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Abstract

Some decision problems can be formulated as sorting models which consist in assigning
alternatives evaluated on several criteria to ordered categories. The implementation of
a multiple criteria sorting model requires to set the values of the preference parameters
used in the model. Rather than fixing directly the values of these parameters, an usual
approach is to infer these values from assignment examples provided by the decision
maker (DM), i.e., alternatives for which he/she specifies a required category or interval
of acceptable categories.

However, the judgments expressed by DMs through assignment examples can be inconsis-
tent, i.e., may not match the sorting model. In such situations, it is necessary to support
the DMs in the resolution of this inconsistency. In this paper, we propose algorithms that
calculate different ways to modify the set of assignment examples so that the information
can be represented in the sorting model. The modifications considered are either the
removal of examples or the relaxation of existing assignments. These algorithms incorpo-
rate information about the confidence attached by the DMs to each assignment example.
These algorithms aim at finding and ranking the solutions to solve inconsistency that the
DMs are most likely to accept.

Keywords: Multicriteria Decision Aiding, Sorting problem, Inconsistent judgment, As-
signment examples, Inconsistency analysis for LP
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Introduction

Many real-world decision problems can be represented by a model stating explicitly the multiple
points of view from which alternatives under consideration should be evaluated, through the defini-
tion of ncrit criterion functions g1, g2, . . . , gj, . . . , gncrit

. Given a set A = {a1, a2, . . . , ai, . . . , analt
} of

potential alternatives evaluated on the criteria, the analyst conducting the decision aiding study may
formulate the problem in different terms. B. Roy [14] distinguishes among three problem statements,
i.e., problem formulations (choosing, sorting and ranking) that may guide the analyst in structuring
the decision problem (see also [1]). Among these problem statements, a major distinction concerns
relative vs absolute judgments of alternatives. This distinction refers to the way alternatives are
considered and to the type of result expected from the analysis.

In the first case, alternatives are directly compared one to each other and the results are ex-
pressed using the comparative notion of “better” vs. “worse”. Choosing (selecting a subset of the
best alternatives) or ranking (defining a preference order on A) are typical examples of comparative
judgments. The presence (or absence) of an alternative ai in the set of the best alternatives results
from the comparison of ai to the other alternatives. Similarly, the position of an alternative in the
preference order depends on its comparison to the others.

In the second case, each alternative is considered independently from the others in order to de-
termine its intrinsic value by means of comparisons to norms or references; it consists of assigning
each alternative to one of the pre-defined categories C1, C2, ..., Ck, ..., Cncat

. The assignment of an
alternative ai results from its intrinsic evaluation on all criteria with respect to the norm defining
the categories. Several methods have been proposed to handle multiple criteria sorting problems
(MCSP), e.g., Trichotomic Segmentation [9], N-TOMIC [8], ORCLASS [6], ELECTRE TRI [15],
PROAFTN [2], UTADIS [16] and a general class of filtering methods [12].

One of the main difficulties that an analyst must face when interacting with a decision maker
(DM) in order to build a sorting model is the elicitation of various preference parameters used by the
method. Even when these parameters can be interpreted, it is difficult to fix directly their values and
to have a clear understanding of the implications of these values in terms of the output of the model.
In order to avoid direct elicitation of the parameters, several authors have designed disaggregation
procedures which allow to infer parameter’s values from holistic judgments (such a disaggregation
approach was first introduced in the UTA method [4]). Such procedures have been defined for MCSP
e.g., [16] for UTADIS and [11] for ELECTRE TRI.

The holistic judgments required to infer sorting models are called assignment examples and cor-
respond to alternatives (actual or fictitious) for which the DM can express a desired assignment,
e.g., “ai should be assigned to C3” (ai → C3), or “ai should be assigned to C1 or C2” (ai → [C1, C2],
i.e., imprecise assignment examples can be considered). In some sorting methods (namely UTADIS
and ELECTRE TRI when only the weights of criteria are inferred) such assignment examples define
linear constraints on the model parameters.

In order to minimize the differences between the assignments made by the method and the as-
signments made by the DM, a mathematical program infers the values for these parameters that
best restore the DM’s judgments. Such a methodology requires from the DM much less cognitive
effort than a direct elicitation of parameters (the elicitation of parameters is done indirectly using
holistic information given by the DM) and provides a factual justification for the values assigned to
the parameters.
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Inference procedures are usually not designed as a problem to be solved only once, but rather
several times in an interactive learning process, where the DM continuously revises the information
they provide as they learn from the results of the inference programs (see [3]). At each iteration, the
DM has the opportunity to revise assignment examples. This interactive process stops when the DM
is satisfied with the values of the parameters and when the results of the model (i.e., assignment of
alternatives to categories) match their view of the decision problem.

During this interactive process, the DM might provide inconsistent judgments, i.e., a set of assign-
ment examples that cannot be satisfied simultaneously by the sorting model. Such inconsistencies
can arise for several reasons (cognitive limitations, evolution of preferences during the process, ...).
In such a situation, it is not always easy for the DM to identify the reasons for inconsistencies. More-
over, there usually exists more than one way to restore consistency. Hence, the DM need support in
inconsistency analysis.

