stretch directions of341

the first and second loads. A detailed comparison with experimental data is presented in342

Fig. 5(b-f). The model does not superpose perfectly all experimental data, but all trends343

are quite well described.344
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Figure 5: Comparison of the model (solid lines) with TT uniaxial prestretching experimental data (dotted
lines). (a) simulation of the model for different orientations of the second load. Details of the experimental
(dotted lines) and modeled (solid lines) first and second load curves with an angle between stretch direction
of: (b) 90◦, (c) 45◦, (d) 30◦, (e) 15◦ and (f) 0◦.
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To finish, the model is used to simulate BT tests, the first load being a biaxial test345

and the second load being a tensile test. The comparison of the second loading curves is346

presented in Fig. 6. It appears that stress softening is moderately overestimated by the347

model, however the come-back on the first loading curve is perfectly described.348

Figure 6: Comparison of the model (solid lines) with BT biaxial prestretching experimental data (dotted
lines). Curve a: simulation of the model for the second tensile load after an equibiaxial test; curve g:
simulation of the model for the second load after a biaxial test of biaxiality ratio µ = 0.7; curve h:
simulation of the model for the second load after a biaxial test of biaxiality ratio µ = 0.5

All these simulations emphasize that the use of this new elongation energy measure is349

a good point to describe the come back of the second loading curves on the virgin one.350

The amount of stress softening is well described for cyclic loading experiments and for351

TT tests, where the principal stretch directions were not the same during first and second352

loads. Nevertheless, the stress softening during BT test is overestimated. As observed353

in Fig. 4(c), stress was underestimated for the equibiaxial state, but this is due to the354

underestimation of hyperelastic strain energy obtained at the first load.355

It can be noticed that the model describes correctly all the experimental tests with a356

simple constitutive equation that only depends on one parameter. Evidently, the results357

can be improved by proposing more complex constitutive equations, that consequently358

would lead to a significant increase in the number of parameters. Nevertheless, the pre-359

sented results allowed to demonstrate the efficiency of this new approach.360
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5. Conclusion361

This paper presents an original approach to model the stress induced anisotropy by the362

Mullins effect, by the definition of a tensor to measure the repartition of the strain energy363

in space. The comparison of the strain energy in different directions with the maximal364

principal strain energy permits to create a new formulation for stress softening modeling.365

In this approach, the constitutive equation is written in function of the variation of strain366

energy in each direction and the variation of strain energy in the maximal principal strain367

direction. This new approach captures the principal characteristics of the Mullins effect368

underlined in literature. This new way of describing Mullins effect anisotropy can be a369

good starting point to elaborate new constitutive equations.370

In this paper, a simple constitutive equation to describe the stress softening evolution371

was proposed. It clearly appears that the results are quite encouraging for a model that372

can describe many different types experimental tests, with very different strain histories,373

and the models presents only one material parameter. Of course, the agreement with374

the experimental data can be improved by using more sophisticated constitutive equation375

forms.376
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Zúñiga, A. E. and Beatty, M. F. (2002). A new phenomenological model for stress-softening in elastomers.462

Z. Angew. Math. Phys., 53, 794–814.463
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