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LOGARITHMIC STABILITY IN DETERMINING TWO COEFFICIENTS IN A

DISSIPATIVE WAVE EQUATION. EXTENSIONS TO CLAMPED EULER-BERNOULLI

BEAM AND HEAT EQUATIONS

KAÏS AMMARI AND MOURAD CHOULLI

Abstract. We are concerned with the inverse problem of determining both the potential and the damping
coefficient in a dissipative wave equation from boundary measurements. We establish stability estimates
of logarithmic type when the measurements are given by the operator who maps the initial condition to
Neumann boundary trace of the solution of the corresponding initial-boundary value problem. We build a
method combining an observability inequality together with a spectral decomposition. We also apply this
method to a clamped Euler-Bernoulli beam equation. Finally, we indicate how the present approach can be
adapted to a heat equation.

Keywords: Damping coefficient, potential, dissipative wave equation, boundary measurements, boundary
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1. Introduction

We consider the following initial-boundary value problem (abbreviated to IBVP in the sequel) for the
wave equation:

(1.1)





∂2t u−∆u+ q(x)u + a(x)∂tu = 0 in Q = Ω× (0, τ),
u = 0 on Σ = ∂Ω× (0, τ),
u(·, 0) = u0, ∂tu(·, 0) = u1,

where Ω ⊂ Rn, n ≥ 1, is a bounded domain with C2-smooth boundary ∂Ω and τ > 0.

We assume in this text that the coefficients q and a are real-valued.

Under the assumption that q, a ∈ L∞(Ω), for each τ > 0 and

(
u0
u1

)
∈ H1

0 (Ω)× L2(Ω), the IBVP (1.1)

has a unique solution uq,a ∈ C([0, τ ], H1
0 (Ω)) such that ∂tuq,a ∈ C([0, τ ], L2(Ω)) (e.g. [7, pages 699-702]).

On the other hand, by a classical energy estimate, we have

‖uq,a‖C([0,τ ],H1
0(Ω)) + ‖∂tuq,a‖C([0,τ ],L2(Ω)) ≤ C(‖u0‖1,2 + ‖u1‖0).

1
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Here and henceforth, ‖ · ‖p and ‖ · ‖s,p, 1 ≤ p ≤ ∞, s ∈ R, denote respectively the usual Lp-norm and the
W s,p-norm.

We note that the constant C above is a non decreasing function of ‖q‖∞ + ‖a‖∞.

Now, since uq,a coincides with the solution of the IBVP (1.1) in which −q(x)uq,a− a(x)∂tuq,a is seen as a
right-hand side, we can apply [17, Theorem 2.1] to get that ∂νuq,a, the derivative of the uq,a in the direction
of ν, the unit outward normal vector to ∂Ω, belongs to L2(Σ). Additionaly, the mapping

(
u0
u1

)
∈ H1

0 (Ω)× L2(Ω) −→ ∂νuq,a ∈ L2(Σ)

defines a bounded operator.

Let Γ be a non empty open subset of ∂Ω and Υ = Γ × (0, τ). To q, a ∈ L∞(Ω), we associate the
initial-to-boundary (abbreviated to IB in the following) operator Λq,a defined by

Λq,a :

(
u0
u1

)
∈ H1

0 (Ω)× L2(Ω) −→ ∂νuq,a|Υ ∈ L2(Υ).

Clearly, from the preceding discussion, Λq,a ∈ B
(
H1

0 (Ω)× L2(Ω), L2(Υ)
)
.

We also consider two partial IB operators Λq and Λ̃q,a which are given by

Λq(u0) = Λq,0

(
u0
0

)
, Λ̃q,a(u1) = Λq,a

(
0
u1

)
.

Therefore, Λq ∈ B
(
H1

0 (Ω), L
2(Υ)

)
and Λ̃q,a ∈ B

(
L2(Ω), L2(Υ)

)
.

Next, we see that ∂tu is the solution of the IBVP (1.1) corresponding to the initial conditions u1 and
∆u0 − qu0 − au1. Hence, repeating the preceding analysis with ∂tu in place of u, we get

Λq,a ∈ B
([
H1

0 (Ω) ∩H2(Ω)
]
×H1

0 (Ω), H
1((0, τ), L2(Γ))

)
.

Consequently,

Λq ∈ B
(
H1

0 (Ω) ∩H2(Ω), H1((0, τ), L2(Γ))
)
,

Λ̃q,a ∈ B
(
H1

0 (Ω), H
1((0, τ), L2(Γ))

)
.

We are interested in the stability issue for the inverse problem consisting in the determination of both the
potential q and the damping coefficient a, appearing in the IBVP (1.1), from the IB map Λq,a. We succeed

in proving logarithmic stability estimates of determining q from Λq, a from Λ̃q,a and (q, a) from Λq,a.

We introduce the unbounded operators, defined on H1
0 (Ω)× L2(Ω), as follows

A0 =

(
0 I
∆ 0

)
, D(A0) =

[
H2(Ω) ∩H1

0 (Ω)
]
×H1

0 (Ω)

and A = Aq,a = A0 + B with D(A) = D(A0), where

B = Bq,a =

(
0 0
−q −a

)
.

Let

C : D(A0) → L2(Σ) :

(
ϕ
ψ

)
−→ ∂νϕ.

Since we deal with the wave equation, it is necessary to make assumptions on Γ and τ in order to guarantee
that our system is observable. To this end, we assume that Γ is chosen in such a way that there is τ0 such that
the pair (A, C) is exactly observable for any τ ≥ τ0. We formulate the precise definition of exact observability
in the next section in an abstract framework.

We give sufficient conditions ensuring that the pair (A, C) is exactly observable. We fix x0 ∈ Rn \ Ω and
we set

Γ0 = {x ∈ ∂Ω; ν(x) · (x− x0) > 0} and d = max
x∈Ω

|x− x0|.
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Let us assume that Γ ⊃ Γ0. Following [21, Theorem 7.2.3, page 233], (A0, C) is exactly observable with
τ ≥ τ0 = 2d. In light of [21, Theorem 7.3.2, page 235] and the remark following it, we conclude that (A, C)
is also exactly observable for τ ≥ τ0, again with τ0 = 2d.