Consider a problem in which a DM has interactively specified assignment examples inducing
linear inequalities on the preference parameters. This is namely the case with UTADIS [16] and
ELECTRE TRI [3] when only the weights of criteria are inferred. Let x1, x2, . . . , xj, . . . , xn denote
the n parameters of the considered sorting model. The assignment examples define a polyhedron
of possible values for the parameters, T = {x ∈ R

n :
∑n

j=1 αijxj ≥ βi, i = 1, . . . ,m}; when an
inconsistent set of assignment examples is provided by the DM, this polyhedron is empty. There
exist various ways by which the set of assignment examples can be modified so that the polyhedron
T becomes non empty.

The problem is then to identify all the “minimal” subsets (minimal in the sense of the inclusion)
that resolve inconsistency, i.e., subsets among which the DM must choose in order to make his/her
information consistent. In [10] two algorithms are proposed to identify all the minimal subsets Sq,
q = 1, . . . , Q to be deleted (sorted by cardinality) that resolve inconsistency and whose cardinality is
lower than (or equal to) maxcount (maxcount is an input to the algorithms that states the maximum
number of solutions to be computed).

In this paper we propose alternative ways to resolve inconsistencies stemming from a set of as-
signment examples; namely, instead of deleting assignment examples, we consider relaxing them, i.e.,
enlarging the interval of the possible assignments for an alternative. Moreover, we consider that the
DM may provide confidence levels associated with the assignment examples; such information can
be exploited to find a way to solve inconsistency that best them.

The paper is organized as follows. Section 1 defines inconsistency relaxation and shows that the
algorithms proposed by [10] still apply when considering constraints relaxation rather than constraints
deletion. The section 2 considers the case where the DM is able to provide confidence levels associated
to the assignment examples. We provide two ways to account for such information in order to rank
the solutions according to the confidence levels provided by the DM. Section 3 provides an illustrative
example within the context of the ELECTRE TRI.

1 Inconsistency resolution via constraints relaxation

Resolving the inconsistencies can be performed by deleting a subset of constraints. Let us denote
I = {1, 2, ...,m} the set of indices of the constraints and T∅ = {x ∈ R

n :
∑n

j=1 αijxj ≥ βi,∀i ∈ I}
the initial empty polyhedron, i.e., with all the constraints. Let S ⊆ I denote a subset of in-
dices of constraints. We will say that S resolves the inconsistency if and only if the polyhedron
TS = {

∑n

j=1 αijxj ≥ βi,∀i ∈ I \ S} is not empty.
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In [10] two algorithms are proposed to compute alternative ways to restore consistency by con-
straints deletion. We consider here the case where consistency can be solved by relaxing constraints
rather than deleting them.

Considering an infeasible system of linear inequalities (that can correspond to assignment exam-
ples), relaxing constraints rather than deleting them (in order to restore feasibility) has already been
studied in the general case by (e.g., [13] and [7]). The relaxations considered by these authors are
continuous and deal with the right-hand-side of the constraints only. In our case, we will define the
relaxations differently:

• the relaxations will be performed by changing the technical coefficients of the constraints rather
than the right-hand-side;

• a discrete set of relaxations will be considered which have a meaning in the sorting model,
namely increasing the interval of categories to which an alternative can be assigned.

Suppose the DM has specified a set of assignment examples, i.e., a subset of alternatives A∗ ⊆ A

such that each ai ∈ A∗ is associated with max(ai) (min(ai), respectively) the index of the maxi-
mum (minimum, respectively) category to which ai should be assigned according to their holistic
preferences (ai → [min(ai),max(ai)], ai ∈ A∗). From the DM’s perspective, max(ai) represents the
statement ”ai should be assigned at most to category Cmax(ai)” and, min(ai) express that ”ai should
be assigned at least to category Cmin(ai)”. For each ai ∈ A∗, min(ai) and max(ai) induce (when
considering UTADIS and ELECTRE TRI) two linear constraints. Note that trivial constraints such
as min(ai) = Cmin and/or max(ai) = Cmax do not need to be taken into account.

Let us consider the assignment example ai → [min(ai),max(ai)], ai ∈ A∗. A relaxation of this
assignment example consists of assigning ai to a wider interval [Ck, Ck′ ] such that k ≤ min(ai)
or k′ ≥ max(ai), with at least one strict inequality. Let us consider the system of inequalities
containing the constraints corresponding to all the possible relaxations of the assignment example
ai → [min(ai),max(ai)] (it also contains the constraints corresponding to the original assignment
example). It should be noticed that all the constraints corresponding to a relaxation of one of the two
initial constraints are redundant. Consider S the set of all indices of constraints induced from a set
of assignment examples corresponding to a relaxation of the initial assignment examples. Therefore
we can note that S contains many redundancies.

If we apply the algorithms proposed by [10] (i.e., inconsistency resolution via constraints deletion)
to the set S, the solutions correspond to constraints relaxation and/or deletion. It follows from the
preceding remark that it is possible to use the algorithm proposed by [10] to solve inconsistencies by
relaxation (rather than deletion) of assignment examples. Hence, in the rest of the paper, we will
talk in terms of constraints deletion, knowing that it embraces the case of constraints relaxation.

