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ABSTRACT: Hydrophobic macromolecular contrast agents (MMCAs) are highly desirable to provide safe and efficient
magnetic resonance (MR) visibility to implantable medical devices. In this study, we report on the synthesis and evaluation of
novel biodegradable poly(ε-caprolactone)-based MMCAs. Poly(α-propargyl-ε-caprolactone-co-ε-caprolactone)s containing 2, 5,
and 10 mol % of propargyl groups have been prepared by ring-opening copolymerization of ε-caprolactone and the
corresponding propargylated lactone. In parallel, a diazido derivative of the clinically used diethylenetriaminepentaacetic acid
(DTPA)/Gd3+ complex has been synthesized. Finally, MRI-visible poly(ε-caprolactone)s (PCLs) were obtained by the efficient
click ligation of these compounds via a CuI-catalyzed [3 + 2] cycloaddition. ICP-MS analyses confirmed the efficient coupling of
the complex on the PCL backbone with the MRI-visible PCLs containing 1.0, 2.6, and 3.6 wt % of Gd3+. The influence of the
Gd3+ grafting density on the T1 relaxation times and on the MRI visibility of the novel biodegradable MMCAs was evaluated.
Finally, their stability and cytocompatibility were assessed with regard to their potential as innovative MRI-visible biomaterials for
biomedical applications.

■ INTRODUCTION

Magnetic resonance imaging (MRI) is today one of the
noninvasive technique of choice to provide high spatial and
temporal resolutions in clinical diagnosis and staging of human
diseases.1 Unfortunately, in the case of polymeric prostheses
there is an inability to provide a postoperative image of
implanted prostheses, as polymeric biomaterials are intrinsically
transparent to X-rays and are invisible using clinical MRI.2,3 In
some cases, the signal void of the prosthetic material can be
useful for diagnoses, however it strongly depends on the size of
the prostheses and on the site of implantation. Therefore this
inability to visualize implanted material restricts the evaluation
of the tissue integration, the postoperative fixation and the
material’s fate in the body.4 This led us to consider in the past
the possibility to produce radio-opaque degradable polyesters.
A first example was provided by the radio-opaque poly(ε-
caprolactone) (PCL) obtained by the anionic chemical
modification of PCL with iodine to generate a poly(α-iodo-ε-
caprolactone-co-ε-caprolactone) copolymer.5 More recently,
this postmodification strategy was applied to the synthesis of
MRI-visible PCL and MRI-visible poly(methyl acrylate) (PMA)
that were among the first examples of hydrophobic MRI-visible
thermoplastics.6,7 Indeed, although MRI polymers have
attracted much attention in the recent past, most efforts are
dedicated to water-soluble polycondensate or amphiphilic
structures to be used in drug delivery approaches.8−17 In
particular, a preferred strategy relies on the modification of
diblock amphiphilic copolymers with a contrast agent to yield

macromolecular contrast agents (MMCAs) able to self-
assemble into micellar systems.13,18−22 These water-soluble
MMCAs are rapidly excreted and cannot be used for the MRI
visualization of non water-soluble implanted devices. Another
strategy relies in the development of nonclassical MRI
techniques, as exemplified by the recent use of amide proton
transfer MRI technique to visualize hydrophilic and fast
resorbing collagen coatings.23 In this regard, the originality of
the postmodification approach used by our group lies in the
possibility of providing hydrophobic and multivalent MMCAs.
However, one limitation was the lack of fine control over the
final substitution degree of the polymeric backbone and the
necessity to use protection/deprotection steps to covalently
bind the ligand diethylenetriaminepentaacetic acid (DTPA)
before final complexation of the Gd3+ MRI contrast agent. Yet,
control of the overall amount of contrast agent, as well as its
repartition along the polymer chain and its chemical environ-
ment, are known to influence the resulting relaxivity and
visualization.24 The strategy chosen in this work to prepare
hydrophobic and multivalent MMCAs addresses these points.
It is based on the convergent synthesis of an azide-containing
contrast agent, and of a propargyl-functionalized PCL whose
late ligation occurs via CuI-catalyzed [3 + 2] cycloaddition
reaction. Practically, the control of the functionalization of
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propargylated PCLs is conveniently obtained by ROP of εCL
and αPgεCL, as recently described by our group,25 whereas the
use of a click chemistry reaction for ligation ensures a
quantitative functionalization of the polymer by the contrast
agent. Finally, the direct coupling of the Gd3+ complex on the
polymer avoids the late complexation step between the
macromolecular ligand and Gd3+, which is generally of lower
efficiency to control the final amount of immobilized contrast
agent.7

We thus propose in this work a so far nonexplored strategy
for the efficient and controlled Gd3+-functionalization of
aliphatic degradable polyesters to provide biocompatible and
slow degrading hydrophobic MRI-visible thermoplastics for
long-term MR visualization. Synthesis of copolyesters MMCAs
with finely controlled compositions is described. The influence
of the copolymers nature is discussed with respect to their MR
visualization. Finally, stability of these MMCAs and their
cytocompatibility are assessed.

