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STABLE DETERMINATION OF TWO COEFFICIENTS IN A DISSIPATIVE WAVE

EQUATION FROM BOUNDARY MEASUREMENTS

KAÏS AMMARI AND MOURAD CHOULLI

Abstract. We are concerned with the inverse problem of determining both the potential and the damping
coefficient in a dissipative wave equation from boundary measurements. We establish stability estimates
of logarithmic type when the measurements are given by the operator who maps the initial conditions to
Neumann boundary trace of the solution of the corresponding initial-boundary value problem. We build a
method combining an observability inequality together with a spectral decomposition.
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1. Introduction

We consider the following initial-boundary value problem (abbreviated to IBVP in the sequel) for the
wave equation:

(1.1)






∂2t u−∆u+ q(x)u + a(x)∂tu = 0 in Ω× (0, τ),
u = 0 in ∂Ω× (0, τ),
u(·, 0) = u0, ∂tu(·, 0) = u1,

where Ω ⊂ R
n is a bounded domain with smooth boundary ∂Ω and τ > 0.

In all of this text, the coefficients q and a are assumed to be real-valued.

Under the assumptions that q, a ∈ L∞(Ω), for each τ > 0 and (u0, u1) ∈ H1
0 (Ω)× L2(Ω), the IBVP (1.1)

has a unique solution uq,a ∈ C([0, τ ], H1
0 (Ω)) such that ∂tuq,a ∈ C([0, τ ], L2(Ω)) (e.g. for instance pages

699-702 of [5]). On the other hand, by a classical energy estimate, we have

‖uq,a‖C([0,τ ],H1
0(Ω)) + ‖∂tuq,a‖C([0,τ ],L2(Ω)) ≤ C(‖u0‖1,2 + ‖u1‖0).

Here and henceforth, ‖ · ‖p and ‖ · ‖s,p, 1 ≤ p ≤ ∞, s ∈ R, denote respectively the usual Lp-norm and the
W s,p-norm.

We note that the constant C above is a non decreasing function of ‖q‖∞ + ‖a‖∞.

Now, since uq,a coincides with the solution of the IBVP (1.1) in which −q(x)uq,a − a(x)∂tuq,a is seen as
a right-hand side, we can apply Theorem 2.1 in [15] to deduce that ∂νuq,a, the derivative of the uq,a in the
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direction of ν, the unit outward normal vector to ∂Ω, belongs to L2(∂Ω× (0, τ)). In addition, the mapping

(u0, u1) ∈ H1
0 (Ω)× L2(Ω) −→ ∂νuq,a ∈ L2(∂Ω× (0, τ))

defines a bounded operator.

Let Γ be an open non empty subset of ∂Ω and Σ = Γ × (0, τ). To q, a ∈ L∞(Ω), we associate the
initial-to-boundary (abbreviated to IB in the following) operator Λq,a defined by

Λq,a : (u0, u1) ∈ H1
0 (Ω)× L2(Ω) −→ ∂νuq,a|Σ ∈ L2(Σ).

Clearly, from the above discussion, Λq,a ∈ B
(
H1

0 (Ω)× L2(Ω), L2(Σ)
)
.

We also consider two partial IB operators: Λq and Λ̃q,a given by

Λq(u0) = Λq,0(u0, 0), Λ̃q,a(u1) = Λq,a(0, u1).

Therefore, Λq ∈ B
(
H1

0 (Ω), L
2(Σ)

)
and Λ̃q,a ∈ B

(
L2(Ω), L2(Σ)

)
.

Next, we see that ∂tu is the solution of the IBVP (1.1) corresponding to the initial conditions u1 and
∆u0 − qu0 − au1. Repeating for ∂tu the same arguments as for u, we get that

Λq,a ∈ B
([
H1

0 (Ω) ∩H2(Ω)
]
×H1

0 (Ω), H
1((0, τ), L2(Γ))

)
.

Consequently,

Λq ∈ B
(
H1

0 (Ω) ∩H2(Ω), H1((0, τ), L2(Γ))
)
,

Λ̃q,a ∈ B
(
H1

0 (Ω), H
1((0, τ), L2(Γ))

)
.

We are interested to the stability issue for the inverse problem consisting in the determination of both the
potential q and the damping coefficient a, appearing in the IBVP (1.1), from the IB map Λq,a. We succeed

in proving logarithmic stability estimates of determining q from Λq, a from Λ̃q,a and (q, a) from Λq,a.

We introduce the unbounded operators, defined on H1
0 (Ω)× L2(Ω),

A0 =

(
0 I
∆ 0

)
, D(A0) =

[
H2(Ω) ∩H1

0 (Ω)
]
×H1

0 (Ω)

and A = Aq,a = A0 + B with D(A) = D(A0), where

B = Bq,a =

(
0 0
−q −a

)
.

Let

C : D(A0) → L2(Γ) : (ϕ, ψ) −→ ∂νϕ.