2 Attributing confidence levels to assignment examples

In the course of the interactive process that aims at inferring the parameters of a sorting model, the
DM provides assignment examples. For each assignment example, DMs might be more or less confi-
dent in their statements. Let us suppose that they are able to express confidence judgments during
the interactive process. Such confidence judgments can be taken into account when an inconsistency
arises. More precisely, algorithms that identify alternative ways for solving inconsistencies may use
such information. Intuitively, these algorithms should provide solutions in an order such that the
least confident constraints are relaxed/deleted with a higher priority than solutions relaxing more
confident statements.
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2.1 Defining confidence levels

Let us consider a confidence scale on the assignment examples Ψ = {ψ0, ψ1, . . . , ψp, . . . , ψτ}, where
ψ0 (ψτ , respectively) corresponding to the minimum (maximum, respectively) confidence level, and
≺ denote an order on Ψ (ψ0 ≺ ψ1 ≺ . . . ≺ ψp ≺ . . . ≺ ψτ ). The semantic of this qualitative scale
is such that, when facing an inconsistency situation, an assignment example is less likely to be re-
laxed/deleted when its confidence level is high.

From the DM’s perspective, ai → max(ai) represents the statements ”ai should be assigned at
most to category Cmax(ai)” and, min(ai) express that ”ai should be assigned at least to category
Cmin(ai)”. These two statements induce two constraints. The DM can attach a confidence level to
each of the above mentioned statements. This information will be interpreted as confidence levels
attached to the corresponding constraints (for example, a1 → C2 implies “a1 should be assigned at
least to C2” and “a1 should be assigned at most to C2” and the DM may have different confidence
levels concerning these two statements, e.g., they may say that if a1 is not assigned to C2, then it is
more likely to be assigned to a higher category than to a lower one). For each relaxed constraint, the
attached confidence level corresponds to the confidence level of the original constraint from which it
was derived (unless the DM provides specific information).

2.2 A lexicographic ranking procedure

Let us consider an inconsistent set of assignment examples provided by the DM and the set of linear
constraints associated with these examples. Any relaxation of these assignment examples (see §1)
will be also considered here. Following the notation introduced previously, m denotes the total num-
ber of constraints and I = {1, 2, . . . , i, . . . ,m} denotes the set of indices of these constraints. The
resulting polyhedron is, T∅ = {x ∈ R

n :
∑n

j=1 αijxj ≥ βi,∀i ∈ I} = ∅

Let Ip denote the subset of constraints whose confidence level is equal to ψp. Hence, I0, I1, ..., Ip,

..., Iτ define a partition of I. Furthermore, we will denote I≤p =
⋃p

l=0 I l the set of constraints whose
confidence level is lower than or equal to ψp. Now, consider S l ⊆ I≤l a subset of indices of constraints
whose confidence level is lower than or equal to ψl. We will say that S l resolves the inconsistency at
a confidence level ψl if and only if TSl = {x ∈ R

n :
∑n

j=1 αijxj ≥ βi,∀i ∈ I \ Sl} 6= ∅.

A simple way to account for the confidence level attached to each constraint is to proceed as
follows:

1. Identify (by increasing order of cardinality) all minimal subsets S0
1 , S

0
2 , ..., S

0
q0

that resolve the
inconsistency at level ψ0 (i.e., relaxations whose confidence level is equal to ψ0 that make the
original system of inequalities feasible).

2. Then, identify (by increasing order of cardinality) all minimal subsets S1
1 , S

1
2 , ..., S

1
q1

that resolve
the inconsistency at level ψ1.

3. Proceed in the same way until finding minimal subsets Sτ
1 , Sτ

2 , ..., Sτ
qτ

that resolve the inconsis-
tency at level ψτ or finding a total number of subsets equal to maxcount.

The program PM 0
1 identifies the smallest set of constraints S0

1 whose confidence level is equal to
ψ0 so that TS0

1
= {x ∈ R

n :
∑n

j=1 αijxj ≥ βi,∀i ∈ I \ S0
1} 6= ∅
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Min
∑

I≤0 yi

s.t.
∑n

j=1 αijxj + Myi ≥ βi, ∀i ∈ I≤0

∑n

j=1 αijxj ≥ βi, ∀i ∈ I \ I≤0

xj ≥ 0, j = 1, . . . , n
yi ∈ {0, 1}, i ∈ I≤0

(1)

where, M is a positive large number; the variables yi, i ∈ I≤0, are the binary variables assigned
to each constraint index in S whose confidence index is lower than or equal to ψ0. The indices of
constraints for which y∗

i = 1 (at the optimum of PM 0
1 ) constitute the subset S0

1 .

PM0
2 is defined in order to compute S0

2 . This new program is derived from PM 0
1 by adding the

single constraint
∑

i∈S0

1

yi ≤ |S0
1 | − 1. This constraint makes it impossible to find S0

1 (the optimal

solution of PM 0
1 ) or any solution that includes this set. A third program PM 0

3 is then defined by
adding the constraint

∑

i∈S0

2

yi ≤ |S0
2 | − 1, and so on until we reach an infeasible program, meaning

that there are no more solutions in I≤0.

When all the solutions in I≤0 are found, the algorithm starts to search for solutions in I≤1. The
first solution S1

1 is found by solving PM 1
1 which is derived from the previous program by replac-

ing the constraints
∑n

j=1 αijxj + Myi ≥ βi, ∀i ∈ I≤0 and
∑n

j=1 αijxj ≥ βi, ∀i ∈ I \ I≤0 by
∑n

j=1 αijxj + Myi ≥ βi, ∀i ∈ I≤1 and
∑n

j=1 αijxj ≥ βi, ∀i ∈ I \ I≤1. The algorithm continues until
finding maxcount solutions (or no more solution exists).