We mention that sharp sufficient conditions on Γ and τ0 were given in a work by Bardos, Lebeau and
Rauch [8].

Unless otherwise stated, for sake of simplicity, all operator norms will denoted by ‖ · ‖. Also, Bp (resp.
Bs,p) denote the unit ball of Lp(Ω) (resp. W s,p(Ω)).

We aim to prove in the present work the following theorem.

Theorem 1.1. We assume that (A0, C) is exactly observable for τ ≥ τ0, for some τ0 > 0. Let 0 ≤ q0 ∈
L∞(Ω), there is a constant δ > 0 so that

(1.2) ‖q − q0‖2 ≤ C
∣∣ln

(
C−1‖Λq0 − Λq‖

)∣∣−1/2
, q ∈ q0 + δB1,∞,

and, for any m > 0,

‖a‖2 ≤ C
∣∣∣ln

(
C−1‖Λ̃q0,a − Λ̃q0,0‖

)∣∣∣
−1/2

, a ∈ [δB∞] ∩ [mB1,2] ,(1.3)

‖q − q0‖2 + ‖a‖0 ≤ C
∣∣ln

(
C−1‖Λq,a − Λq0,0‖

)∣∣−1/2
, q ∈ q0 + δB1,∞, a ∈ [δB∞] ∩ [mB1,2] .(1.4)

Here, C is a generic constant not depending on q and a.

Theorem 1.1 gives only stability estimates at zero damping coefficient. The difficulty of stability estimates
at a non zero damping coefficient is related to the fact that the operator A is not necessarily diagonalizable.
The main reason is that, contrary to case where a = 0, this operator is no longer skew-adjoint. We detail
the stability estimate at a non zero damping coefficient in a separate section.

The problem of determining the potential in a wave equation from the so-called Dirichlet-to-Neumann
(usually abbreviated to DN) map was initiated by Rakesh and Symes [18] (see also [10] and [13]). They prove
that the potential can be recovered uniquely from the DN map provided that the length of the time interval
is larger than the diameter of the space domain. The key point in their method is the construction of special
solutions, called beam solutions. A sharp uniqueness result was proved by the so-called boundary control
method. More details on this method can be found for instance in [6] and [16]. Also, Sun [20] establishes
Hölder stability estimates and, most recently, Bao and Yun [4] improve the result of [20]. Specifically,
they prove a nearly Lipschitz stability estimate. An extension was obtained by Bellassoued, Choulli and
Yamamoto [3] in the case of a partial DN map by a method built on the quantification of the continuation
of the solution of the wave equation from partial Cauchy data. We refer to the introduction of [3] for a short
overview of inverse problems related to the wave equation. We finally quote a very recent paper by Bao and
Zhang [5] dealing with sensitivity analysis of an inverse problem for the wave equation with caustics.

It is worthwhile to mention that contrary to hyperbolic inverse problems, for which the stability can be of
Lipschitz, Hölder or logarithmic type, elliptic and parabolic inverse problems are always severely ill-posed.
That is the corresponding stability estimates are in most cases of logarithmic type. In [1], Alessandrini gives
an example in non destructive testing showing that the logarithmic stability is the best possible.

This text is organized as follows. We consider in Section 2 the inverse source problem for exactly observ-
able systems in an abstract framework. This material is necessary to establish stability estimates for the
determination of the potential and the damping coefficient appearing in the IBVP (1.1). We devote Section
3 to the proof of Theorem 1.1 and we give in Section 4 a sufficient condition which guarantees that A is
diagonalizable. The condition that A is diagonalizable is used in an essential way to get a variant of Theorem
1.1 at a non zero damping coefficient. We apply in Section 5 our approach to a clamped Euler-Bernoulli
beam equation. The possible adaptation of our method to a heat equation is discussed in Section 6. Due to
the fact that a heat equation is not exactly observable but only observable at final time, we obtain a stability
estimate only when we perturb the unknown coefficient by a finite dimensional subspace.
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2. An abstract framework for the inverse source problem

Let H be a Hilbert space and A : D(A) ⊂ H → H be the generator of continuous semigroup T (t). An
operator C ∈ B(D(A), Y ), Y is a Hilbert space which is identified with its dual space, is called an admissible
observation for T (t) if for some (and hence for all) τ > 0, the operator Ψ ∈ B(D(A), L2((0, τ), Y )) given by

(Ψx)(t) = CT (t)x, t ∈ [0, τ ], x ∈ D(A),

has a bounded extension to H .

We introduce the notion of exact observability for the system

z′(t) = Az(t), z(0) = x,(2.1)

y(t) = Cz(t),(2.2)

where C is an admissible observation for T (t). Following the usual definition, the pair (A,C) is said exactly
observable at time τ > 0 if there is a constant κ such that the solution (z, y) of (2.1) and (2.2) satisfies

∫ τ

0

‖y(t)‖2Y dt ≥ κ2‖x‖2H , x ∈ D(A).

Or equivalently

(2.3)

∫ τ

0

‖(Ψx)(t)‖2Y dt ≥ κ2‖x‖2H , x ∈ D(A).

We consider the Cauchy problem

(2.4) z′(t) = Az(t) + λ(t)x, z(0) = 0,

and we set

(2.5) y(t) = Cz(t), t ∈ [0, τ ].

By Duhamel’s formula, we have

(2.6) y(t) =

∫ t

0

λ(t− s)CT (s)xds =

∫ t

0

λ(t − s)(Ψx)(s)ds.

Let

H1
ℓ ((0, τ), Y ) =

{
u ∈ H1((0, τ), Y ); u(0) = 0

}
.

We define the operator S : L2((0, τ), Y ) −→ H1
ℓ ((0, τ), Y ) by

(2.7) (Sh)(t) =

∫ t

0

λ(t− s)h(s)ds.

If E = SΨ, then (2.6) takes the form

y(t) = (Ex)(t).