■ EXPERIMENTAL SECTION
Materials. Isopropanol, ε-caprolactone, and toluene were dried

over calcium hydride for 24 h at room temperature and distilled under
reduced pressure. Tetrahydrofuran was dried by refluxing over a
benzophenone-sodium mixture and distilled. All other materials were
obtained from Aldrich and were used without further purification.
NMR Spectroscopy. 1H and 13C NMR spectra were recorded on a

Bruker spectrometer (AMX300) operating at 300 and 75 MHz,
respectively. Deuterated chloroform or deuterated dimethyl sulfoxide
were used as solvents. Chemical shifts were expressed in ppm with
respect to tetramethylsilane (TMS).
Relaxation times for polymers dissolved in DMSO-d6 were

measured on an AMX400 Bruker spectrometer operating at 400
MHz. T1 measurements were obtained using T1 inversion/recovery
sequence. Analyses were carried out at 80 °C to facilitate the molecular
mobility of the polymer. A fixed concentration of 11 mg/mL was used
for all samples.
FT-IR Spectroscopy. Infrared spectra were recorded on a Perkin-

Elmer Spectrum 100 FT-IR spectrometer using the attenuated total
reflectance (ATR) method.
LC-MS Analyses. LC/MS analyses were performed on a Q-TOF

(Waters) spectrometer fitted with an electrospray interface. Solvent
used for HPLC and LC/MS were HPLC grade. MALDI analyses were
performed on a Ultra-Flex III (Bruker) spectrometer using a dithranol
matrix.
Size Exclusion Chromatography. Size exclusion chromatography

(SEC) was performed at room temperature on a Waters system
equipped with a guard column, a 600 mm PLgel 5 mm Mixed C
column (Polymer Laboratories), and a Waters 410 refractometric
detector. Calibration was established with poly(styrene) standards
from Polymer Laboratories. THF was used as eluent at a flow rate of 1
mL/min.
ICP-MS Analyses. Gd3+ was quantified using an Element XR sector

field ICP-MS (inductively coupled plasma-mass spectrometry) at
Geósciences in Montpellier (University Montpellier II). Internal
standardization used an ultrapure solution enriched with indium.
Synthesis and Characterization of MRI-Visible PCL. Synthesis

of Diazido Functionalized Diethylenetriaminepentaacetic Acid
(diN3-DTPA) 1. In a first step, 1-azido-3-aminopropane was prepared
according to a previously described procedure.26 A solution of 3-
chloropropylamine hydrochloride (4 g; 30.8 mmol) and sodium azide
(6 g; 92.3 mmol) in water (1 mL per mmol) was heated at 80 °C
overnight. After removing most of the water by distillation under
vacuum, the reaction mixture was cooled in an ice bath. Diethyl ether
(50 mL) and KOH pellets (4 g) were added, keeping the temperature
below 10 °C in an ice bath. After separation of the organic phase, the
aqueous layer was further extracted with diethyl ether (2 × 20 mL).
The combined organic layers were dried over MgSO4 and
concentrated to give oil which was purified by distillation. Colorless

oil (2.46 g) was obtained (80% yield; Figure S1). RMN 1H (300 MHz,
CDCl3) δ (ppm): 3.33 (t, 2H, CH2N3), 2.55 (t, 2H, CH2NH2), 2.34
(s, 2H, NH2), 1.55 (q, 2H, CH2CH2CH2). FT-IR (ATR, cm−1): 2100
(N3).

In a second step, diN3-DTPA was synthesized according to a
modified described procedure.27 Typically, 1-azido-3-aminopropane
(0.616 g; 6.2 mmol) was reacted with DTPA dianhydride (1 g; 2.8
mmol) in anhydrous DMF (20 mL) at room temperature and under
nitrogen for 24 h. DMF was distilled under vacuum until 2−3 mL in
volume and precipitated into diethyl ether. The obtained solid was
further dissolved in water and lyophilized to yield a white solid (1.48 g,
95% yield). RMN 1H (300 MHz, DMSO) δ (ppm): 3.4 (6H,
CH2CO2H), 3.1 (12H, N(CH2)2N and NCH2C(O)), 2.8 (8H,
CH2NHC(O) and CH2N3), 1.7 (4H, CH2CH2N3). FT-IR (ATR,
cm−1): 2100 (N3). LC-MS (ES+, m/z): 558.4 Da [M + H+].

Caution: ω-aminoalkyl azides being potentially explosives all reactions
involving this compound were carried out with the appropriate protection
under a well ventilated hood.