Begin

p ← 0

count ← 0

While (p ≤ τ) and (count ≤ maxcount)

q ← 1

moresol ← true

While moresol

Solve PM p
q

If (PM p
q has no solution) or (count>maxcount)

Then

moresol ← false

Else

Sp
q ← {i ∈ I : y∗

i = 1}
Add constraint

∑

i∈S
p
q
yi ≤ |Sl

k| − 1 to PM p
q so as to define PM

p
q+1

q ←q+1

count ←count+1

End if

End while

p ←p+1

End while

End

This algorithm requires to solve several 0-1 programs. Note that it is possible to design an
algorithm for the same purpose using only linear programming (see the second algorithm presented
in [10]).
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2.3 A penalty based ranking procedure

2.3.1 Defining a penalty function

Another approach to our problem consists of defining a penalty function π(S) associated to each sub-
set of constraints indices S ⊆ I, and to rank the subsets that resolve the inconsistency by decreasing
penalty order: the larger π(S), the greater the insatisfaction of the DM in removing S from I. This
approach generalizes the lexicographic ranking as it is possible to define the penalty function π in a
way that the penalty ranking coincides with the lexicographic ranking.

Given a subset S ⊆ I, S ∩ Ip denotes the subset of S corresponding to constraints indices whose
confidence level is equal to ψp, p = 0, ..., τ . Let |S ∩ Ip| denote the cardinality of S whose confidence
level is equal to ψp.

In order to define the semantic of the penalty function π, we impose a few suitable conditions on π:

Condition 2.1. (non-negativity)
∀S ⊆ I, π(S) ≥ π(∅) = 0.

Condition 2.2. (anonymity)
∀S, S ′ ⊆ I, if |S ∩ Ip| = |S ′ ∩ Ip|, ∀p = 0, ..., τ then π(S) = π(S ′).

Condition 2.3. (confidence monotonicity)
∀S, S ′ ⊆ I such that |S ∩ Ip| = |S ′ ∩ Ip|, p = 1, . . . , τ, p 6= u, p 6= v, it holds:

|S ′ ∩ Iu| = |S ∩ Iu| + 1
|S ′ ∩ Iv| = |S ∩ Iv| − 1
u < v







⇒ π(S) > π(S ′)

Condition 2.4. (cardinality monotonicity)
∀S, S ′ ⊆ I, if ∀p = 0, ..., τ, |S ∩ Ip| ≥ |S ′ ∩ Ip| then π(S) ≥ π(S ′).

These conditions express natural properties for a function π to define a consistent penalty function:

• Condition 2.1 (non-negativity) states that π has a lower bound (arbitrarily set to 0). Although
it is not necessary, it would be possible to impose also an upper bound on the penalties, for
instance π(I) = 1. In such a case, the penalty function π could be understood as a “disutility”
function related to a utility function u(.) = 1 − π(.). This would be of interest in that the
questioning techniques used to elicit multi-attribute utility functions [5] from the DM can be
used in this context.

• Condition 2.2 (anonymity) states that the penalty of a set S only depends on the number of
constraints of each confidence level contained in S regardless of the constraints “label”.

• Condition 2.3 (confidence monotonicity) states that considering a solution S, if the confidence
level of one constraint in S decreases, then π(S) should also decrease.

• Condition 2.4 (cardinality monotonicity) states that if a solution S contains less (or equal)
constraints than another solution S ′, for each confidence level, the penalty should be lower (or
equal) for S than for S ′.
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Among the possible penalty functions, one of the simplest can be defined considering that each
constraint in S of a given confidence level ψp contributes to increase π(S) by an amount ∆p (the
values ∆p are to be defined by the DM):

π(S) =
τ

∑

p=0

∆p |S ∩ Ip| (2)

Considering condition 2.3, the amounts for ∆0, ..., ∆τ should be such that u < v ⇒ ∆u < ∆v.
This simple model can be generalized by considering that the penalty does not increase linearly with
respect to the number of constraints:

π(S) =
τ

∑

p=0

πp(|S ∩ Ip|) (3)

where πp(n) is a function (to be defined by the DM) denoting the penalty of removing n constraints
of confidence level ψp (given the assumed conditions, πp must be an increasing function).

More sophisticated non-additive models may be envisaged, namely those taking into account
preference dependencies among different confidence levels.

2.3.2 Ranking solutions according to the penalty function

Given a penalty function π, it is necessary to define an algorithm to rank by increasing penalty the
subsets of I that, if removed, yield a consistent system. In order to design an algorithm to identify
the maxcount subsets of constraints that solve inconsistency and rank them according to the penalty
function π, we will adapt the algorithms presented by [10] which rank by increasing cardinality all
minimal subsets that resolve inconsistency : S1, S2, . . . , Sq, . . . (|Sq| ≤ |Sq+1|).

The algorithms presented in [10] provide the set of the solutions ordered by cardinality without
any consideration about confidence levels. In our case, we want to provide the set of (at most)
maxcount solutions ordered by increasing penalty. It should be noticed that the smallest cardinal-
ity solutions might not correspond to those of the smallest penalty. Therefore, we can proceed by
computing the solutions by increasing cardinality and stop when we are sure that the solutions of a
higher cardinality have a greater penalty than the ones we already obtained.