Since we deal with the wave equation, it is necessary to make assumptions on Γ and τ in order to guarantee
that our system is observable. To this end, we assume that Γ is chosen in such a way that there is τ0 such
that the pair (A, C) is exactly observable for any τ ≥ τ0. The definition of exact observability will be given
in the next section in an abstract framework.

We give sufficient conditions ensuring that the pair (A, C) is exactly observable. We fix x0 ∈ R
n \ Ω and

we set

Γ0 = {x ∈ ∂Ω; ν(x) · (x− x0) > 0} and d = max
x∈Ω

|x− x0|.

Let us assume that Γ ⊃ Γ0. Following Theorem 7.2.3 in page 233 of [22], (A0, C) is exactly observable with
τ ≥ τ0 = 2d. In light of Theorem 7.3.2 in page 235 of [22] and the remark following it, we conclude that
(A, C) is also exactly observable for τ ≥ τ0, again with τ0 = 2d.

We mention that sharp sufficient conditions on Γ and τ0 was given in a work by Bardos, Lebeau and
Rauch [6].

Henceforth, τ ≥ τ0 is fixed and, for sake of simplicity, all operator norms will denoted by ‖ · ‖. Also, we
use the notation Bp (resp. Bs,p) for the unit ball of Lp(Ω) (resp. W s,p(Ω)).

In the present work, we aim to prove the following theorem.
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Theorem 1.1. Let 0 ≤ q0 ∈ L∞(Ω), there is a constant δ > 0 so that

(1.2) ‖q − q0‖2 ≤ C
∣∣ln

(
C−1‖Λq0 − Λq‖

)∣∣−1/2
, q ∈ q0 + δB1,∞,

and for any M > 0,

‖a‖2 ≤ C
∣∣∣ln

(
C−1‖Λ̃q0,a − Λ̃q0,0‖

)∣∣∣
−1/2

, a ∈ [δB∞] ∩ [MB1,2] ,(1.3)

‖q − q0‖2 + ‖a‖0 ≤ C
∣∣ln

(
C−1‖Λq,a − Λq0,0‖

)∣∣−1/2
, q ∈ q0 + δB1,∞, a ∈ [δB∞] ∩ [MB1,2] .(1.4)

Here, C is a generic constant not depending on q and a.

This theorem gives only stability estimates at zero damping coefficient. The difficulty of stability estimates
at a non zero damping coefficient is related to the fact that the spectral analysis of the operator A is not
easier in that case. We observe that, contrary to case where a = 0, this operator is no longer skew-adjoint.
We detail a result on the stability estimate at a non zero damping coefficient in a separate section.

The problem of determining the potential in a wave equation from the so-called Dirichlet-to-Neumann
(usually abbreviated to DN) map was initiated by Rakesh and Symes [17] (see also [8] and [11]). They prove
that the potential can be recovered uniquely from the DN map provided that the length of the time interval
is larger than the diameter of the space domain. The key point in their method is the construction of special
solutions, called beam solutions. An extension was obtained by Bellassoued, Choulli and Yamamoto [2] in
the case of a partial DN map by a method built on the quantification of the continuation of the solution
of the wave equation from partial Cauchy data. In the case of the complete DN map, a sharp uniqueness
result was proved by the so-called boundary control method. More details on this method can be found for
instance in [4] and [14]. Also, when the DN map is given on the whole lateral boundary, Sun [19] establishes
Hölder stability estimates. Most recently, Bao and Yun [3] improve the result of [19]. Specifically, they
prove a nearly Lipschitz stability estimate. We refer to the introduction of [2] for a short overview of inverse
problems related to the wave equation.

This text is organized as follows. In Section 2, we consider the inverse source problem for exactly observable
systems in an abstract framework. This material is necessary in establishing stability estimates for the
determination of the potential and the damping coefficient appearing in the IBVP (1.1). The Section 3 is
devoted to the proof of Theorem 1.1. We give in Section 4 a sufficient condition that guarantee the existence
of Riesz basis consisting in eigenfunctions of the operator A, provided that the L∞-norm of a is small.
From this spectral decomposition we show that we can get a variant of Theorem 1.1 at a non zero damping
coefficient. In Section 5, we explain how our approach can be adapted to other exactly observable systems.
Precisely, we study the Euler-Bernoulli plate and Schrödinger equations in a rectangle of R2. The possible
adaptation of our method to the heat equation is discussed in Section 6. Due to the fact that the heat
equation is not exactly observable but only observable at final time, we obtain a stability estimate only when
we perturb the zero order term by a finite dimensional subspace.

2. Inverse source problem: an abstract framework

Let H be a Hilbert space and A : D(A) ⊂ H → H be the generator of continuous semigroup T (t). An
operator C ∈ B(D(A), Y ), Y a Hilbert space that we identify with its dual space, is called an admissible
observation for T (t) if for some (and hence for all) τ > 0, the operator Ψ ∈ B(D(A), L2((0, τ), Y )) given by

(Ψx)(t) = CT (t)x, t ∈ [0, τ ], x ∈ D(A),

has a bounded extension to H .