Theorem 2.1. We assume that (A,C) is exactly observable for τ ≥ τ0, for some τ0 > 0. Let λ ∈ H1((0, T ))
satisfies λ(0) 6= 0. Then E is one-to-one from H onto H1

ℓ ((0, τ), Y ) and

(2.8)
κ|λ(0)|√

2
e
−τ

‖λ′‖2
L2((0,τ))

|λ(0)|2 ‖x‖H ≤ ‖Ex‖H1
ℓ
((0,τ),Y ), x ∈ H.

Proof. First, taking the derivative with respect to t of each side of the integral equation
∫ t

0

λ(t− s)ϕ(s)ds = ψ(t),

we get a Volterra equation of second kind

λ(0)ϕ(t) +

∫ t

0

λ′(t− s)ϕ(s)ds = ψ′(t).
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Mimicking the proof of [15, Theorem 2, page 33], we obtain that this integral equation has a unique solution
ϕ ∈ L2((0, τ), Y ) and

‖ϕ‖L2((0,τ),Y ) ≤ C‖ψ′‖L2((0,τ),Y )

≤ C‖ψ‖H1
ℓ
((0,τ),Y ).

Here C = C(λ) is a constant.

Next, we estimate the constant C above. From the elementary convexity inequality (a+ b)2 ≤ 2(a2 + b2),
we deduce

‖|λ(0)|ϕ(t)‖2Y ≤ 2

(∫ t

0

|λ′(t− s)

|λ(0)| [|λ(0)|‖ϕ(s)‖Y ] ds
)2

+ 2‖ψ′(t)‖2Y .

Thus,

|λ(0)|2‖ϕ(t)‖2Y ≤ 2
‖λ′‖2L2((0,τ))

|λ(0)|2
∫ t

0

|ϕ(0)|2‖ϕ(s)‖2Y ds+ 2‖ψ′(t)‖2Y
by the Cauchy-Schwarz’s inequality. Therefore, using Gronwall’s lemma, we obtain in a straightforward
manner that

‖ϕ‖L2((0,τ),Y ) ≤
√
2

|λ(0)|e
τ

‖λ′‖2
L2((0,τ))

|λ(0)|2 ‖ψ′‖L2((0,τ),Y )

and then

‖ϕ‖L2((0,τ),Y ) ≤
√
2

|λ(0)|e
τ

‖λ′‖2
L2((0,τ))

|λ(0)|2 ‖Sϕ‖H1
ℓ
((0,τ),Y ).

In light of (2.3), we end up getting

‖Ex‖H1
ℓ
((0,τ),Y ) ≥

κ|λ(0)|√
2

e
−τ

‖λ′‖2
L2((0,τ))

|λ(0)|2 ‖x‖H .

�

We shall need a variant of Theorem 2.1. If (A,C) is as in Theorem 2.1, then it follows from [21, Proposition
6.3.3, page 189] that there is δ > 0 such that for any P ∈ B(H) satisfying ‖P‖ ≤ δ, (A + P,C) is exactly
observable with κ(P +A) ≥ κ/2.

We define EP similarly to E by replacing A by A+ P .

Theorem 2.2. We assume that (A,C) is exactly observable for τ ≥ τ0, for some τ0 > 0. Let λ ∈ H1((0, T ))
satisfies λ(0) 6= 0. There is δ > 0 such that, for any P ∈ B(H) satisfying ‖P‖ ≤ δ, EP is one-to-one from

H onto H1
ℓ ((0, τ), Y ) and

(2.9)
κ|λ(0)|
2
√
2
e
−τ

‖λ′‖2
L2((0,τ))

|λ(0)|2 ‖x‖H ≤ ‖EPx‖H1
ℓ
((0,τ),Y ), x ∈ H.

We now apply the preceding theorem to the following IBVP for the wave equation

(2.10)





∂2t u−∆u+ q(x)u + a(x)∂tu = λ(t)f(x) in Q,
u = 0 on Σ,
u(·, 0) = 0, ∂tu(·, 0) = 0.

We recall that

A0 =

(
0 I
∆ 0

)
, D(A0) =

[
H2(Ω) ∩H1

0 (Ω)
]
×H1

0 (Ω)

and A = Aq,a = A0 + Bq,a with D(A) = D(A0), where

Bq,a =

(
0 0
−q −a

)
.
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Also

C : D(A0) → L2(Γ) :

(
ϕ
ψ

)
−→ ∂νϕ.

We fix q0, a0 ∈ L∞(Ω) and we assume that (Aq0,a0 , C) is exactly observable with constant κ. This is the
case when Γ ⊃ Γ0 = {x ∈ ∂Ω; ν(x) · (x− x0) > 0} (see for instance [12, Theorem 1.2, page 141]1).

Corollary 2.1. There is δ > 0 such that, for any q ∈ q0 + δB1,∞ and a ∈ a0 + δB∞, we have

‖f‖2 ≤
2
√
2

κ|λ(0)|e
τ

‖λ′‖2
L2((0,τ))

|λ(0)|2 ‖∂νuf‖H1((0,τ),L2(Γ)),

where uf is the solution of the IBVP (2.10).

This is nothing else but a Lipschitz stability estimate for the inverse problem of determining the source
term f from the boundary data ∂νuf |Υ, when λ is supposed to be known.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Let (λk) and (φk) be respectively the sequence of Dirichlet eigenvalues of −∆+ q0,
counted according to their multiplicity, and the corresponding eigenvectors. We assume that the sequence
(φk) forms an orthonormal basis of L2(Ω).

We recall that according to the min-max principle, the following two-sided estimates hold

(3.1) c−1k2/n ≤ λk ≤ ck2/n.

Here, the constant c > 1 depends only on Ω and q0.

Let uq be the solution of the IBVP (1.1) corresponding to q, a = 0, u0 = φk and u1 = 0. Taking into
account that uq0 = cos(t

√
λk)φk is the solution of the IBVP (1.1) corresponding to q = q0, a = 0, u0 = φk

and u1 = 0, we see that u = uq − uq0 is the solution of the IBVP

(3.2)






∂2t u−∆u+ qu = −(q − q0) cos(t
√
λk)φk in Q,

u = 0 on Σ,
u(·, 0) = 0, ∂tu(·, 0) = 0.