Let Sx,p denote an arbitrary set of x constraints, all of confidence levels equal to ψp.

Proposition 2.1. ∀S ⊆ I, S ′ ⊆ I : |S| ≥ |S ′|, it holds π(S) ≥ π(S |S′|,0) i.e., the penalty of any
solution after the q-th is not lower than the penalty that would be awarded to the q-th solution if all
the constraints indexed by Sq were of the lowest confidence.

Proof. From repeatedly using Condition 2.3, π(S) ≥ π(S |S|,0). From Condition 2.4, since |S| ≥ |S ′|,
it holds that π(S |S|,0) ≥ π(S |S′|,0).

In the following algorithm, TOP-N denotes a list of solutions of at most maxcount elements, ordered
by increasing penalty, and Stail denotes the last solution (i.e., the solution with the highest penalty)
of list TOP-N. At the end of the algorithm, TOP-N contains the maxcount first solutions ordered by
increasing penalty.

7



Begin

q ← 0

TOP-N ← empty list
Stail ← first solution
repeat

Sq ← qth solution provided by the algorithm in [10]

If (q ≤ maxcount) or (π(Sq) < π(Stail))
Then Sq enters TOP-N

End If

Until Sq = ∅ or (q ≥ maxcount and π(Stail) ≤ π(S |Sq |,0))
End

In this algorithm, when Sq enters TOP-N it does so respecting the penalty ranking. If the list is
full (when it contains maxcount elements), this implies removing the highest penalty element (Stail),
and the variable Stail will be updated. Proposition 2.1 allows us to define the stopping condition
π(Stail) ≤ π(S |Sq |,0)).

3 Illustrative example

Let us consider a situation in which a set of 40 alternatives has to be assigned to 5 categories using the
ELECTRE TRI pessimistic method. Each alternative is evaluated on the basis of a set of 7 criteria
(see Appendix A). The limits of categories are known but the criteria importance coefficients are to
be defined (see Appendix B). Suppose the DM provides assignment examples with associated level of
confidence on a scale (absolutely confident ≻ quite confident ≻ not so confident), where ai → [Ck, Ck′ ]
means that alternative ai must be assigned to a category between Ck and Ck′ , (k ≤ k′):

• a1 → C5, not so confident

• a18 → C4, quite confident

• a23 → [C2, C3], not so confident

• a24 → [C2, C3], quite confident

• a26 → C5, quite confident

• a30 → C1, not so confident

• a31 → C5, not so confident

• a35 → [C1, C2], absolutely confident

• a36 → C4, quite confident

• a38 → C4, not so confident

• a39 → C3, not so confident

From these assignment examples, it is possible to define relaxations as defined in Section 1. In this
example, we will suppose that the relaxations have the same confidence level than their correspond-
ing assignment examples. For instance, the relaxations corresponding to the assignment example
a1 → C5 are a1 → [C4, C5], a1 → [C3, C5] and a1 → [C2, C5] (note that the relaxation a1 → [C1, C5]
amounts at removing the assignment example a1 → C5).

These assignment examples and their relaxations generate a set of 41 constraints on the criteria
weights wj, j = 1, ..., 7 and cutting level λ which are presented in Appendix C. The first 17 con-
straints correspond to the original assignment examples and the remaining ones correspond to the
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relaxations. The linear system associated with the assignment examples is infeasible, which means
that the information provided by the DM is inconsistent, i.e. there is no way to represent this infor-
mation in the ELECTRE TRI sorting model.

Considering this infeasible linear system, there exist 11 minimal subsets of constraints that resolve
the inconsistency, where I = {1, 2, ..., 41}. These 11 subsets (ordered by cardinality) are listed below.
Let us remark that due to the limited size of this example, we have computed all the solutions. Such
a way of proceeding is time consuming when dealing with real world problems of large size .

• S1 = {5, 8, 9, 10, 11, 25, 28, 29}
• S2 = {5, 8, 9, 10, 11, 17, 28, 29}

• S3 = {1, 5, 8, 9, 10, 14, 17, 28, 29}
• S4 = {1, 5, 8, 9, 10, 14, 25, 28, 29}
• S5 = {1, 8, 9, 10, 14, 25, 28, 29, 31}
• S6 = {1, 8, 9, 10, 11, 25, 28, 29, 31}

• S7 = {5, 7, 9, 10, 11, 13, 17, 28, 29, 30}

• S8 = {1, 8, 9, 10, 12, 14, 16, 25, 28, 31, 38}

• S9 = {5, 8, 9, 10, 11, 12, 14, 16, 25, 28, 31, 38}

• S10 = {3, 5, 7, 9, 11, 13, 15, 17, 23, 24, 28, 29, 30, 41}

• S11 = {1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21, 22, 25, 26, 27, 31, 32, 33, 36, 37, 38, 39, 40}

To solve the inconsistency, the DM should choose one among these 11 alternative solutions. In
order to be presented to the DM, these solutions should be formulated in terms of relaxation of the
assignment examples. For instance, S1 corresponds to (the formulation of the other solutions are
provided in Appendix D):























relax a23 → [C2, C3] to a23 → [C2, C4]
relax a26 → C5 to a26 → [C3, C5]
relax a30 → C1 to a30 → [C1, C4]
relax a31 → C5 to a31 → [C4, C5]
relax a35 → [C1, C2] to a35 → [C1, C3]

(4)

We can observe that some of these relaxations correspond to the deletion of one constraint from
I (relax a23 → [C2, C3] to a23 → [C2, C4], constraint 5), while others require the deletion of sev-
eral constraints from I (relax a26 → C5 to a26 → [C3, C5], constraints 8 and 25). Moreover, S1

suggests to relax assignment examples whose associated confidence levels are “not so confident”
(a23, a30 and a31), “quite confident” (a26) or “absolutely confident” (a35).