We introduce the notion of exact observability of the system

z′(t) = Az(t), z(0) = x,(2.1)

y(t) = Cz(t),(2.2)
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where C is an admissible observation for T (t). Following the usual definition, the pair (A,C) is said exactly
observable at time τ > 0 if there is a constant κ such that the solution (z, y) of (2.1) and (2.2) satisfies

∫ τ

0

‖y(t)‖2Y dt ≥ κ2‖x‖2X , x ∈ D(A).

Or equivalently

(2.3)

∫ τ

0

‖(Ψx)(t)‖2Y dt ≥ κ2‖x‖2X , x ∈ D(A).

We consider the Cauchy problem

(2.4) z′(t) = Az(t) + λ(t)x, z(0) = 0,

and we set

(2.5) y(t) = Cz(t), t ∈ [0, τ ].

By Duhamel’s formula, we have

(2.6) y(t) =

∫ t

0

λ(t− s)CT (s)xds =

∫ t

0

λ(t − s)(Ψx)(s)ds.

Let
H1

ℓ ((0, τ), Y ) =
{
u ∈ H1((0, τ), Y ); u(0) = 0

}
.

We define the operator S : L2((0, τ), Y ) −→ H1
ℓ ((0, τ), Y ) by

(2.7) (Sh)(t) =

∫ t

0

λ(t− s)h(s)ds.

If E = SΨ, we observe that (2.6) takes the form

y(t) = (Ex)(t).

Theorem 2.1. We assume that (A,C) is exactly observable and λ ∈ H1((0, T )) satisfies λ(0) = 1. Then E
is one-to-one from H onto H1

ℓ ((0, τ), Y ) and

(2.8) (κ/
√
2)e

−2τ‖λ′‖2
L2((0,τ))‖x‖X ≤ ‖Ex‖H1

ℓ
((0,τ),Y ), x ∈ X.

Proof. First, taking the derivative with respect to t of each side of the integral equation
∫ t

0

λ(t− s)ϕ(s)ds = ψ(t),

we get a Volterra equation of second kind

ϕ(t) +

∫ t

0

λ′(t− s)ϕ(s)ds = ψ′(t).

Mimicking the proof of Theorem 2 in page 33 of [13], we obtain that this integral equation has a unique
solution ϕ ∈ L2((0, τ), Y ) and

‖ϕ‖L2((0,τ),Y ) ≤ C‖ψ′‖L2((0,τ),Y )

≤ C‖ψ‖H1
ℓ
((0,τ),Y ).

Here C = C(λ) is a constant.

Next, we estimate the constant C above. From the elementary convexity inequality (a+ b)2 ≤ 2(a2 + b2),
we deduce

‖ϕ(t)‖2Y ≤ 2

(∫ t

0

|λ′(t− s)‖ϕ(s)‖Y ds
)2

+ 2‖ψ′(t)‖2Y .

Hence

‖ϕ(t)‖2Y ≤ 2‖λ′‖2L2((0,τ))

∫ t

0

‖ϕ(s)‖2Y ds+ 2‖ψ′(t)‖2Y
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by the Cauchy-Schwarz’s inequality. Therefore, using Gronwall’s lemma, we obtain in a straightforward
manner that

‖ϕ‖L2((0,τ),Y ) ≤
√
2e

2τ‖λ′‖2
L2((0,τ))‖ψ′‖L2((0,τ),Y )

and then

‖ϕ‖L2((0,τ),Y ) ≤
√
2e

2τ‖λ′‖2
L2((0,τ))‖Sϕ‖H1

ℓ
((0,τ),Y ).

In light of (2.3), we end up getting

‖Ex‖H1
ℓ
((0,τ),Y ) ≥ (κ/

√
2)e

−2τ‖λ′‖2
L2((0,τ))‖x‖X .

�

Let us note that the condition λ(0) = 1 can be relaxed. It is enough to assume that λ(0) 6= 0. In that
case κ has to changed to |λ(0)|−1κ.

We need a variant of Theorem 2.1. Let (A,C) be as in Theorem 2.1. As a consequence of Proposition
6.3.3 in page 189 of [22], we obtain that there is δ > 0 such that for any P ∈ B(H) satisfying ‖P‖ ≤ δ,
(A+ P,C) is exactly observable with κ(P +A) ≥ κ/2.

We define EP similarly to E by replacing A by A+ P .

Theorem 2.2. We assume that (A,C) is exactly observable and λ ∈ H1((0, T )) satisfies λ(0) = 1. There is

δ > 0 such that, for any P ∈ B(H) satisfying ‖P‖ ≤ δ, EP is one-to-one from H onto H1
ℓ ((0, τ), Y ) and

(2.9) (κ/(2
√
2))e

−2τ‖λ′‖2
L2((0,τ))‖x‖X ≤ ‖EPx‖H1

ℓ
((0,τ),Y ), x ∈ X.