Preparation of Clickable Gd3+ Complex 2. Pyridine (1.44 mL; 17.9
mmol) was added to an aqueous solution of 1 (1 g; 1.79 mmol). After
10 min stirring at room temperature a clear solution was obtained and
GdCl3·6H2O (1.33 g; 3.58 mmol) was added. Complexation was let to
run under stirring at 40 °C for 24 h. Water and pyridine were removed
by distillation under vacuum. The resulting solid was dissolved in
water before purification on a Chelex 100 resin. After lyophylization 2
was obtained as a white solid (90% yield). Absence of free Gd3+ was
confirmed by a methyl thymol blue (MTB) test28 (Figure S2), whereas
the content of complexed Gd3+ in 2 was quantitatively determined by
ICP-MS. FT-IR (ATR, cm−1): 2100 (N3). MALDI-TOF (dithranol
m/z): [M + H]+ m/z 713.16 Da; [2M + H]+ m/z calcd, 1423.33 Da;
theoretical, 713.17 and 1425.34. Gd3+ content (ICP-MS): 15.4 wt %.

Synthesis of Poly(α -propargyl-ε -caprolactone-co-ε -
caprolactone)s P(Pg-CL) 3. α-Propargyl-ε-caprolactone (αPgεCL)
was synthesized from εCL by an anionic modification approach
already described elsewhere.25 Polymerization was carried out in bulk
using standard Schlenk technique under an inert atmosphere of argon.
Amounts of εCL and αPgεCL were added in the reaction flask
according to the targeted compositions. In a typical experiment, εCL
(2.66 g; 29.6 mmol), αPgεCL (0.5 g; 3.29 mmol), Sn(Oct)2 (66.4 mg;
0.164 mol), and isopropanol (25 μL; 0.328 mmol) were placed in an
oven-dried Schlenk tube. The tube was fitted with a rubber septum.
The solution was further degassed by three freeze−pump−thaw cycles.
The resulting mixture was stirred at 140 °C for 3.5 h. To stop the
reaction, polymerization was quenched by addition of an excess of 1 N
HCl. The reaction mixture was poured into cold methanol. The
precipated polymer 3 was collected by filtration and dried in vacuum.
1H NMR (300 MHz, CDCl3) δ (ppm): 4.96 (m, (CH3)2CH), 4.02 (t,
CH2O), 3.60 (m, CH2OH), 2.50 (m, COCHCH2), 2.26 (t, COCH2),
1.96 (m, CCH), 1.49−1.70 (m, CH2-CH2-CH2-CH2-O-), 1.29−
1.42 (m, m, CH2-CH2-CH2-CH2-O-), 1.18 (d, (CH3)2CH). IR (ATR,
cm−1): 3280 (CCH), 1720 (CO). MnSEC = 18000 g/mol, Đ =
1.7.

Synthesis of MRI-Visible Poly(ε-caprolactone)s (MRI-PCLs) 4.
Copolymer 3, complex 2 (3 equiv/αPgεCL units) and CuBr (2 equiv/
αPgεCL units) were solubilized in DMF. The solution was degassed
by three freeze−pump−thaw cycles. N,N,N′,N″,N″-Pentamethyldie-
thylenetriamine (PMDETA) (2 equiv/ αPgεCL units) degassed by
argon bubbling was added to the reaction medium. The reaction was
carried out for 48 h at room temperature under stirring. The crude
medium was dissolved in THF for dialysis (MWCO 3500 g/mol)
against distilled water. Copolymer 4 was recovered after removal of the
solvents and drying in vacuum. Copolymers with 1.0, 2.6, and 3.6 wt %
of Gd3+, as determined by ICP-MS, were noted 41, 42, and 43,
respectively.

MRI Visualization. MR Imaging Protocol. MR imaging experi-
ments were performed on a Bruker Avance DRX system (Bruker
Biospin SA, Wissembourg, France). The system was equipped with a
150 mm vertical superwide-bore magnet operating at 7 T, a 84 mm
inner diameter shielded gradient set capable of 144 mT·m−1 maximum
gradient strength and a 30 mm diameter birdcage resonator. Modified

Biomacromolecules Article

dx.doi.org/10.1021/bm400978a | Biomacromolecules 2013, 14, 3626−36343627



or native PCL films (∼1 cm2) were embedded in a degassed 1% (w/
w) agarose gel prior to imaging. Gadolinium-free samples
corresponded to a PCL film. To test signal enhancement, T1 weighting
was introduced into the MR images using an inversion pulse29 in rapid
three-dimensional (3-D) acquisition with relaxation enhancement
(RARE) sequence (TR = 3000 ms; mean echo time (TEm) = 8 ms;
RARE factor = 8; FOV = 3 × 3 × 1.5 cm; matrix 128 × 128 × 64).
Inversion time was set at 1100 ms, sufficient to allow canceling of the
embedding gel.
Stability Studies. MRI-visible films were prepared with high (0.4 wt

%) and low (0.1 wt %) contents of Gd3+. Films were prepared by
dissolution of the appropriate amounts of PCL and 42 in dichloro-
methane followed by solvent evaporation. Film samples (10 mg) were
cut out for stability studies. Released gadolinium was quantified by
ICP-MS after sample immersion in 10 mL of PBS saline buffer and
stirring at 130 rpm and at 37 °C. At scheduled time points (1, 3, 7, 15,
30, and 90 days), 1 mL aliquots of solution were taken and replaced by
fresh buffer. Gd3+ was quantified by ICP-MS.