When interacting with the DM to solve an inconsistency, it is not reasonable to propose him/her
a large number of alternative solutions. It is convenient to propose a limited number of solutions
that might be interesting for him/her. In our case, we wish to propose approximately 5 solutions to
the DM (maxcount=5).

If we consider the confidence judgments, the lexicographic ranking algorithm presented in §2.2
computes the solutions, considering first the solutions that removes constraints which are “not so
confident” (i.e., I≤0), then the solutions removing constraints that are “not so confident” or “quite
confident” (i.e., I≤1) and finally the remaining ones. In each group, the solutions are computed by
increasing order of cardinality. In our example, no solution exists removing only “not so confident”
constraints; the first five solutions computed only involve the deletion of constraints that are “not so
confident” or “quite confident”:
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• S3 = {1, 5, 8, 9, 10, 14, 17, 28, 29}

• S4 = {1, 5, 8, 9, 10, 14, 25, 28, 29}

• S5 = {1, 8, 9, 10, 14, 25, 28, 29, 31}

• S7 = {5, 7, 9, 10, 11, 13, 17, 28, 29, 30}

• S8 = {1, 8, 9, 10, 12, 14, 16, 25, 28, 31, 38}

If the DM provides a penalty function π(.), then the penalty based procedure presented in §2.3
may also be used. For instance, let us consider a penalty function as in (2), with ∆0 = 1, ∆1 = 2
and ∆2 = 3. The five best solutions are:

• S5 = {1, 8, 9, 10, 14, 25, 28, 29, 31}, π(S5) = 10

• S1 = {5, 8, 9, 10, 11, 25, 28, 29}, π(S1) = 11

• S3 = {1, 5, 8, 9, 10, 14, 17, 28, 29}, π(S3) = 11

• S4 = {1, 5, 8, 9, 10, 14, 25, 28, 29}, π(S4) = 11

• S7 = {5, 7, 9, 10, 11, 13, 17, 28, 29, 30}, π(S7) = 11

Using either of these rankings of solutions, the DM is to chose among the “most promising”
solutions to solve inconsistency. Hence, this largely reduces the cognitive effort of the DM to resolve
inconsistency.

Conclusion

In this paper, we considered the problem of supporting the DM in the resolution of inconsistent
judgments expressed in the form of assignment examples in multiple criteria sorting model. We have
proposed the concept of relaxation of an assignment example, which is helpful in this context. To
resolve the inconsistency, it is useful to obtain from the DM confidence statements associated with
the assignment examples. We have proposed procedures that account for this information to assist
the DM in finding the most relevant ways to restore consistency.

An illustrative example has been provided to show how the proposed procedures can be used
within the context of the ELECTRE TRI sorting method. However, our procedures are general
and apply to any sorting method for which assignment examples generate linear constraints on the
preference-related parameters.

An interesting extension of this work consists in considering the possibility of associating different
confidence levels to the original assignment examples constraints and their corresponding relaxation.
This extension amounts at considering that the various relaxations of an assignment example are not
judged as equivalent as regards their confidence levels.
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Ambassade de France au Portugal) and program PESSOA 2004 (GRICES/EGIDE). The third author
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Appendices

Appendix A: Evaluation matrix

g1(ai) g2(ai) g3(ai) g4(ai) g5(ai) g6(ai) g7(ai)

a0 35.8 67 19.7 0 0 5 4
a1 16.4 14.5 59.8 7.5 5.2 5 3
a2 35.8 24 64.9 2.1 4.5 5 4
a3 20.6 61.7 75.7 3.6 8 5 3
a4 11.5 17.1 57.1 4.2 3.7 5 2
a5 22.4 25.1 49.8 5 7.9 5 3
a6 23.9 34.5 48.9 2.5 8 5 3
a7 29.9 44 57.8 1.7 2.5 5 4
a8 8.7 5.4 27.4 4.5 4.5 5 2
a9 25.7 29.7 46.8 4.6 3.7 4 2
a10 21.2 24.6 64.8 3.6 8 4 2
a11 18.3 31.6 69.3 2.8 3 4 3
a12 20.7 19.3 19.7 2.2 4 4 2
a13 9.9 3.5 53.1 8.5 5.3 4 2
a14 10.4 9.3 80.9 1.4 4.1 4 2
a15 17.7 19.8 52.8 7.9 6.1 4 4
a16 14.8 15.9 27.9 5.4 1.8 4 2
a17 16 14.7 53.5 6.8 3.8 4 4
a18 11.7 10 42.1 12.2 4.3 5 2
a19 11 4.2 60.8 6.2 4.8 4 2
a20 15.5 8.5 56.2 5.5 1.8 4 2
a21 13.2 9.1 74.1 6.4 5 2 2
a22 9.1 4.1 44.8 3.3 10.4 3 4
a23 12.9 1.9 65 14 7.5 4 3
a24 5.9 -27.7 77.4 16.6 12.7 3 2
a25 16.9 12.4 60.1 5.6 5.6 3 2
a26 16.7 13.1 73.5 11.9 4.1 2 2
a27 14.6 9.7 59.5 6.7 5.6 2 2
a28 5.1 4.9 28.9 2.5 46 2 2
a29 24.4 22.3 32.8 3.3 5 3 4
a30 29.5 8.6 41.8 5.2 6.4 2 3
a31 7.3 -64.5 67.5 30.1 8.7 3 3
a32 23.7 31.9 63.6 12.1 10.2 3 2
a33 18.9 13.5 74.5 12 8.4 3 3
a34 13.9 3.3 78.7 14.7 10.1 2 2
a35 -13.3 -31.1 63 21.2 29.1 2 1
a36 6.2 -3.2 46.1 4.8 10.5 2 1
a37 4.8 -3.3 71.1 8.6 11.6 2 2
a38 0.1 -9.6 42.5 12.9 12.4 1 1
a39 13.6 9.1 76 17.1 10.3 1 1
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Appendix B: Fixed parameters