We apply the preceding theorem to the following IBVP for the wave equation:

(2.10)






∂2t u−∆u+ q(x)u + a(x)∂tu = λ(t)f(x) in Ω× (0, τ),
u = 0 in ∂Ω× (0, τ),
u(·, 0) = 0, ∂tu(·, 0) = 0.

We recall that

A0 =

(
0 I
∆ 0

)
, D(A0) =

[
H2(Ω) ∩H1

0 (Ω)
]
×H1

0 (Ω)

and A = Aq,a = A0 + Bq,a with D(A) = D(A0), where

Bq,a =

(
0 0
−q −a

)
.

Also

C : D(A0) → L2(Γ) : (ϕ, ψ) −→ ∂νϕ.

We fix q0, a0 ∈ L∞(Ω) and we assume that (Aq0,a0 , C) is exactly observable with constant κ. This is for
instance the case when Γ ⊃ Γ0 = {x ∈ ∂Ω; ν(x) · (x− x0) > 0} (e.g. Theorem 1.2 in page 141 of [10]1).

Corollary 2.1. There is δ > 0 such that, for any q ∈ q0 + δB1,∞ and a ∈ a0 + δB∞, we have

‖f‖2 ≤ (2
√
2/κ)e

2τ‖λ′‖2
L2((0,τ))‖∂νuf‖H1((0,τ),L2(Γ)),

where uf is the solution of the IBVP (2.10).

This result gives a Lipschitz stability estimate for the inverse problem consisting in the determination of
the source term f from the boundary data ∂νuf |Σ, when λ is supposed to be known.

1We notice that from the proof of this theorem it is not possible to extract the dependance of κ on q0 and a0.
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3. Proof of Theorem 1.1

Proof of Theorem 1.1. Let (λk) and (φk) be respectively the sequence of Dirichlet eigenvalues of −∆+ q0,
counted according to their multiplicity, and the corresponding eigenfunctions. We assume that the sequence
(φk) forms an orthonormal basis of L2(Ω).

We recall that by the min-max principle, we have the following two-sided estimates

(3.1) c−1k2/n ≤ λk ≤ ck2/n.

Here, the constant c > 1 depends only on Ω and q0.

Let uq be the solution of the IBVP (1.1) corresponding to q, a = 0, u0 = φk and u1 = 0. Taking into
account that uq0 = cos(t

√
λk)φk is the solution of the IBVP (1.1) corresponding to q = q0, a = 0, u0 = φk

and u1 = 0, we see that u = uq − uq0 is the solution of the IBVP

(3.2)





∂2t u−∆u+ qu = −(q − q0) cos(t
√
λk)φk in Ω× (0, τ),

u = 0 on ∂Ω× (0, τ),
u(·, 0) = 0, ∂tu(·, 0) = 0.

In the remaining part of this proof, C is a generic constant not depending on k.

Let δ be as in Corollary 2.1. If q ∈ q0 + δB1,∞, we get by applying Corollary 2.1:

‖(q − q0)φk‖2 ≤ CeCλk‖∂νu‖H1((0,τ),L2(Γ)).

Since |(q − q0, φk)| ≤ |Ω|1/2‖(q − q0)φk‖L2(Ω) by the Cauchy-Schwarz’s inequality, the last inequality entails

|(q − q0, φk)| ≤ CeCλk‖∂νu‖H1((0,τ),L2(Γ)).

Or ∂νu = (Λq0 − Λq)φk. Therefore

(3.3) |(q − q0, φk)|2 ≤ CeCλk‖Λq0 − Λq‖2.
Let λ ≥ λ1 and N = N(λ) be the smallest integer satisfying λN ≤ λ < λN+1. Then

‖q − q0‖22 =
∑

k

|(q − q0, φk)|2

=
∑

k≤N

|(q − q0, φk)|2 +
∑

k>N

|(q − q0, φk)|2

≤
∑

k≤N

|(q − q0, φk)|2 +
1

λ

∑

k>N

λk|(q − q0, φk)|2

≤
∑

k≤N

|(q − q0, φk)|2 +
Cδ2

λ
.

Here we used the fact that
(∑

k≥1(1 + λk)(·, ϕk)
2
)1/2

defines an equivalent norm on H1(Ω).

In light of (3.3), we get

‖q − q0‖22 ≤ CNeCλ‖Λq0 − Λq‖2 +
Cδ2

λ
.

Or by (3.1), N ≤ Cλn/2. Hence

‖q − q0‖22 ≤ CeCλ‖Λq0 − Λq‖2 +
Cδ2

λ
.

We minimize with respect to λ, we obtain that there is δ0 > 0 such that if ‖Λq0 − Λq‖ ≤ δ0, then

‖q − q0‖2 ≤ C
∣∣ln(C−1‖Λq0 − Λq‖)

∣∣−1/2
.