In the remaining part of this proof, C is a generic constant independent on k.

Let δ be as in Corollary 2.1. If q ∈ q0 + δB1,∞, we get by applying Corollary 2.1

‖(q − q0)φk‖2 ≤ CeCλk‖∂νu‖H1((0,τ),L2(Γ)).

Since |(q − q0, φk)| ≤ |Ω|1/2‖(q − q0)φk‖L2(Ω) by Cauchy-Schwarz’s inequality, the last inequality entails

|(q − q0, φk)| ≤ CeCλk‖∂νu‖H1((0,τ),L2(Γ)).

But, ∂νu = (Λq0 − Λq)φk. Therefore

(3.3) |(q − q0, φk)|2 ≤ CeCλk‖Λq0 − Λq‖2.
Let λ ≥ λ1 and N = N(λ) be the smallest integer so that λN ≤ λ < λN+1. Then

‖q − q0‖22 =
∑

k

|(q − q0, φk)|2

=
∑

k≤N
|(q − q0, φk)|2 +

∑

k>N

|(q − q0, φk)|2

≤
∑

k≤N
|(q − q0, φk)|2 +

1

λ

∑

k>N

λk|(q − q0, φk)|2

≤
∑

k≤N
|(q − q0, φk)|2 +

Cδ2

λ
.

1We note that from the proof of this theorem it is not possible to extract the dependance of κ on q0 and a0.
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Here we used the fact that
(∑

k≥1(1 + λk)(·, ϕk)2
)1/2

defines an equivalent norm on H1(Ω).

In light of (3.3), we get

‖q − q0‖22 ≤ CNeCλ‖Λq0 − Λq‖2 +
Cδ2

λ
.

By (3.1), N ≤ Cλn/2. Hence

‖q − q0‖22 ≤ CeCλ‖Λq0 − Λq‖2 +
Cδ2

λ
.

Minimizing with respect to λ, we obtain that there is δ0 > 0 such that if ‖Λq0 − Λq‖ ≤ δ0, then

‖q − q0‖2 ≤ C
∣∣ln(C−1‖Λq0 − Λq‖)

∣∣−1/2
.

Estimate (1.2) follows then from the continuity of the mapping

q ∈ L∞(Ω) → Λq ∈ B(H1
0 (Ω) ∩H2(Ω), H1((0, τ), L2(Γ)).

We proceed similarly for proving (1.3). In the actual case we have to replace the previous uq0 by uq0 =

λ−1
k sin(t

√
λk)φk, corresponding to the initial conditions u0 = 0 and u1 = φk. Therefore, we have in place of

(3.2)

(3.4)






∂2t u−∆u+ a∂tu = −a cos(t
√
λk)φk in Q,

u = 0 on Σ,
u(·, 0) = 0, ∂tu(·, 0) = 0.

We continue as in the preceding case by establishing the estimate

|(a, φk)|2 ≤ CeCλk‖Λ̃q0,a − Λ̃q0,0‖
and we complete the proof of (1.3) as above.

We end the proof by showing how we proceed for proving (1.4). Taking into account that the solution

corresponding to q = q0, a = 0, u0 = φk and u1 = iλkφk is uq0 = ei
√
λktφk, then in place of (3.2) we have

the following IBVP

(3.5)





∂2t u−∆u + qu+ a∂tu = −[(q − q0) + i

√
λka]e

i
√
λktφk, in Q,

u = 0 on Σ,
u(·, 0) = 0, ∂tu(·, 0) = 0.

We can argue one more time as in the proof of (1.2). We find

|(ϕ, q − q0) + i
√
λk(ϕ, a)|2 ≤ CeCλk‖Λq,a − Λq0,0‖2,

entailing

|(ϕ, q − q0)|2 ≤ CeCλk‖Λq,a − Λq0,0‖2,
|(ϕ, a)|2 ≤ CeCλk‖Λq,a − Λq0,0‖2.

We end up getting (1.4) by mimicking the rest of the proof of estimate (1.2). �

4. Stability around a non zero damping coefficient

We limit ourselves to the one dimensional case and, for sake of simplicity, we take q identically equal to
zero. But the analysis we carry out in the present section is still applicable for any non negative bounded
potential.

We assume in the present section that Ω = (0, π). We introduced in the first section the unbounded
operators, defined on H = H1

0 (Ω)× L2(Ω),

A0 =

(
0 I
d2

dx2 0

)
, D(A0) =

[
H2(Ω) ∩H1

0 (Ω)
]
×H1

0 (Ω) := H1
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and Aa = A0 + Ba with D(A) = D(A0), where

Ba =
(

0 0
0 −a

)
.

From [21, Proposition 6.2.1, page 180], (A0, C) is exactly observable for any τ ≥ 2π when

C :

(
ϕ
ψ

)
∈ D(A0) −→

dϕ

dx
(0).

On the other hand, it follows from [21, Proposition 3.7.7, page 101] that the skew-adjoint operator A0 is
diagonalizable with eigenvalues λk = ik, k ∈ Z∗, corresponding to the orthonormal basis (gk), where

gk =
1√
2

(
fk
ik
fk

)
, k ∈ Z∗,

where (fk)k∈N is an orthonormal basis of L2(Ω) consisting of eigenfunctions of the unbounded operator

A0 = d2

dx2 under Dirichlet boundary condition and f−k = −fk, k ∈ N∗.

Let H± be the closure in H of span{g±k; k ∈ N∗}. Clearly, H = H+⊕H− and H± is invariant under A0.
Let then A±

0 : H± → H± be the unbounded operator given by A±
0 = A0|H±

and

D(A±
0 ) = {u ∈ H±;

∑

k∈N∗

k2|〈u, g±k〉|2 <∞}.

Here 〈·, ·〉 is the scalar product in H.

Let A±
a0 = A±

0 + Ba0 and set

̺ =
∑

k≥1

1

(2k + 1)2
and α =

1

2
√
2(1 + ̺)

.