g1 g2 g3 g4 g5 g6 g7

gj(b1) -10.0 -60.0 90.0 28.0 40.0 1.0 0.0
qj(b1) 1.0 4.0 1.0 1.0 0.0 0.0 0.0
pj(b1) 2.0 6.0 3.0 2.0 3.0 0.0 0.0

gj(b2) 0.0 -40.0 75.0 23.0 32.0 2.0 2.0
qj(b2) 1.0 4.0 1.0 1.0 0.0 0.0 0.0
pj(b2) 2.0 6.0 3.0 2.0 3.0 0.0 0.0

gj(b3) 8.0 -20.0 60.0 18.0 22.0 4.0 3.0
qj(b3) 1.0 4.0 1.0 1.0 0.0 0.0 0.0
pj(b3) 2.0 6.0 3.0 2.0 3.0 0.0 0.0

gj(b4) 25.0 30.0 35.0 10.0 14.0 5.0 4.0
qj(b4) 1.0 4.0 1.0 1.0 0.0 0.0 0.0
pj(b4) 2.0 6.0 3.0 2.0 3.0 0.0 0.0
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Appendix C: Constraints stemming from the assignment examples

1. C(a1) ≥ 5 ⇔ −λ + w4 + w5 + w6 ≥ 0

2. C(a18) ≥ 4 ⇔ −λ + w1 + w2 + w3 + w4 + w5 + w6 ≥ 0

3. C(a18) ≤ 4 ⇔ λ − w5 − w6 ≥ ε

4. C(a23) ≥ 2 ⇔ −λ + w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0

5. C(a23) ≤ 3 ⇔ λ − w1 − w2 − w4 − w5 − w6 − w7 ≥ ε

6. C(a24) ≥ 2 ⇔ −λ + w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0

7. C(a24) ≤ 3 ⇔ λ − w4 − w5 ≥ ε

8. C(a26) ≥ 5 ⇔ −λ + 0.1w4 + w5 ≥ 0

9. C(a30) ≤ 1 ⇔ λ − w1 − w2 − w3 − w4 − w5 − w6 − w7 ≥ ε

10. C(a31) ≥ 5 ⇔ −λ + w5 ≥ 0

11. C(a35) ≤ 2 ⇔ λ − w2 − w3 − w4 − w5 − w6 ≥ ε

12. C(a36) ≥ 4 ⇔ −λ + 0.2w1 + w2 + w3 + w4 + w5 ≥ 0

13. C(a36) ≤ 4 ⇔ λ − w4 − w5 ≥ ε

14. C(a38) ≥ 4 ⇔ −λ + w2 + w3 + w4 + w5 ≥ 0

15. C(a38) ≤ 4 ⇔ λ − w5 ≥ ε

16. C(a39) ≥ 3 ⇔ −λ + w1 + w2 + w3 + w4 + w5 ≥ 0

17. C(a39) ≤ 3 ⇔ λ − w1 − w2 − w4 − w5 ≥ ε

18. C(a1) ≥ 4 ⇔ −λ + w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0

19. C(a1) ≥ 3 ⇔ −λ + w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0

20. C(a1) ≥ 2 ⇔ −λ + w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0

21. C(a18) ≥ 3 ⇔ −λ + w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0

22. C(a18) ≥ 2 ⇔ −λ + w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0

23. C(a23) ≤ 4 ⇔ λ − w5 ≥ ε

24. C(a24) ≤ 4 ⇔ λ − w5 ≥ ε

25. C(a26) ≥ 4 ⇔ −λ + w1 + w2 + w4 + w5 ≥ 0

26. C(a26) ≥ 3 ⇔ −λ + w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0

27. C(a26) ≥ 2 ⇔ −λ + w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0

28. C(a30) ≤ 2 ⇔ λ − w1 − w2 − w3 − w4 − w5 − w6 − w7 ≥ ε

29. C(a30) ≤ 3 ⇔ λ − w1 − w2 − w3 − w4 − w5 − w7 ≥ ε

30. C(a30) ≤ 4 ⇔ λ − w1 − w4 − w5 ≥ ε

31. C(a31) ≥ 4 ⇔ −λ + w1 + w5 + w7 ≥ 0

32. C(a31) ≥ 3 ⇔ −λ + w1 + w3 + w5 + w6 + w7 ≥ 0

33. C(a31) ≥ 2 ⇔ −λ + w1 + 10.75w2 + w3 + w5 + w6 + w7 ≥ 0

34. C(a35) ≤ 3 ⇔ λ ≥ ε

35. C(a35) ≤ 4 ⇔ λ ≥ ε

36. C(a36) ≥ 3 ⇔ −λ + w1 + w2 + w3 + w4 + w5 + w6 ≥ 0

37. C(a36) ≥ 2 ⇔ −λ + w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0

38. C(a38) ≥ 3 ⇔ −λ + w1 + w2 + w3 + w4 + w5 ≥ 0

39. C(a38) ≥ 2 ⇔ −λ + w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0

40. C(a39) ≥ 2 ⇔ −λ + w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0

41. C(a39) ≤ 4 ⇔ λ − w5 ≥ ε