In Vitro Cytocompatibility. Murine fibroblasts cells (designated
L929) were used to assess the in vitro cytocompatibility of the
materials as recommended by the International and European
Standards (ISO 10993−5:2009). L929 cells were cultured in
DMEMα supplemented with 10% fetal bovine serum (FBS), penicillin
(100 U/mL), streptomycin (100 μg/mL), and glutamine (2 mM).
Sample disks (ø 15 mm) were cut from copolymer films and
disinfected in ethanol for 30 min before immersion in a solution of
sterile PBS containing penicillin and streptomycin (1 mg/mL) and
incubation for 48 h at 37 °C. Films were then rinsed 2 times with
sterile PBS before soaking for 12 h in sterile PBS. After disinfection,
disks were placed in TCPS 12-well plates and Viton O-rings were used
to maintain the samples on the bottom of the wells and avoid cells
growing on TCPS underneath the samples. Disks were finally seeded
with 1 × 104 cells and viability was evaluated after 1, 2, and 3 days
using PrestoBlue assay, which reflects the number of living cells
present on a surface at a given time point. At scheduled time points,
culture medium was removed and replaced by 1 mL of fresh medium

Scheme 1. Reaction Scheme for the Synthesis of MRI-PCLs 4a

aReagents and conditions: (a) NaN3, water, 80 °C, overnight; (b) DTPA dianhydride, DMFan, RT, 24 h; (c) pyridine, RT, 10 min/GdCl3·6H2O, 40
°C, 24 h; (d) LDA, THFan, −78 °C, 1 h/propargyl bromide, THFan, −30 °C, 3 h; (e) εCL, Sn(Oct)2, iPrOH, 140 °C, 3.5 h; (f) CuBr, PMDETA,
DMF, RT, 48 h.
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containing 10% of PrestoBlue. After 2 h of incubation at 37 °C, 200 μL
of supernatant were taken from each well and analyzed for
fluorescence at 530 nm (ex.) and 615 nm (em.) with a Victor X3
(Perkin-Elmer).

■ RESULTS AND DISCUSSION

Synthesis of MRI-Visible Poly(ε-caprolactone)s (MRI-
PCLs). Preparation of Clickable Gd3+ Complex 2. The present
work aims at providing MRI-PCLs with controlled content of
gadolinium by coupling of an azide-containing contrast agent to
a propargyl-functionalized PCL obtained by ROP of εCL and
αPgεCL. In this regard, the first step consisted in the
preparation of diazido functionalized diethylenetriaminepenta-
acetic acid (diN3-DTPA; Scheme 1). Our choice to use a
bifunctional ligand was motivated by scale-up considerations
with regard to the final context of biomaterials where multigram
scale MRI-PCLs would be required. Indeed, although described
in the literature, the synthesis of monofunctional DOTA-,
DTTA-, or DTPA-based ligands is a multistep process that
requires careful purifications.30−33 Commercially monofunc-
tional ligands are also available but, due to the mentioned
synthetic problems encountered, they still are specialty
chemicals whose expensive costs are limiting their use to
applications where very low functionalizations are required, like
for example in the case of polymer monosubstitution.19 We
thus preferred to base our approach on a straightforward and
cost-effective preparation of diN3-DTPA. As will be discussed
in In Vitro Stability of MRI-PCLs, although difunctional ligands
possess less coordinating groups, the use of such a ligand was
not detrimental to the overall complex stability. A similar
approach was already used by Perez-Baena et al.27 who
prepared dipropargyl-DTPA for cross-linking reactions of
polyacrylic derivatives. In the present work, compound 1 was
readily synthesized from commercially available DTPA
dianhydride and an excess of 1-azido-3-aminopropane, by an
amidification reaction in almost quantitative yield. No
monofunctional derivative was produced under the chosen
conditions as proved by the single peak at 558.4 Da [M + H+]
obtained in LC-MS analysis (data not shown) in accordance
with the theoretical value of 558.3 Da. The formation of the
desired diazide was further corroborated by 1H NMR and FT-
IR analyses (Figure S1). The subsequent complexation of 1
with GdCl3·6H2O yielded chelate 2 in good yield. Purification
on Chelex 100 resin was used to efficiently remove the
noncomplexed Gd3+. The absence of free Gd3+ was confirmed
by a methyl thymol blue (MTB) test (λABS max = 425 nm;
Figure S2). MALDI-TOF analysis showed three peaks
corresponding to residual free chelator 1 at 558.2 Da and the
protonated complex 2 under a monomeric form (713.2 Da)
and a dimeric form (1423.3 Da) resulting from shared
electrostatic interactions between two complexes 2. ICP-MS
analysis showed a 70% complexation ratio of Gd3+ with 1. It

should be noted that complexation conditions vary in literature
depending on the chelate. Classically, temperature and reaction
time are used to optimize complexation. In this work, higher
temperatures could not be used to guarantee the conservation
of the thermo-labile azide groups, and complexation time was
doubled without benefice. However, it is well-known that
commercial contrast agents like Magnevist, which chelating
agent is DTPA, contain non complexed ligands (ca. 2%) to
ensure the chelation of potentially released free Gd3+.34 One
may wonder the potential biological effect of the 30%
remaining free chelate, especially with regard to a potential
complexation of calcium in vivo. This point will be addressed in
the last paragraph regarding biocompatibility.