In light of [19, Theorem 2 and Lemma 10], we get

Theorem 4.1. Under the assumption

ρ := ‖a0‖∞ < α,

the spectrum of ±A±
a0 consists in a sequence (iµ±

k ) such that, for any δ ∈ (0, 1− ρ2/α2), there is an integer

k̃ such that

|iµ±
k − ik| ≤ α = α(a0) :=

ρ√
4ρ2 + δ

, k ≥ k̃.

In addition, H± admits a Riesz basis (φ±k ) =

((
ϕ±
k

iµ±
k ϕ

±
k

))

k∈N∗

, each φ±k is an eigenfunction corresponding

to iµ±
k .

We denote by (φ̃±k ) the Riesz basis biorthogonal to (φ±k ) and define the sequence (φk)k∈Z∗ (resp. (φ̃k)k∈Z∗)

as follows φ−k = −φ−k and φk = φ+k (resp. φ̃−k = −φ̃−k and φ̃k = φ̃+k ), k ∈ N∗. Set also µ−k = −µ−
k and

µk = µ+
k , k ∈ N∗. Therefore, Aa0φk = iµkφk, k ∈ Z∗, and, for any u ∈ H,

u =
∑

k∈Z

〈u, φ̃k〉φk =
∑

k∈Z

〈u, φk〉φ̃k.

Additionally,

(4.1) α‖u‖2H ≤
∑

k∈Z∗

|〈u, φ̃k〉|2,
∑

k∈Z∗

|〈u, φk〉|2 ≤ β‖u‖2H,

where the constants α and β do not depend on u (see for instance [21, Lemma 252, page 37]).

We pick a0 as in the preceding theorem. Then it is straightforward to check that ua0 = eiµktϕk, k ∈ Z∗,

is the solution of the IBVP (1.1) with q = 0, a = a0,

(
u0
u1

)
= φk. If ua is the solution of the IBVP (1.1),

then u = ua − ua0 is the solution of the IBVP
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(4.2)





∂2t u−∆u+ a(x)∂tu = (a0 − a)iµke
iµktϕk in Q,

u = 0 on Σ,
u(·, 0) = 0, ∂tu(·, 0) = 0.

We fixe δ as in the statement of Theorem 4.1. Then, for some integer k̃,
∣∣eiµkt

∣∣ ≤ e|iµk−i|k||t
∣∣∣ei|k|t

∣∣∣ ≤ eατ , |k| ≥ k̃,

|µk| ≤ |k|+ α, |k| ≥ k̃.

These estimates at hand, we can proceed as in the previous section to get, where ψk = iµkϕk,

(4.3) |(a− a0, ψk)|2 =

∣∣∣∣
〈(

0
a− a0

)
, φk

〉∣∣∣∣
2

≤ CeCk
2‖Λa − Λa0‖2.

It follows from (4.1),

(4.4) α‖a− a0‖22 = α

∥∥∥∥
(

0
a− a0

)∥∥∥∥
2

H
≤

∑

|k|≥1

∣∣∣∣
〈(

0
a− a0

)
, φk

〉∣∣∣∣
2

.

In light of (4.3) and (4.4), we have

α‖a− a0‖22 ≤ CNeCλ‖Λa − Λa0‖2 +
1

λ

∑

|k|>N
k2|(a− a0, ψk)|2

≤ CNeCλ‖Λa − Λa0‖2 +
1

λ

∑

|k|≥1

k2|(a− a0, ψk)|2.(4.5)

Here λ ≥ λ1 and N = N(λ) be the smallest integer satisfying N2 ≤ λ < (N + 1)2.

We note that we cannot pursue the proof similarly to that of (1.2) because (ψk) is not necessarily an
orthonormal basis of L2(Ω). So instead of the boundedness of a − a0 in H1(Ω), we make the assumption,
where m > 0 is fixed,

(4.6)
∑

|k|≥1

k2|(a− a0, ψk)|2 ≤ m.

Under the assumption (4.6), (4.5) entails

α‖a− a0‖22 ≤ CeCλ‖Λ̃a − Λ̃a0‖2 +
m

λ
.

where Λ̃a = Λ̃0,a and Λ̃a0 = Λ̃0,a0 .

The same minimization argument used in the proof of (1.2) (see Section 3) allows us to prove the following
theorem.

Theorem 4.2. There exist two constants C > 0 and δ > 0 so that

‖a− a0‖2 ≤ C
∣∣∣ln

(
C−1‖Λ̃a − Λ̃a0‖

)∣∣∣
−1/2

, a ∈ a0 + δB∞ and (4.6) holds.

Remark 4.1. Let us explain briefly why the result of this section can not be extended to a higher dimensional
case. The main reason is that, even for simple geometries, the eigenvalues of the unperturbed operators A±

0

do not satisfy a gap condition which is the main assumption in [19, Theorem 2]. If (ρk), ρk = k, is the
sequence of eigenvalues of ±A±

0 , we used in an essential way that

ρk+1 − ρk = 1.

When Ω = (0, a)× (0, b), the eigenvalues operator A+
0 consist in the sequence

(
π2

(
k2

a2 + ℓ2

b2

))

k,ℓ∈N∗
. These

eigenvalues are simple when a2

b2 6∈ Q but can condensate in finite interval and therefore they don’t satisfy a
gap condition like in the one dimensional case.
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5. An application to clamped Euler-Bernoulli beam

For the same reason as in the preceding section, we limit our analysis to the one dimensional case. So we
let Ω = (0, 1).

We introduce the following spaces

H0 = L2(0, 1),

H1/2 = H2
0 (Ω),

H1 = H4(0, 1) ∩H2
0 (Ω).

The natural norm of Hs will denoted by ‖ · ‖s, s ∈ {0, 1/2, 1}.
On H = H1/2 ×H0, we introduce the unbounded operator A given by

A =

(
0 I

− d4

dx4 0

)
, D(A) = H1 ×H1/2 := H1.

We consider a torque observation at an end point. We define then C : H1 → C by

C

(
ϕ
ψ

)
=
d2ϕ

dx2
(0).