Estimate (1.2) follows then from the continuity of the mapping q ∈ L∞(Ω) → Λq ∈ B(H1
0 (Ω), L

2(Σ)).
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We proceed similarly for proving (1.3). In the actual case we have to replace the previous uq0 by uq0 =

λ−1
k sin(t

√
λk)φk, corresponding to the initial conditions u0 = 0 and u1 = φk. Therefore in place of (3.2),

we have

(3.4)





∂2t u−∆u = −a cos(t
√
λk)φk, in Ω× (0, τ),

u = 0 on ∂Ω× (0, τ),
u(·, 0) = 0, ∂tu(·, 0) = 0.

We continue the proof as in the preceding case. We get

|(a, φk)|2 ≤ CeCλk‖Λ̃q0,a − Λ̃q0,0‖.
We finish the proof as above.

We complete the proof by showing how we proceed for proving (1.4). Taking into account that the solution

corresponding to q = q0, a = 0, u0 = φk and u1 = iλkφk is uq0 = ei
√
λktφk, in place of (3.2) we have the

following IBVP

(3.5)





∂2t u−∆u+ qu = −[(q − q0) + i
√
λka]e

i
√
λktφk, in Ω× (0, τ),

u = 0 on ∂Ω× (0, τ),
u(·, 0) = 0, ∂tu(·, 0) = 0.

Here again we can argue as in the proof (1.2). We find

|(ϕ, q − q0) + i
√
λk(ϕ, a)|2 ≤ CeCλk‖Λq,a − Λq0,0‖2,

entailing

|(ϕ, q − q0)|2 ≤ CeCλk‖Λq,a − Λq0,0‖2,
|(ϕ, a)|2 ≤ CeCλk‖Λq,a − Λq0,0‖2.

We end up getting (1.4) by mimicking the rest of the proof of the estimate (1.2). �

4. Stability estimates around a non zero damping coefficient

For sake of simplicity, we assume that the potential q is equal to zero. But the analysis carried out in the
present section is still applicable for any non negative bounded potential.

In the sequel 0 < λ1 < λ2 ≤ . . . λk ≤ . . . denote the sequence of eigenvalues, counted according to their
multiplicity, of −∆ under Dirichlet boundary condition.

We introduced in the first section the unbounded operators, defined on H1
0 (Ω)× L2(Ω),

A0 =

(
0 I
∆ 0

)
, D(A0) =

[
H2(Ω) ∩H1

0 (Ω)
]
×H1

0 (Ω)

and Aa = A0 + Ba with D(A) = D(A0), where

Ba =

(
0 0
0 −a

)
.

We know that −iA0 is self-adjoint operator whose spectrum is reduced to the sequence (
√
λk). We make

the assumption that Ω is chosen in such a way that the following gap condition holds true2:

(4.1)
√
λk+1 −

√
λk ≥ d > 0, k ≥ 1.

We set

κ =
∑

k≥1

1

(2k + 1)2
and α =

d

2
√
2(1 + κ)

.

In light of Theorem 2 and Lemma 10 in [18], we can state the following result.

2An example of such a domain will be given in Section 5.
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Theorem 4.1. Under the assumption

ρ := ‖a0‖∞ < α,

the spectrum of Aa0 consists in a sequence (iµk) such that, for any δ ∈ (0, 1− ρ2/α2), there is an integer k̃
such that

|iµk − i
√
λk| ≤ α = α(a) :=

ρd√
4ρ2 + d2δ

, k ≥ k̃.

In addition, H1
0 (Ω)× L2(Ω) admits a Riesz basis (φk) =

((
ϕk

iµkϕk

))
, each φk is an eigenfunction corre-

sponding to iµk.

We pick a0 as in the preceding theorem and let (φk) =

((
ϕk

iµkϕk

))
the corresponding Riesz basis

consisting of the eigenfunctions of the operator Aa0 . It is straightforward to check that ua0 = eiµktϕk is the

solution of the IBVP (1.1) with q = 0, a = a0,

(
u0
u1

)
= φk. If ua is the solution of the IBVP (1.1), then

u = ua − ua0 is the solution of the IBVP

(4.2)






∂2t u−∆u+ a(x)∂tu = (a0 − a)iµke
iµktϕk in Ω× (0, τ),

u = 0 on ∂Ω× (0, τ),
u(·, 0) = 0, ∂tu(·, 0) = 0.

We observe that µk are not necessarily real, but asymptotically, |µk| behaves like
√
λk. Indeed, for fixed

δ as in the statement of Theorem 4.1, we have for some integer k̃
∣∣eiµkt

∣∣ ≤ e|iµk−i
√
λk|t

∣∣∣ei
√
λkt

∣∣∣ ≤ eατ , k ≥ k̃,

|µk| ≤
√
λk + α, k ≥ k̃.