Synthesis of MRI-Visible Poly(ε-caprolactone)s (MRI-PCLs)
4. In parallel to the synthesis of 2, propargylated PCLs (P(Pg-
CL)) 3 were prepared. This was achieved by the copoly-
merization of αPgεCL and εCL, as already described by our
group.25 ROP allowed generating a family of copolymers with a
controlled ratio of propargylated units whose properties are
summarized in Table 1. Quantitative incorporation of the
propargylated units was obtained. Polymers were characterized
by NMR, SEC, and FT-IR. Increased intensities of the signals
characteristic of the propargyl group at 1.96 ppm on the NMR
spectra and at 3300 cm−1 on the FT-IR spectra were observed
(Figures S3−S5). Our aim being to study the influence of the
contrast agent grafting density on the polymer visualization,
three copolymers were prepared with 2, 5, and 10% of
propargyl units (31, 32, and 33, respectively). We limited our
study to low ratios because our previous work on MRI-visible
PCLs proved the efficient visualization of polymers incorporat-
ing low amounts of contrast agents.6

MRI-PCLs 4 were finally obtained by a CuI-catalyzed [3 + 2]
cycloaddition between the azide groups of 2 and the alkyne
groups of 3. Typically, a 3 equiv excess of 2 relative to the
alkyne moles present in copolymers 3 was used and reaction
was performed in a dilute regime to avoid nondesired
intermolecular cross-linking and to favor the reaction of 2
with a single propargyl group (Scheme 2). Under these
conditions, complex 2 was efficiently coupled to P(Pg-CL)
copolymers 3 via 1,2,3-triazole groups without precipitation of
the resulting polymer that remained soluble in the reaction
medium. Compounds 4 were first characterized by NMR and
FT-IR. FT-IR spectra showed bands at 1690 cm−1 correspond-
ing to the carboxylate groups engaged in the complexation of
Gd3+. Bands at 2100 cm−1 corresponding to residual free azide
groups were also visible (Figure 1), thus, confirming that part of
ligands 2 reacted with a single propargyl group (Scheme 2a).
1H NMR experiments showed the expected peaks of PCL with
a strong perturbation of the proton signal that increased with
the content of immobilized contrast agent on the polymer
backbone (Figure 2). As expected, peak broadening was
observed as a consequence of the perturbation induced by

Table 1. Properties of P(Pg-CL)s 3 and MRI-PCLs 4

P(Pg-CL)s MRI-PCLs

FαPrεCL
M̅n SEC

a

(g/mol) Đ

Gd wt%
single ligation
(calculated)

Gd wt%
cross-linking
(calculated)

Gd wt%b

(experimental)
Gd mol%c

(experimental)

P(Pg-CL)2 31 2 34000 2.3 P(DPTA[Gd]-CL)2 41 2.4 1.2 1.0 0.8
P(Pg-CL)5 32 5 25000 1.9 P(DPTA[Gd]-CL)5 42 5.4 2.7 2.6 2.1
P(Pg-CL)10 33 10 18000 1.7 P(DPTA[Gd]-CL)10 43 8.6 4.3 3.6 3.0

aSEC analyses with THF as solvent and PS standards. bDetermined by ICP-MS. cCalculated from the weight percentages.
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Gd3+, and no quantification could be done by NMR. A MTB
test was performed after decomplexation of Gd3+ by treatment
of MRI-PCLs in nitric acid to obtain a qualitative visualization
of the amount of Gd3+ present in the macromolecular contrast
agents (Figure S6). To quantitatively characterize the MRI-
PCLs, ICP-MS analyses were performed. Results are listed in
Table 1 and can be used to determine the type of ligation, that
is, single ligation, intra-, or intermolecular cross-linking. Indeed,
two ideal cases can be considered with either only the single
ligation occurring (Scheme 2a) or only double ligations, that is,
intra- or intermolecular cross-linking taking place (Scheme
2b,c). The expected weight percentages of Gd3+ should be
twice higher in the first case compared to the second one.
Calculated values of these two ideal scenarios are provided in
Table 1. Results show a good agreement between the
experimental amounts of Gd3+ found and the values calculated
when considering only intra- or intermolecular cross-linking.
Starting from copolymers 31, 32, and 33, containing 2, 5, and
10% of alkyne groups, respectively, the weight percentages of
complexed gadolinium obtained were 1.0, 2.6, and 3.6 wt %, to
be compared with theoretical values of 1.2, 2.7, and 4.3 wt %,
respectively. These results, combined to the free azido groups
shown by FT-IR analysis and the maintained solubility of the
copolymers 4, tend to demonstrate that the intramolecular
cross-linking scenario shown in Scheme 2b is predominant in
our system with only a limited amount of 2 reacting via a single
ligation. The concordance between the calculated and the
experimental values also proves the soundness of the chosen
strategy based on the use of complex rather than on the
postcomplexation of Gd3+ with a PCL macroligand. Indeed, this
strategy enabled the efficient coupling of contrast agents on the
degradable PCL backbones without decomplexation of
gadolinium from 2 during the coupling reaction, which yields
MRI-visible PLCs with predetermined amounts of Gd3+.