We are concerned with following IBVP for the clamped Euler-Bernoulli beam equation

(5.1)





∂2t u+ ∂4xu = 0 in Q,
u(0, ·) = u(1, ·) = 0 on (0, τ),
∂xu(0, ·) = ∂xu(1, ·) = 0 on (0, τ),
u(·, 0) = u0, ∂tu(·, 0) = u1.

From [21, Proposition 3.7.6, page 100], A is skew-adjoint and therefore it generates a unitary group

on H. Consequently, for any

(
u0
u1

)
∈ H1 the IBVP (5.1) has a unique solution u so that (u, u′) ∈

C([0, τ ],H1)∩C1([0, τ ],H). Moreover, by [21, Proposition 6.10.1, page 270], (A, C) is exactly observable for
any τ > 0 and there is a constant κ such that

(5.2) κ2(‖u0‖21/2 + ‖u1‖20) ≤ ‖∂2xu(0, ·)‖2L2((0,τ)).

Here the constant κ is independent on u0 and u1.

Let Ba be the operator, where a = a(x),

Ba =
(

0 0
0 −a

)
.

This operator is bounded on H whenever a ∈ L∞(Ω). Therefore, bearing in mind that A + Ba generates a
continuous semigroup, the IBVP

(5.3)





∂2t u+ ∂4xu+ a(x)∂tu = 0 in Q,
u(0, ·) = u(1, ·) = 0 on (0, τ),
∂xu(0, ·) = ∂xu(1, ·) = 0 on (0, τ),
u(·, 0) = u0, ∂tu(·, 0) = u1

has a unique solution u = ua(u0, u1) satisfying (u, u′) ∈ C([0, T ],H1) ∩C1([0, T ],H), for any

(
u0
u1

)
∈ H1.

Moreover, the same perturbation argument used in the proof of Theorem 2.2 enables us to show that
(A+Ba, C) is exactly observable with constant κ̃2 ≥ κ2/2 provided the norm of the operator Ba is sufficiently
small. That is, there is δ > 0 such that for any Ba ∈ B(H) with ‖Ba‖ ≤ δ, we have

(5.4) (1/2)κ2(‖u0‖21/2 + ‖u1‖20) ≤ ‖∂2xu(0, ·)‖2L2((0,τ)).
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In light of [21, Lemma 6.10.2, page 218], the spectrum of A consists in a sequence of simple eigenvalues
(iρk)k∈Z∗ , where

ρk = π2

(
k − 1

2

)2

+ ak, k ∈ N∗,

(ak) a sequence converging exponentially to 0, and ρ−k = −ρk, k ∈ N∗.

Let A0 be the unbounded operator on L2(Ω) defined by A0 = d4

dx4 and D(A0) = H4(Ω) ∩H2
0 (Ω). Then

A0 is diagonalizable with eigenvalues (ρ2k)k∈N∗ . Let (fk)k∈N∗ be a basis of eigenfunctions, each fn is an
eigenfunction corresponding to ρ2k. Let

gk =
1√
2

( fk
iρk

fk

)
, and g−k = −gk, k ∈ N∗.

With the help of [21, Lemma 3.7.7, page 101], we get that (gk)k∈Z∗ is an orthonormal basis of A0.

Define H± as the closure of span{g±k; k ∈ N∗}. Then H = H− ⊕H+ and H± is invariant under A0. We
consider A±

0 : H± → H± the unbounded operator given by A±
0 = A0|H±

and

D(A±
0 ) = {u ∈ H±;

∑

k∈N∗

k2|〈u, g±k〉|2 <∞},

where 〈·, ·〉 is the scalar product in H, and we set A±
a0 = A±

a0 + Ba0 .
Since ρk+1 − ρk → +∞ as k → +∞, (ρk)k∈N∗ satisfies the a gap condition. Precisely, there exists d > 0

so that

ρk+1 − ρk ≥ d, k ∈ N∗.

Set

α′ =
d

2
√
2(1 + ̺)

,

where ̺ is as in Section 4.

We have similarly to Theorem 4.1,

Theorem 5.1. Under the assumption

ρ := ‖a0‖∞ < α′,

the spectrum of ±A±
a0 consists in a sequence (iµ±

k ) such that, for any δ ∈ (0, 1−ρ2/(α′)2), there is an integer

k̃ such that

|iµ±
k − iρk| ≤ α = α(a0) :=

ρd√
4ρ2 + d2δ

, k ≥ k̃.

In addition, H± admits a Riesz basis (φ±k ) =

((
ϕ±
k

iµ±
k ϕ

±
k

))
, each φ±k is an eigenfunction corresponding to

iµ±
k .

We define the IB operator Λ̃a by

Λ̃a : u1 ∈ H1/2 −→ ∂2xua(0, u1)(0, ·) ∈ L2(0, τ).

One can prove in a straightforward manner that Λ̃a is bounded operator between H1 and H1((0, τ)) and
its norm can be uniformly bounded, with respect to a, by a constant, provided that the L∞-norm of a is
sufficiently small.

We carry out a similar analysis to that after Theorem 4.1 to get the following stability estimate.

Theorem 5.2. Given m > 0, there exist constants C > 0 and δ > 0 so that

‖a− a0‖0 ≤ C
∣∣∣ln

(
C−1‖Λ̃a − Λ̃a0‖

)∣∣∣
−1/4

,
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if a ∈ a0 + δB1,∞ and ∑

|k|≥1

λk|(a− a0, ψk)|2 ≤ m,

where ψ±k = iµ±
k ϕ

±
k , k ∈ N∗.

We mention that the method used in this section and in the previous one is easily adaptable to a
Schrödinger equation.

6. The case of a heat equation

We consider the following IBVP for the heat equation

(6.1)






∂tu−∆u+ q(x)u = 0 in Q,
u = 0 on Σ,
u(·, 0) = u0.

Let H2,1(Q) = L2((0, τ), H2(Ω)) ∩H1((0, τ), L2(Ω)). From [11, Theorem 1.43, page 27], for any q ∈ L∞(Ω)
and u0 ∈ H1

0 (Ω), the IBVP has a unique solution uq = uq(u0) ∈ H2,1(Q) and, for any m > 0,

‖uq‖H2,1(Q) ≤ C‖u0‖1,2,
where the constant C = C(M) is independent on q, ‖q‖∞ ≤ m.