With the help of these estimates, we can proceed as in the previous section to get, where ψk = iµkϕk,

(4.3) |(a− a0, ψk)|2 =

∣∣∣∣
〈(

0
a− a0

)
, φk

〉∣∣∣∣
2

≤ CeCλk‖Λa − Λa0‖2.

Now since the biorthogonal basis to (φk) is also a Riesz basis, we can apply Proposition 2.5.2 in page 37
of [22] to deduce that, where m is some constant,

(4.4) m2‖a− a0‖22 = m2

∥∥∥∥
(

0
a− a0

)∥∥∥∥
2

H1
0 (Ω)×L2(Ω)

≤
∑

k≥1

∣∣∣∣
〈(

0
a− a0

)
, φk

〉∣∣∣∣
2

.

In light of (4.3) and (4.4), we have

m2‖a− a0‖22 ≤ CNeCλ‖Λa − Λa0‖2 +
1

λ

∑

k>N

λk|(a− a0, ψk)|2

≤ CNeCλ‖Λa − Λa0‖2 +
1

λ

∑

k≥1

λk|(a− a0, ψk)|2.(4.5)

Here λ ≥ λ1 and N = N(λ) be the smallest integer satisfying λN ≤ λ < λN+1.

We note that we cannot pursue the proof similarly to that of (1.2) because (ψk) is not necessarily an
orthonormal basis of L2(Ω). So instead of the boundedness of a − a0 in H1(Ω), we can only assume the
following estimate, where M > 0 is fixed,

(4.6)
∑

k≥1

λk|(a− a0, ψk)|2 ≤M.
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Under the assumption (4.6), (4.5) entails

m2‖a− a0‖22 ≤ CeCλ‖Λa − Λa0‖2 +
M

λ
.

The same minimization argument used in the proof of (1.2) (see Section 3) yields: there are constants C > 0
and δ > 0 so that

‖a− a0‖2 ≤ C
∣∣∣ln

(
C−1‖Λ̃a − Λ̃a0‖

)∣∣∣
−1/2

, a ∈ a0 + δB∞ and (4.6) holds.

5. Extension to Euler-Bernoulli plate and Schrödinger equations

For sake of clarity, we limit ourselves to the case where Ω is a rectangle of the form Ω = (0, a) × (0, b).
However, we believe that the analysis we carry out in the sequel is extendable to other domains.

Following [1], we introduce the following space

H1/2 = H1
0 (Ω),

H3/2 = {h ∈ H3(Ω); h = ∆h = 0 on ∂Ω},
H5/2 = {h ∈ H5(Ω); h = ∆h = ∆2h = 0 on ∂Ω}.

The natural norm of Hs will denoted by ‖ · ‖s, s = j + 1/2, j = 0, 1, 2.

On H = H3/2 ×H1/2, we introduce the unbounded operator A given by

A =

(
0 I

−(−∆)2 0

)
, D(A) = H5/2 ×H3/2.

Henceforth, Γ denotes an open subset of ∂Ω containing both a horizontal and a vertical segment of non
zero length. We define C : H1 = H2(Ω) ∩H1

0 (Ω) → L2(Γ) by

Cw = ∂νw

and we set C = [0 C], that we consider as an element of B(D(A), L2(Γ)).

We consider the following IBVP for the Euler-Bernoulli plate equation

(5.1)





∂2t u+∆2u = 0 in Ω× (0, τ),
u = ∆u = 0 on ∂Ω× (0, τ),
u(·, 0) = u0, ∂tu(·, 0) = u1.

From Theorem 3.2 in [1], for any

(
u0
u1

)
∈ H5/2 × H3/2 the IBVP (5.1) has a unique solution u ∈

C([0, τ ], H5/2) ∩ C1([0, τ ], H3/2). Moreover, (A, C) is exactly observable and there is a constant κ such that

(5.2) κ2(‖u0‖23/2 + ‖u1‖21/2) ≤ ‖∂νu‖2H1((0,τ),L2(Γ)).

Here the constant κ is independent on u0 and u1.
Let Ba be the operator, where a = a(x),

Ba =

(
0 0
0 a

)
.

This operator is bounded on H whenever a ∈ W 1,∞(Ω). Therefore, bearing in mind that A + Ba generates
a continuous semigroup, the IBVP

(5.3)





∂2t u+∆2u+ a(x)∂tu = 0 in Ω× (0, τ),
u = ∆u = 0 on ∂Ω× (0, τ),
u(·, 0) = u0, ∂tu(·, 0) = u1,

has a unique solution u ∈ C([0, T ], H5/2) ∩ C1([0, T ], H3/2), for any

(
u0
u1

)
∈ H5/2 ×H3/2. Moreover, the

same perturbation argument used in the proof of Theorem 2.2 enables us to show that (A+Ba, C) is exactly
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observable with constant κ̃2 ≥ κ2/2 provided the operator norm of Ba is sufficiently small. That is, there is
δ > 0 such that for any Ba ∈ B(H) with ‖Ba‖ ≤ δ, we have

(5.4) (1/2)κ2(‖u0‖23/2 + ‖u1‖21/2) ≤ ‖∂νu‖2H1((0,τ),L2(Γ)).