MR Characterizations. MRI-PCLS T1 Relaxation Time
Measurements. The effect of grafted gadolinium was measured
by determining the T1 relaxation time for hydrogen atoms on
the MRI-PCLs backbone. As expected, the longitudinal
relaxation time T1 of hydrogen atoms on MRI-PCLs was
significantly lower than in genuine PCL (Table 2). As observed

in our previous study,6 T1 decreased with Gd3+ substitution
ratio, and all protons of the MRI-PCLs were similarly impacted.
At this point, one can note that, although not obtained by the
same chemical strategies, T1 relaxation times were comparable
to the ones obtained by Blanquer et al.6 Typically, for the
reported PCL containing 0.8 wt % of Gd3+ a relaxation time of
about 600 ms was found. This matches the 550 ms found for 41
containing 1.0 wt % of Gd3+. Advantageously, the chemical
strategy reported here allows the targeting of defined Gd3+

contents. As a consequence, it is possible to precisely evaluate
the relative decrease of T1 relaxation time for the protons of

Scheme 2. Possible Structures of MRI-PCLs 4 as a Function
of the Type of Ligationa

a(a) Single ligation, (b) intramolecular crosslinking, and (c)
intermolecular crosslinking (in brown: PCL backbone, in blue: ligand
2, in green: free azide groups).

Figure 1. FT-IR spectra of MRI-PCLs copolymers 41−3. The plain line
highlights the band at 1690 cm−1 corresponding to the carboxylate
groups engaged in the complexation of Gd3+.

Figure 2. 1H NMR (DMSO-d6, 300 MHz) spectra of PCL, P(Pg-CL)
32, and MRI-PCLs copolymers 41−3 (marks correspond to DMSO-d6
at 2.5 ppm and residual water at 3.3 ppm).

Table 2. Longitudinal Relaxation Times T1 of PCL and
Compounds 32 and 41−3

a

T1 relaxation time (ms)

proton δ (ppm) PCL 32 41 42 43

A 4.0 1554 1558 536 273 252
B 2.3 1587 1694 562 289 346
C 1.3 1514 1505 554 291 196
D 1.4 1512 1502 552 299 289

a400 MHz, DMSO-d6, 80 °C, 11 mg/mL.
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compounds 4 compared to genuine PCL as a function of their
gadolinium content. This is shown in Figure 3. To clarify the

discussion, grafting densities, that is, molar percentages of CL
units substituted by Gd3+, have been calculated based on the
experimental values of Gd3+ weight percentages (Table 1) and
used in Figure 3. Two main observations can be drawn from
this nonlinear evolution. First, it is noticeable that T1 relaxation
times are strongly influenced even when low grafting densities
of Gd3+ are found on the polymers backbone, as shown by the
70% decrease of T1 in copolymer 41 that contains only 0.8 mol
% of Gd3+. Second, it is clearly visible that a limit is rapidly
reached with almost no further decrease of T1 above 2.1 mol %
of Gd3+. These results are of importance in the frame of MRI
applications as they show that limited amounts of Gd3+ may be
used, which is of benefice when considering the toxicity of free
Gd3+.
MR-Imaging of MRI-PCLs. Having in hand MRI-PCLs with

defined contents of gadolinium, we were interested in
evaluating the influence of (i) the overall amount of gadolinium
present in the samples and (ii) the grafting density of Gd3+

complexes immobilized on the PCL backbone on the MR
visualization. The final aim was to evaluate the optimum
compromise between MRI-visibility and low dose of Gd3+. For

this purpose, circular films (10 mg, 0.8 cm2) of mixed PCL and
MRI-PLCs (41, 42, and 43) were prepared with increasing Gd3+