Let Γ be an arbitrary nonempty open subset of ∂Ω and set Υ = Γ × (0, τ). Using the trace theorem in
[11, page 26], we obtain that the following IB mapping

Λq : u0 ∈ H1
0 (Ω) −→ ∂νuq(u0) ∈ L2(Υ)

is bounded.

The following lemma will be useful in the sequel. Its proof is sketched in Appendix A.

Lemma 6.1. Let q0, q ∈ L∞(Ω) so that q ∈ q0 +W 1,∞(Ω). Then Λq −Λq0 defines a bounded operator from

H1
0 (Ω) into H

1((0, τ);L2(Γ)). Additionally, for each m > 0, there exits C > 0 so that

‖Λq − Λq0‖ ≤ C,

for all q0, q ∈ mB∞. Here, ‖Λq − Λq0‖ is the norm of Λq − Λq0 in B(H1
0 (Ω);H

1((0, τ);L2(Γ))).

In the sequel Λq − Λq0 is considered as an operator acting from H1
0 (Ω) into H

1((0, τ);L2(Γ)).

We assume, without loss of generality, that q ≥ 0. Indeed, substituting u by ue−‖q‖∞t, we see that q in
(6.1) is changed to q+‖q‖∞. So, we fix q0 ∈ L∞(Ω) satisfying 0 ≤ q0 and we let 0 < λ1 < λ2 . . . ≤ λk → +∞
be the sequence of eigenvalues, counted according to their multiplicity, of −∆+ q0 under Dirichlet boundary
condition. An orthonormal basis consisting in the corresponding eigenfunctions is denoted by (ϕk).

Let q ∈ mB∞ ∩
(
q0 +W 1,∞(Ω)

)
. We pick a positive integer k. Taking into account that uq0(ϕk) =

e−λktϕk, we obtain that u = uq(ϕk)− uq0(ϕk) is the solution of the IBVP

(6.2)





∂tu−∆u+ q(x)u = (q0 − q)e−λktϕk in Q,
u = 0 on Σ,
u(·, 0) = 0.

We set f = (q − q0)ϕk and λ(t) = e−λkt. Therefore (6.2) becomes

(6.3)






∂tu−∆u+ q(x)u = λ(t)f(x) in Q,
u = 0 on Σ,
u(·, 0) = 0.

It is straightforward to check that

(6.4) u(x, t) =

∫ t

0

λ(t− s)v(x, s),
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where v is the solution of the IBVP




∂tv −∆v + q(x)v = 0 in Q,
v = 0 on Σ,
v(·, 0) = f.

In light of the Carleman estimate in [11, Theorem 3.4, page 165], we can extend [11, Proposition 3.5, page
170] in order to get the following final time observability inequality

(6.5) ‖v(·, τ)‖H1
0 (Ω) ≤ C‖∂νv‖L2(Υ).

Here C is a constant depending on m but not on q.

By the continuity of the trace operator w ∈ H2,1(Q) → ∂νw|Υ ∈ L2(Υ), we get from (6.4)

∂νu(x, t)|Υ =

∫ t

0

λ(t− s)∂νv(x, s)|Υ.

We proceed as in the beginning of the proof of Theorem 2.1 to deduce the following estimate

(6.6) ‖∂νv‖L2(Υ) ≤
√
2eτ

2λ2
k‖∂νu‖H1((0,τ),L2(Γ)).

On the other hand

(6.7) v(x, t) =
∑

ℓ≥1

e−λℓt(f, ϕℓ)ϕℓ.

Hence

‖v(·, τ)‖22 =
∑

ℓ≥1

e−2λℓτ |(f, ϕℓ)|2.

Arguing as in Section 3, we get, for any λ ≥ λ1 and N = N(λ) satisfying λN ≤ λ < λN+1,

(6.8) ‖f‖22 ≤ e2λkτ‖v(·, τ)‖2 +
1

λ2

∑

ℓ>N

λ2ℓ |(f, ϕℓ)|2.

By Green’s formula, we obtain

λℓ(f, ϕℓ) = −
∫

Ω

∆(q − q0)ϕℓϕkdx+ 2

∫

Ω

∇(q − q0) · ∇ϕkϕℓdx+ λk(f, ϕℓ).

Therefore, under the assumption that q ∈ q0 +W 2,∞(Ω) and ‖q − q0‖2,∞ ≤ m,

λℓ|(f, ϕℓ)| ≤ (1 +
√
λk)m+ λk|(f, ϕℓ)|.

This estimate in (6.8) yields

‖f‖22 ≤ e2λτ‖v(·, τ)‖22 +
2(1 + λk)m

2 + λ2k
λ2

∑

ℓ>N

|(f, ϕℓ)|2

≤ e2λτ‖v(·, τ)‖22 +
2(1 + λk)m

2 + λ2k
λ2

‖f‖22

≤ e2λτ‖v(·, τ)‖22 +
Cλ2k
λ2

‖f‖22

≤ e2λτ‖v(·, τ)‖22 +
Cλ2k
λ2

.

This inequality together with (6.6) imply

‖(q − q0)ϕk‖22 = ‖f‖22 ≤
√
2e2τ

2λ2
k+2λτ‖∂νu‖2H1((0,τ),L2(Γ)) +

Cλ2k
λ2

.

But

‖∂νu‖H1((0,τ),L2(Γ)) = ‖Λq(ϕ)− Λq0(ϕk)‖H1((0,τ),L2(Γ)) ≤ ‖Λq − Λq0‖‖ϕk‖H1
0 (Ω) ≤

√
λk‖Λq − Λq0‖.
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Whence,

(6.9) ‖(q − q0)ϕk‖22 = ‖f‖22 ≤
√
2λke

2τ2λ2
k+2λτ‖Λq − Λq0‖2 +

Cλ2k
λ2

.