It is known that A is skew-adjoint and its spectrum is given by σ(A) = {iλkℓ; k, ℓ ∈ N
∗} (here N

∗ =
N \ {0}), where

λkℓ = π2

(
k2

a2
+
ℓ2

b2

)
.

We recall that a finite or infinite sequence of real numbers is said to be non resonant if every nontrivial
rational linear combination of finitely many of its elements is different from zero.

In the sequel we assume that (a/π, b/π) are non resonant. In light of the fact that the sequence (λkℓ)
represents the sequence of the Dirichlet-Laplacian on Ω = (0, a)× (0, b), these eigenvalues are simple as it is
noticed in Proposition 5 of [16]. Hence

min(λ(k+1)ℓ − λkℓ, λk(ℓ+1) − λkℓ) ≥ π2 min(1/a2, 1/b2) = d.

Henceforth the eigenvalues of A are relabeled as iλk.

We set Aa = A+ Ba. We have similarly to Theorem 4.1,

Theorem 5.1. Let α and κ be as in Section 4. Then, under the assumption

ρ := ‖a0‖1,∞ < α,

the spectrum of Aa0 consists in a sequence (iµk) such that, for any δ ∈ (0, 1− ρ2/α2), there is an integer k̃
such that

|iµk − iλk| ≤ α = α(a) :=
ρd√

4ρ2 + d2δ
, k ≥ k̃.

In addition, H admits a Riesz basis (φk) =

((
ϕk

iµkϕk

))
, each φk is an eigenfunction corresponding to µk.

A similar analysis to that carried out after Theorem 4.1 leads in the present case to the following stability
estimate: let M > 0 ; there are constants C > 0 and δ > 0 so that

‖a− a0‖0 ≤ C
∣∣∣ln

(
C−1‖Λ̃a − Λ̃a0‖

)∣∣∣
−1/4

,

if a ∈ a0 + δB1,∞ and
∑

k≥1

λk|(a− a0, ψk)|2 ≤M,

where ψk = iµkϕk.

With the same assumptions as those in the present section, we know from Theorem 1.4 in [20] that the
Schrödinger equation is exactly observable for the same boundary observation as above. We will not develop
here the analysis of the inverse problem corresponding to the Schrödinger equation. It is quite similar to
that for Euler-Bernoulli plate equation. We leave to the interested reader to write down the details.

6. The case of the heat equation

We consider the following IBVP for the heat equation

(6.1)





∂tu−∆u+ q(x)u = 0 in Ω× (0, τ),
u = 0 on ∂Ω× (0, τ),
u(·, 0) = u0.
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From Theorem 1.43 in page 27 of [9], for any q ∈ L∞(Ω) and u0 ∈ H1
0 (Ω), the IBVP has a unique solution

uq = uq(u0) ∈ H2,1(Ω× (0, τ)) 3 and, for any M > 0,

‖uq‖H2,1(Q) ≤ C‖u0‖1,2,
where the constant C = C(M) is independent on q, ‖q‖∞ ≤M .

Let Γ be a nonempty open subset of ∂Ω. According to the trace theorem in page 26 of [9], we can say
that the following IB map

Λq : u0 ∈ H1
0 (Ω) −→ ∂νuq(u0) ∈ L2(Γ× (0, τ))

is bounded.

Without loss of generality, in the rest of this subsection we always assume that q ≥ 0. In fact, substituting
u by ue−‖q‖∞t, we see that q in (6.1) is changed to q + ‖q‖∞.

Next, we fix q0 ∈ L∞(Ω) satisfying 0 ≤ q0. Let then 0 < λ1 < λ2 . . . ≤ λk → +∞ be the sequence of
eigenvalues, counted according to their multiplicity, of −∆ + q0 under Dirichlet boundary condition. The
orthonormal basis consisting in the corresponding eigenfunctions is denoted by (ϕk).

Let q ∈ L∞(Ω) satisfying ‖q‖∞ ≤M . We pick an integer k. Taking into account that uq0(ϕk) = e−λktϕk,
we obtain that u = uq(ϕk)− uq0(ϕk) is the solution of the IBVP

(6.2)





∂tu−∆u+ q(x)u = (q0 − q)e−λktϕk in Ω× (0, τ),
u = 0 on ∂Ω× (0, τ),
u(·, 0) = 0.

We set f = (q − q0)ϕk and λ(t) = e−λkt. Therefore (6.2) becomes

(6.3)





∂tu−∆u+ q(x)u = λ(t)f(x) in Ω× (0, τ),
u = 0 on ∂Ω× (0, τ),
u(·, 0) = 0.