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Appendix D: Solutions of the inconsistency problem

In the example provided in section 3, there exist 11 solutions to solve the inconsistency, i.e., *

• S1 = {5, 8, 9, 10, 11, 25, 28, 29}

• S2 = {5, 8, 9, 10, 11, 17, 28, 29}

• S3 = {1, 5, 8, 9, 10, 14, 17, 28, 29}

• S4 = {1, 5, 8, 9, 10, 14, 25, 28, 29}

• S5 = {1, 8, 9, 10, 14, 25, 28, 29, 31}

• S6 = {1, 8, 9, 10, 11, 25, 28, 29, 31}

• S7 = {5, 7, 9, 10, 11, 13, 17, 28, 29, 30}

• S8 = {1, 8, 9, 10, 12, 14, 16, 25, 28, 31, 38}

• S9 = {5, 8, 9, 10, 11, 12, 14, 16, 25, 28, 31, 38}

• S10 = {3, 5, 7, 9, 11, 13, 15, 17, 23, 24, 28, 29, 30, 41}

• S11 = {1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21, 22, 25, 26, 27, 31, 32, 33, 36, 37, 38, 39, 40}

These solutions correspond to changes in the original assignment examples. These modifications
of the original assignment examples are presented bellow:

S1 original assignment relaxed assignment

a23 [C2, C3] [C2, C4]
a26 C5 [C3, C5]
a30 C1 [C1, C4]
a31 C5 [C4, C5]
a35 [C1, C2] [C1, C3]

S2 original assignment relaxed assignment

a23 [C2, C3] [C2, C4]
a26 C5 [C4, C5]
a30 C1 [C1, C4]
a31 C5 [C4, C5]
a35 [C1, C2] [C1, C3]
a39 C3 [C3, C4]

S3 original assignment relaxed assignment

a1 C5 [C4, C5]
a23 [C2, C3] [C2, C4]
a26 C5 [C4, C5]
a30 C1 [C1, C4]
a31 C5 [C4, C5]
a38 C4 [C3, C4]
a39 C3 [C3, C4]
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S4 original assignment relaxed assignment

a1 C5 [C4, C5]
a23 [C2, C3] [C2, C4]
a26 C5 [C3, C5]
a30 C1 [C1, C4]
a31 C5 [C4, C5]
a38 C4 [C3, C4]

S5 original assignment relaxed assignment

a1 C5 [C4, C5]
a26 C5 [C3, C5]
a30 C1 [C1, C4]
a31 C5 [C3, C5]
a38 C4 [C3, C4]

S6 original assignment relaxed assignment

a1 C5 [C4, C5]
a26 C5 [C3, C5]
a30 C1 [C1, C4]
a31 C5 [C3, C5]
a35 [C1, C2] [C1, C3]

S7 original assignment relaxed assignment

a23 [C2, C3] [C2, C4]
a24 [C2, C3] [C2, C4]
a30 C1 [C1, C5]
a31 C5 [C4, C5]
a35 [C1, C2] [C1, C3]
a36 C4 [C4, C5]
a39 C3 [C3, C4]

S8 original assignment relaxed assignment

a1 C5 [C4, C5]
a26 C5 [C3, C5]
a30 C1 [C1, C3]
a31 C5 [C3, C5]
a36 C4 [C3, C4]
a38 C4 [C2, C4]
a39 C3 [C2, C3]
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S9 original assignment relaxed assignment

a23 [C2, C3] [C2, C4]
a26 C5 [C3, C5]
a30 C1 [C1, C3]
a31 C5 [C3, C5]
a35 [C1, C2] [C1, C3]
a36 C4 [C3, C4]
a38 C4 [C2, C4]
a39 C3 [C2, C3]

S10 original assignment relaxed assignment

a18 C4 [C4, C5]
a23 [C2, C3] [C2, C5]
a24 [C2, C3] [C2, C5]
a30 C1 [C1, C5]
a35 [C1, C2] [C1, C3]
a36 C4 [C4, C5]
a38 C4 [C4, C5]
a39 C3 [C3, C5]

S11 original assignment relaxed assignment

a1 C5 [C1, C5]
a18 C4 [C1, C4]
a23 [C2, C3] [C1, C3]
a24 [C2, C3] [C1, C3]
a26 C5 [C1, C5]
a31 C5 [C1, C5]
a36 C4 [C1, C4]
a38 C4 [C1, C4]
a39 C3 [C1, C3]
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