Now the usual way consists in minimizing, with respect to λ, the right hand side of the inequality above.
By a straightforward computation, one can see that the minimization argument is possible only if

λke
−2τ2λ2

k

‖Λq − Λq0‖2
≫ 1.

But this estimate does not guarantee that ‖Λq−Λq0‖ can be chosen arbitrarily small uniformly in k. However,
the minimization argument works if we perturb q0 by a finite dimensional subspace. That what we will discuss
now.

Let I > 0 be a given integer and EI = span{ϕ1, . . . , ϕI}. Since |(q − q0, ϕk)|2 ≤ |Ω|‖(q − q0)ϕk‖22 by
Cauchy-Schwarz’s inequality, we get from (6.9)

‖q − q0‖22 =

I∑

k=1

|((q − q0), ϕk)|2 ≤ CI

(
e2λτ‖Λq − Λq0‖+

1

λ2

)
,

for some constant CI depending on I. We observe that, according to the preceding analysis, CI surely
blows-up when I → +∞.

Minimizing with respect to λ the right hand side of the inequality above, we get

‖q − q0‖2 ≤ CI |ln (‖Λq − Λq0‖)|−1
,

provided that ‖Λq − Λq0‖ is sufficiently small. By a simple continuity argument, we see that ‖Λq − Λq0‖ is
small whenever ‖q − q0‖1,∞ is small. If ΛIq = Λq|EI

, we end up getting

Theorem 6.1. Under the preceding notations and assumptions, there exist two constants CI and δI so that

‖q − q0‖2 ≤ CI
∣∣ln

(
‖ΛIq − ΛIq0‖

)∣∣−1
,

if ‖q − q0‖1,∞ ≤ δI .

Remark 6.1. We consider on L2(Ω) the following norm, which weaker than its natural norm,

‖w‖∗ =




∑

k≥1

e−3τ2λ2
k |(w,ϕk)|2




2

, w ∈ L2(Ω).

Then (6.9) yields

‖q − q0‖2∗ ≤
√
2e2τλ‖Λq − Λq0‖2 +

C

λ2
.

We get by minimizing the right hand side with respect to λ

‖q − q0‖∗ ≤ C |ln (‖Λq − Λq0‖)|−1
.

Appendix A

Proof of Lemma 6.1. We start be considering the following homogenous IBVP for the heat equation

(A.1)





∂tu−∆u+ q(x)u = φ in Q,
u = 0 on Σ,
u(·, 0) = ψ.

Let φ ∈ L2(Q) and ψ ∈ H1
0 (Ω). We obtain by applying one more time [11, Theorem 1.43, page 27] that the

IBVP (A.1) has a unique solution uφ,ψ ∈ H2,1(Q) provided that q ∈ L∞(Ω). Moreover, for any m > 0, there
exists C > 0 so that

(A.2) ‖uφ,ψ‖H2,1(Q) ≤ C
(
‖ψ‖H1(Ω) + ‖φ‖L2(Q)

)
,

uniformly in q ∈ mB∞.
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Let Aq be the unbounded operator on L2(Ω) defined by

Aq = −∆+ q, D(Aq) = H2(Ω) ∩H1
0 (Ω).

Then the solution of (A.1) is given by

uφ,ψ(·, t) = e−tAqψ +

∫ t

0

e−sAqφ(·, t− s)ds,

where e−tAq is the semigroup generated by −Aq.
In the sequel, we write uφ for uφ,0.

Let φ ∈ C1([0, τ ];L2(Ω)) so that φ(·, 0) ∈ H1
0 (Ω). Then

∂tuφ(·, t) = e−tAqφ(·, 0) +
∫ t

0

e−sAq∂tφ(·, t− s)ds.

In other words, ∂tuφ = u∂tφ,φ(·,0). Thus, estimate (A.2) entails

(A.3) ‖∂tuφ‖H2,1(Q) ≤ C
(
‖φ(·, 0)‖H1(Ω) + ‖∂tφ‖L2(Q)

)
.

Next, let φ ∈ H1((0, τ);L2(Ω)) with φ(·, 0) ∈ H1
0 (Ω). Observing that uφ = uφ̃ + uφ(·,0), where φ̃ =

φ− φ(·, 0), and ∂tuφ(·,0) = u0,φ(·,0), we see that is sufficient to consider the case φ(·, 0) = 0.

By density, there exist a sequence (φk) in C
∞
0 ((0, τ ];L2(Ω)) converging to φ ∈ H1((0, τ);L2(Ω)). Armed

with (A.2), we get in a straightforward manner that uφk
and u∂tφ converge respectively to uφ and u∂tφ in

H2,1(Q). But, in light of the smoothness of φk, ∂tuφk
= u∂tφk

. Therefore, we have ∂tuφ = u∂tφ and (A.3)
holds true for all φ ∈ H1((0, τ);L2(Ω)) with φ(·, 0) ∈ H1

0 (Ω).

Now, let q0, q ∈ mB∞ so that q ∈ q0 +W 1,∞(Ω). Let u0 ∈ H1
0 (Ω). By an elementary computation, we

get that u := uq(u0)− uq0(u0) = uφ, with φ = (q0 − q)uq0(u0). Consequently, from the preceding discussion,
u, ∂tu ∈ H2,1(Q) and

(A.4) ‖u‖H2,1(Q) + ‖∂tu‖H2,1(Q) ≤ C‖u0‖H1(Ω).

For some constant C = C(m).

Finally, using the continuity of the trace operator w ∈ H2,1(Q) → ∂νw ∈ L2(Υ), we obtain from (A.4)

‖Λq(u0)− Λq0(u0)‖H1((0,τ);L2(Γ)) ≤ C‖u‖H1(Ω).

That is, we proved
‖Λq − Λq0‖ ≤ C,

where ‖Λq − Λq0‖ is the norm of Λq − Λq0 in B(H1
0 (Ω), H

1((0, τ);L2(Γ)). �
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70239, 54506 Vandoeuvre les Nancy cedex - Ile du Saulcy, 57045 Metz cedex 01, France

E-mail address: mourad.choulli@univ-lorraine.fr