concentrations in the range 2−40 μg of Gd3+ per film. T1 signal
enhancement was compared to a PCL control film. One should
note that films morphologies were not uniform, as a result of
the film formation process, and PCLs mixtures presented
different filming-properties. This nonuniformity may have an
effect on T1 enhancement as Gd3+-based T1 enhancement is
mainly dependent on the inner sphere relaxation phenomenon
which implies water molecules exchange at the Gd3+ site.
However, in the present study this effect, if existing, was not
preponderant as shown by the following results. First, it is
noticeable that all Gd3+-containing films presented a T1 signal
enhancement, whereas PCL films did not (Figures 4 and S7).
At constant Gd3+ grafting density (rows in Figure 4), the signal
enhancement increased with the overall content of Gd3+ for all
copolymers, with an evident and clear signal observed above 2.5
μg of Gd3+ per mg of PCL. Indeed, irrespective of the grafting
density, the signal enhancement was weak for lower doses, as
seen for films 1−9 and strongly enhanced above 2.5 μg Gd3+

per mg of PCL as seen for films 10−15. Second, assessment of
grafting density effect on MR conspicuity was done by
considering a constant overall Gd3+ content (columns in
Figures 4 and S7). Two behaviors were found. For low Gd3+

contents, below 2.5 μg of Gd3+ per mg of PCL, signal
enhancement was improved with the copolymers 42 and 43 that
presented high grafting densities (film 4 vs films 5 and 6 and
film 7 vs films 8 and 9). This was not the case at higher Gd3+

contents, above 2.5 μg of Gd3+ per mg of PCL, with even a
decrease of T1 signal enhancement for the copolymers 42 and
43 compared to 41, as clearly shown by comparison between
film 13 and films 14 and 15. This signal decrease is likely due to
susceptibility effects resulting from high local Gd3+ concen-
trations.35 These combined observations tend to demonstrate
that a compromise between the two parameters, namely, the
overall Gd3+ content and the Gd3+ grafting density on the
polymer backbone, seems to be necessary for optimal MR
visualization. This corroborates the evolution of T1 relaxation
times that showed that above 2.1 mol % no further T1 decrease
was observed. It also confirms the fact that a fine control of
Gd3+ content and grafting density is of first importance for

Figure 3. Influence of the grafting density of gadolinium on the T1
relaxation time of MRI-PCLs protons (T1′ and T1 are the T1 relaxation
times of compounds 4 and genuine PCL, respectively).

Figure 4. MR visualization of PCL/MRI-PCLs 4 films as a function of the total amount of Gd3+ per film and of the Gd3+ grafting density on the
MRI-PCLs backbones.
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optimal MR visualization. In vivo implantations should now be
planned to confirm our approach and thoroughly evaluate the
benefit of MRI-visibility of MRI-PCLs.
Stability and Cytocompatibility of MRI-PCLs. In Vitro

Stability of MRI-PCLs. Our aim being to provide long-term
visualization through the use of hydrophobic and slow
degrading copolyesters, we evaluated the in vitro stability of
compounds 4 to detect any release of free Gd3+, which has been
associated with nephrogenic systemic fibrosis disorder
(NFS).36,37 Indeed, for long-term visualization and to avoid
adverse effects in the body, it was important to determine
whether any gadolinium salts were released from the MRI-
PCLs. With regards to the removal of carboxylate groups, three
left against five in Magnevist, one can postulate that the stability
of the complex could be decreased with a higher dissociation
constant (Kd) and, thus, a material that is less stable than an
unmodified small molecule chelate. This was not the case for a
DTPA/Gd3+-PCL recently synthesized by our group, which
had four carboxylate groups.6,7 Given that compounds 4 are not
water-soluble, whereas thermodynamic and kinetic constants
are measured in aqueous solution, the stability of compounds 4
was studied by titrating by ICP-MS the Gd3+ released in
aqueous medium. Results are shown in Figure 5. Release

kinetics were run in PBS at 37 °C and over a 90 day period.
The amount of released Gd3+ after 90 days was low whatever
the initial content of gadolinium in the films. It was limited to a
maximum concentration of released Gd3+ of 0.45 and 13 μg/L
for LD and HD films, respectively (0.065 μg/L for PBS
negative control). The corresponding cumulative percentages
of released Gd3+ were therefore of 0.05% for the film containing
10 μg of Gd3+ (LD film) and 0.4% for the film containing 40 μg
of Gd3+ (HD film). In addition, release profile in PBS showed a
limited and steady release. Taking into account the linear
portion of the curves, it was possible to extrapolate the period
required to release 1% of the total Gd3+ amount under the used
conditions. One year for HD films and six years for LD films
were estimated. This result shows that, under the used
conditions, the measured release is indeed not significant and
that the PCL-based MMCAs can be considered as stable.
Comprehensive explanation of the parameters explaining the
observed stability despite a decreased number of a carboxylate
available for Gd3+ complexation is beyond the scope of this
work but the following could be considered: (i) ester groups in
the polymer may possibly offset the loss of these carboxylate
groups or (ii) perhaps the entropy of the system limits the Gd3+

