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Abstract—Synthetic Aperture Radar (SAR) sensors on-board
satellites are very well suited for observing sea surface geophysi-
cal parameters such as ocean swell. But on a very large scale, SAR
data are too sparse for deriving some global information. From
the original work of [4], and following some generic assumption
on the physics of the swell propagation in deep water, it was
shown that using a back-propagating scheme, it was possible
to retrieve the source of the swell system and then generate
a propagating field. In this paper, we are proposing a simpler
and original approach, by assimilating the SAR data into a given
swell field and then using a Kalman Filter/Smoother technique for
updating the main parameters of the swell (wavelength, direction,
and significant wave height) within the complete field. This
method shows very encouraging results which will be confronted
with in situ measurements when available.

I. INTRODUCTION

The observation of ocean swell using Synthetic Aperture

Radar (SAR) on-board satellites has been demonstrated since

the ERS-1 mission in 1992. In particular, ocean swell spectra

can be derived from SAR images using a quasi-linear transfor-

mation. Unfortunately, SAR data are very sparse, acquired at

different times and with heterogeneous quality. This statement

demonstrates the need to assimilate SAR data, for instance

using a third generation ocean wave model (cf. [1] and [2]). An

alternative is also possible. Under deep water and no current

assumptions, swell can propagate for thousands of kilometers

from the storm source. This idea was exploited in [4] to retro-

propagate SAR observations (backward in time) to the most

accurate storm identification and then to re-propagate them

(forward in time) along the complete storm event within the

corresponding basin. This analysis was so-called ”fireworks”.

Then, [7] uses these pseudo-observations to generate complete

spatial fields of sea swell using a spatio-temporal interpolation.

In this work, we propose an original methodology to as-

similate the SAR observations and interpolate swell fields.

As in the fireworks analysis, we only use the along track

SAR observations. Our idea is to use these SAR observations

to update the integral parameters of the swell, considered as

unknown statistical variables. The evolution of these variables

are computed sequentially on the grid analysis. Each pixel is

seen as a potential storm source and the swell is forwardly

propagated along a direction and a group velocity. Using a

Ensemble Kalman Filter (EnKF), we artificially create pseudo
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Fig. 1. SAR along track observations from the 13 July (blue) to the 18 July
2004 (red). The swell data are generated by a storm located in 55

◦S, 170◦E
(gray dot) into the Southern Pacific Ocean. The data are corresponding to
swell partitions with periods close to 17 s.

SAR observations using a random generator and we follow

the most probable solution. Then, we proceed in the back-

ward direction using a similar random approach involving an

Ensemble Kalman Smoother (EnKS).

The paper is organized as follows. Section II presents the

methodology used in this article. It corresponds to a statistical

model based on SAR data and resolved by EnKF/EnKS. In

Section III, we apply the methodology and evaluate the results.

We further discuss and summarize the key results of our

investigations in Section IV.

II. METHOD

A. SAR data

We use ocean swell data provided by the Advanced-SAR

instrument on-board ENVISAT via the wave mode (cf. [9] and

[8]). The swells are characterized by three integral parameters:

the significant height Hs, the wavelength λ and the direction

θ of the swell. The data used as case-study in this work

correspond to a particular storm in July 2004 into the Southern

Pacific Ocean (situations studied in [4]). During this event, we

keep into account the swell partitions with periods close to 17

s. The SAR observations are very sparse in space and time

(cf. Fig. 1).



B. State space model

In this work, we estimate the integral parameters of the

swell on a regular spatio-temporal grid. Thus, we define

a spatial grid of p pixels into the domain covered by the

SAR observations (hatched domain in Fig. 1). Then, for each

analysis time tk, we define the unknown n-dimensional state

vector x(tk) with n = 4 × p. It corresponds to the fields

of significant height Hs, wavelength λ and the zonal and

meridional components of the direction, respectively noted θu
and θv . The state evolution in time is given by

x(tk) = M (x(tk−1)) + η(tk), (1)

where M corresponds to (i) the swell propagation in deep

water with a group velocity
√
λg/(2

√
2π) and (ii) the swell

energy decay proportional to 1/(α sin(α)) with α the angular

great-circle distance from the storm source (supposed to be

known) as proposed by [4]. The state evolution given in Eq.

(1) is physically realistic but not completely deterministic.

For instance, in the current version of the state operator M,

we do not take into account either the swell dissipation, the

surface current or the island shadow effects. Therefore, at

each time tk, we add a random perturbation noted η(tk). We

assume that the perturbations are Gaussianly distributed with

zero mean and a constant in time n × n covariance matrix

Q. At the initial time of Eq. (1), we introduce an a priori

knowledge of the integral parameters. We assume that this

background information follows a Gaussian distribution given

by the mean xb and the covariance matrix B. In this study, the

initial condition is given by the fireworks analysis (cf. [7]). It

corresponds to a consistent and realistic prior information.

At irregular time, as described in Fig. 1, the integral

parameters of the swell are partially observed. They are noted

y. The state vector at time tk is related to the observation by

the observation equation defined by

y(tk) = H (x(tk)) + ǫ(tk), (2)

where the observation operator H is the spatial interpolation

from the analysis to the observation grid. We know that the

SAR observations have a systematic error. Therefore, in Eq.

(2), we suppose that the stochastic random vector ǫ(tk) is

an additive zero mean Gaussian error characterized by the

covariance matrix R. In the current version of the algorithm,

the covariance matrices B, Q and R are supposed to be

diagonal and, as explained in [4], correspond to standard

deviation of 0.3 m for Hs, 36 m for λ and 17◦ for θ. Note

that for simplicity, Eq. (1) is written with a discrete evolution

of the state in time. In reality, this equation is continuous and

manages the irregular time sampling of the SAR observations.