It is straightforward to check that

(6.4) u(x, t) =

∫ t

0

λ(t− s)v(x, s),

where v is the solution of 



∂tv −∆v + q(x)v = 0 in Ω× (0, τ),
v = 0 on ∂Ω× (0, τ),
v(·, 0) = f.

In light of the Carleman estimate in Theorem 3.4 in page 165 of [9], we can extend Proposition 3.5 in
page 170 of [9] in order to get the following final time observability inequality

(6.5) ‖v(·, τ)‖H1
0 (Ω) ≤ C‖∂νv‖L2(Γ×(0,τ)).

Here C is a constant depending on M but not on q.

By the continuity of trace operator w ∈ H2,1(Ω× (0, τ)) → ∂νw|Γ×(0,τ) ∈ L2(Γ× (0, τ)), we get from (6.4)

∂νu(x, t)|Γ×(0,τ) =

∫ t

0

λ(t− s)∂νv(x, s)|Γ×(0,τ).

We proceed as in the beginning of the proof of Theorem 2.1 to deduce the following estimate

(6.6) ‖∂νv‖L2(Γ×(0,τ)) ≤
√
2e2τ

2λ2
k‖∂νu‖H1((0,τ),L2(Γ)).

On the other hand

(6.7) v(x, t) =
∑

ℓ≥1

e−λℓt(f, ϕℓ)ϕℓ.

3We recall that H2,1(Ω× (0, τ)) = L2((0, τ), H2(Ω)) ∩H1((0, τ), L2(Ω)).
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Hence

‖v(·, τ)‖22 =
∑

ℓ≥1

e−2λℓτ |(f, ϕℓ)|2.

Arguing as in Section 3, we get, for any λ ≥ λ1 and N = N(λ) satisfying λN ≤ λ < λN+1,

(6.8) ‖f‖22 ≤ e2λkτ‖v(·, τ)‖2 +
1

λ2

∑

ℓ>N

λ2ℓ |(f, ϕℓ)|2.

By Green’s formula, we obtain

λℓ(f, ϕℓ) = −
∫

Ω

∆(q − q0)ϕℓϕkdx+ 2

∫

Ω

∇(q − q0) · ∇ϕkϕℓdx+ λk(f, ϕℓ).

Therefore, under the assumption that q − q0 ∈W 2,∞(Ω) and ‖q − q0‖2,∞ ≤M ,

λℓ|(f, ϕℓ)| ≤ (1 +
√
λk)M + λk|(f, ϕℓ)|.

This estimate in (6.8) yields

‖f‖22 ≤ e2λτ‖v(·, τ)‖22 +
2(1 + λk)M

2 + λ2k
λ2

∑

ℓ>N

|(f, ϕℓ)|2

≤ e2λτ‖v(·, τ)‖22 +
2(1 + λk)M

2 + λ2k
λ2

‖f‖22

≤ e2λτ‖v(·, τ)‖22 +
Cλ2k
λ2

‖f‖22

≤ e2λτ‖v(·, τ)‖22 +
Cλ2k
λ2

.

This inequality together with (6.6) imply

(6.9) ‖f‖22 ≤
√
2e2τ

2λ2
k+2λτ‖∂νu‖2H1((0,τ),L2(Γ)) +

Cλ2k
λ2

.

Now the usual way consists in minimizing the right hand side of the above inequality. This argument is
possible only if

λ2ke
−2τ2λ2

k

‖∂νu‖2H1((0,τ),L2(Γ))

≫ 1.

But this estimate does not guarantee that ‖∂νu‖H1((0,τ),L2(Γ)) can be chosen arbitrarily small uniformly in
k. However, the minimization argument works if we perturb q0 by a finite dimensional space. That what we
will discuss now.

Let m > 0 be a given integer and Em = span{ϕ1, . . . , ϕm}. Since |(q − q0, ϕk)|2 ≤ |Ω|‖(q − q0)ϕk‖22 by
the Cauchy-Schwarz’s inequality, we get from (6.9)

‖q − q0‖22 =
m∑

k=1

|((q − q0), ϕk)|2 ≤ Cm

(
e2λτ‖∂νu‖H1((0,τ),L2(Γ)) +

1

λ2

)
,

for some constant Cm depending on m. We notice that from the remark above, Cm surely blows-up when
m→ +∞.

Minimizing with respect to λ the right hand side of the inequality above, we get

‖q − q0‖2 ≤ Cm

∣∣ln
(
‖∂νu‖H1((0,τ),L2(Γ))

)∣∣−1/4
,

provided that ‖∂νu‖H1((0,τ),L2(Γ)) is sufficiently small. We observe that a simple continuity argument shows
that ‖∂νu‖H1((0,τ),L2(Γ)) is small whenever ‖q − q0‖∞ is small. If Λm

q = Λq|Em
, we end up getting

‖q − q0‖2 ≤ Cm

∣∣ln
(
‖Λm

q − Λm
q0‖

)∣∣−1/4
,

if ‖q − q0‖∞ is sufficiently small.
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