dissociation. However, and to confirm this trend, future in vitro
release study should be undertaken in more complex mediums
like human serum or PBS completed with physiologically
relevant concentrations of ZnCl2 (0.03 wt %) and albumin (4
wt %) to evaluate the influence of proteins and cations on the
MRI-PCLs complex stability.38,39 One should also consider
future in vivo implantation to evaluate the possible influence of
enzymes, macrophages, and transient changes in pH (especially
pH changes during inflammation) that may appear in vivo.
These results should be compared to the Gd3+ decom-

plexation after clinical injection of commercial Gd3+-based
contrast agents. Indeed, when dealing with Gd3+-based contrast
agents, the question usually arises of associated NFS in patients
with renal failure. However, it is noteworthy that this
phenomenon is usually observed after a conventional MR
scan where patients receive 1.0−2.5 g Gd3+ as a bolus
(posology of 0.1−0.2 mmol/kg of contrast agent for an
intravenous injection of Magnevist).40−42 In vitro studies
performed in native serum at pH 7.4 and 37 °C showed an
initial decomplexation rate of 0.16% per day,43 which
corresponds to 1.6−4 mg of circulating free Gd3+ before
renal clearance. In the present work, a clear T1 enhancement
was observed for films loaded with 13 μg/cm2 of Gd3+. To
compare with our previous results,7 if used to coat a classical 10
× 10 cm implanted mesh for soft tissue prolapses, this would
correspond to an overall dose of 2 mg of Gd3+. One can note
the similarity between this overall dose of immobilized Gd3+

and the extent of circulating free Gd3+ estimated for a clinical
MR scan. Additionally, it is worth noting that, for a maximum
release of 0.4%, as obtained in this work after 90 days, the
maximal amount of free Gd3+ released by such a mesh would be
8 μg, which represents less than 0.5% of the circulating free
Gd3+ during a conventional scan.

In Vitro Cytocompatibility of MRI-PCLs. An evaluation of
murine fibroblast proliferation was performed on polymer films
to assess the cytocompatibility of MRI-PCLs and determine
whether they are suitable for cell culture and potential cell-
contacting biomedical applications. Films containing 0.1 wt %
of Gd3+ were prepared from compound 42 for this evaluation.
Figure 6 shows the proliferation at 1, 2, and 3 days of L929
murine fibroblasts on MRI-PCL films compared to native PCL
and TCPS. It may be concluded from this proliferation
experiment that the surface of MRI-PCL did not impede
fibroblast proliferation. In addition, this result tends to

Figure 5. Stability study performed on mixed films of PCL and 42
having high dose (HD, 0.4 wt %) and low dose (LD, 0.1 wt %) of Gd3+

(PBS; 37 °C).

Figure 6. L929 proliferation on MRI-PCL films (42, red) compared to
TCPS (positive control, gray) and PCL films (black); data are
expressed as mean ± SD and correspond to measurements in
triplicate.
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demonstrate that the presence of free carboxylate on the
polymer backbone was not dentrimental to cell proliferation
although some of the free calcium present in the culture
medium may be complexed. Indeed, this is not surprising
considering the very low effective concentration of free ligand
on the MRI-PCL. Typically, if one considers the amount of
MRI-PCL used to coat a classical 10 × 10 cm implanted mesh
for soft tissue prolapses, it represents a negligible 6 μmol of
potential free ligand to be compared with the physiological
concentration of calcium between 2.2 and 2.6 mM. Taking into
account that PCL is widely recognized as a biocompatible
material, MRI-PCLs would appear to be suitable for the growth
of fibroblasts and cell-contacting applications.

■ CONCLUSION
In this work, we presented the efficient convergent synthesis of
novel hydrophobic macromolecular agents based on poly(ε-
caprolactone). PCLs with controlled propargyl group ratios
yield MRI-PCLs with defined Gd3+ grafting densities. 1H NMR,
FT-IR, and ICP-MS analyses confirmed the efficient coupling
of the complex on the PCL backbones via a main mechanism of
intramolecular cross-linking that led to MRI-PCLs containing
1.0, 2.6, and 3.6 wt % of Gd3+. T1 relaxation times were highly
impacted with a 70% reduction for grafting densities as low as
0.8 mol %. T1 relaxation time measurements also showed that
low grafting ratios were sufficient to obtain MRI-visible
materials. No further influence is detectable for substitution
ratios above 2.1 mol %. This was confirmed by the MR
experiments with Gd3+-containing films. All of them presented
a T1 signal enhancement and best results were obtained for
films containing more than 2 μg of Gd3+ per mg of PCL. MR
experiments also demonstrated the role of Gd3+ grafting
density. A fine control and a compromise between the overall
Gd3+ content and the Gd3+ grafting density on the polymer
backbone is necessary for optimal MR visualization. These
novel MMCAs have been found to be stable over a 90 day
period with less than 0.5% of Gd3+ released in PBS. Finally,
they also were found to be cytocompatible, with good
proliferation of fibroblasts, which confirms the high potential
of these novel hydrophobic PCL-based MMCAs for biomedical
applications.
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