More precisely, we use an exponential decrease factor for

Q, proportional to the time lag between two consecutive

observations and/or analysis (see [11] for more details).

C. Ensemble Kalman filter

We use the sequential EnKF algorithm proposed by [3] to

propagate the state in a forward way. As in [10], we use a

version of the EnKF where the state evolution M and the

observation H operators do not need to be linearized. In the

initial step of the EnKF algorithm, at time t1, an ensemble

of x’s composed by N members is randomly generated. The

members of the ensemble follow a Gaussian distribution given

by the vector mean xb and the covariance matrix B. The N ini-

tial members are stored in the vectors x
f
i (t1) ∀i ∈ {1, ..., N}.

Then, we proceed forward from k = 1 to k = K using the

update step and the analysis step as described below. In the

update step, at each time tk, we randomly generate N samples

of ηi and ǫi ∀i ∈ {1, ..., N} with respective covariances Q

and R. Then, following Eq. (1), the i-member of the updated

state is given by

x
f
i (tk) = M (xa

i (tk−1)) + ηi(tk), (3)

and the mapping from the forecast state space to the observa-

tional space of the i-member is computed as

y
f
i (tk) = Hk

(

x
f
i (tk)

)

. (4)

The N members of the ensemble are used to estimate the

sample means of the propagated state in the state space and

in the observational space denoted by xf (tk) and yf (tk)
respectively. In the analysis step, we follow [10] methodology

which avoids the linearization of the observational operator.

The Kalman gain is computed from

K(tk) = Pf
xy(tk)

(

Pf
yy(tk) +R

)−1
, (5)

where Pf
xy(tk) is the sample cross-covariance matrix and

Pf
yy(tk) is the sample covariance matrix, which are deter-

mined by

Pf
xy(tk) =

1

N − 1

×
N
∑

i=1

(

x
f
i (tk)− xf (tk)

)(

y
f
i (tk)− yf (tk)

)⊤

(6)

and

Pf
yy(tk) =

1

N − 1

×
N
∑

i=1

(

y
f
i (tk)− yf (tk)

)(

y
f
i (tk)− yf (tk)

)⊤

. (7)

Having K(tk) from Eq. (5), the N members of the ensemble

are then updated by

xa
i (tk) = x

f
i (tk) +K(tk)di(tk) (8)

where di(tk) ∀i ∈ {1, ..., N} are the N innovation vectors

in which we use perturbed observations such as di(tk) =
y(tk) + ǫi(tk) − y

f
i (tk). Finally, the updated analyzed state

is represented by the sample mean xa(tk) and the sample

covariance Pa(tk).



D. Ensemble Kalman smoother

The backward recursions correspond to the sequential EnKS

algorithm proposed by [5]. It uses the results of the EnKF

computed above. In the initial step of the EnKS algorithm,

at time tK , we use the members of the filtered state, ∀i ∈
{1, ..., N}, such as xs

i (tK) = xa
i (tK) and Ps(tK) = Pa(tK).

Then, we proceed backward from k = K − 1 to k = 1 using

the analysis step and we compute

xs
i (tk) = xa

i (tk) +Ks(tk)
(

xs
i (tk+1)− x

f
i (tk+1)

)

(9)

where Ks(tk) is the Kalman smoother gain matrix given by

Pa
xx(tk)

(

Pf (tk+1)
)−1

with

Pa
xx(tk) =

1

N − 1

×
N
∑

i=1

(xa
i (tk)− xa(tk)) (M (xa

i (tk))−M (xa(tk)))
⊤
.

(10)

The Gaussian distribution of the updated state estimate is

given by the sample mean and covariance respectively denoted

by xs(tk) and Ps(tk).

III. RESULTS

Here we apply the state space model given in (1)-(2) to

assimilate the SAR observations using the EnKF/EnKS with

N = 1000 members. The time-lag between two analysis is 3
h and the analysis grid is 3◦×3◦. The results of the estimated

integral parameters of the swell for the middle time of the

assimilation window are given in Fig. 2. It corresponds to

the results of the EnKS, i.e. the xs vector and the standard

deviation of the diagonal elements of the Ps matrix. In the

areas with low standard deviation (East part of the analysis),

the results are consistent with the outputs of the WaveWatch

3 model and the fireworks analysis (not shown in this paper).

In a future work, we plan to compare precisely these different

analysis with buoy data from the National Oceanographic Data

Center (NODC).

IV. CONCLUSION AND PERSPECTIVES

In this work, we assumed a stochastic swell field process

characterized by integral parameters (significant height, wave-

length, direction) sparsely observed by SAR measurements.

Compared to the fireworks analysis which generates pseudo-

observations using backward and then forward propagations,

our methodology only assimilate SAR data once without

reprocessing them. Then, our sequential model uses the mem-

oryless Markovian property and each pixel of the grid analysis

is seen as a potential storm source where we generate random

perturbations of the integral parameters. The results show a

good consistency with the fireworks analysis and the wave

model outputs. Although the physic used in our model is

simple, it avoids the use of a complete wave model which can

be critical in a data assimilation scheme with a large number

of members.

The perspectives for future works will consist of using

another interesting property of the state space model proposed

here: the ability to assimilate easily other data sources. For

instance, we plan to combine SAR measurements, buoy data

from NODC, altimeters and seismographs as proposed in [6].

These data sources can observe totally or partially the integral

parameters (for instance, only Hs for altimeters) with different

error measurements and space-time sampling.
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(b) Hs (std)
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Fig. 2. Estimated mean (first column) and standard deviation (second column) of the significant height (first row), wavelength (second row) and direction
with the corresponding streamlines (third row) the 15

th of July, 2004 at 1200 UTC.


