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Abstract

We study here explicit flux-splitting finite volume discretizations of multi-dimensional nonlinear scalar
conservation laws perturbed by a multiplicative noise with a given initial data in L2

(Rd). Under a sta-
bility condition on the time step, we prove the convergence of the finite volume approximation towards
the unique stochastic entropy solution of the equation.
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1 Introduction
We are interested in the Cauchy problem for a nonlinear hyperbolic scalar conservation law in d space
dimensions with a multiplicative stochastic perturbation of type:

{
du + div(vf(u))dt = g(u)dW in Ω ×Rd × (0, T ),

u(ω,x,0) = u0(x), ω ∈ Ω, x ∈ Rd, (1)

where div is the divergence operator with respect to the space variable (which belongs to Rd), d is a
positive integer, T > 0, v ∈ Rd and W = {Wt,Ft; 0 ≤ t ≤ T} is a standard adapted one-dimensional
continuous Brownian motion defined on the classical Wiener space (Ω,F , P ). As mentioned by [Kim06],
by denoting Q = Rd × (0, T ) this equation has to be understood in the following way: for almost all ω in
Ω and for all ϕ in D(Rd × [0, T ))

∫
Rd
u0(x)ϕ(x,0)dx + ∫

Q
u(ω,x, t)∂tϕ(x, t) + vf(u(ω,x, t)).∇xϕ(x, t)dxdt

= ∫
Q
∫

t

0
g(u(ω,x, s))dW (s)∂tϕ(x, t)dxdt. (2)

In order to relieve the presentation of the paper, we omit the variables ω,x, t and write u instead of
u(ω,x, t).

Note that, even in the deterministic case, a weak solution to a nonlinear scalar conservation law is
not unique in general. The mathematical stake consists in introducing a selection criterion in order to
identify the physical solution. In the present work we consider a stochastic version of the entropy condition
proposed by Kruzhkov in the 70s, the one used in [BVW12] and presented in Section 2.
We assume the following hypotheses:

H1: u0 ∈ L
2
(Rd).

H2: f ∶ R→ R is a Lipschitz-continuous function with f(0) = 0.

H3: g ∶ R→ R is a Lipschitz-continuous function with g(0) = 0.

H4: g is a bounded function.
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Remark 1 (On these assumptions)

. H1 to H3 are used in [BVW12] to prove the well-posedness of Problem (1) and also to show all the
results presented in this paper. Note that one can assume by convenience that f(0) = 0 without loss
of generality.

. g(0) = 0 is a technical condition coming from [BVW12] and is also used in the present work to show a
priori estimates on the finite volume approximate solution.

. H4 is probably a technical assumption, it is particularly used in the proof of Proposition 4 to show the
convergence of the term denoted Sh,k2 . As a consequence, it is also implicitly required to ensure the
validity of the main result of the paper stated in Theorem 2.

1.1 Former results
Only few papers have been devoted to the study of scalar conservation laws with a multiplicative stochas-
tic forcing. Let us mention the work of Feng-Nualart [FN08], where the authors introduced a notion of
strong entropy solution in order to prove the uniqueness of the entropy solution. Using vanishing viscos-
ity and compensated compactness arguments, they established the existence of strong entropy solutions.
Note that the use of compensated compactness arguments reduced their study to the one-dimensional
case and to genuinely nonlinear flux functions. The authors concluded to the uniqueness of stochastic
entropy solution by comparing a strong entropy solution with a stochastic entropy solution.
In the recent paper of Chen-Ding-Karlsen [CDK12], the authors proposed a generalization of the work
of Feng-Nualart to the multi-dimensional case. They identified a class of nonlinear stochastic balance
laws for which uniform spatial BV bound for vanishing viscosity approximations can be achieved. More-
over they established temporal equicontinuity in L1 of the approximations, uniformly in the viscosity
coefficient. They particularly proved that this stochastic problem is well-posed by using a uniform spatial
BV-bound.
Using a kinetic formulation, Debussche-Vovelle [DV10] proved the first complete well-posedness re-
sult for multi-dimensional scalar conservation laws set in a d-dimensional torus and driven by a general
multiplicative noise. As an extension of this work, in a recent paper Hofmanová [Hof14] presents a
Bhatnagar-Gross-Krook-like approximation of this problem. Using the stochastic characteristics method
the author establishes the existence of an approximate solution and shows its convergence to the kinetic
solution of [DV10].
Under assumptions H1 to H3 and by the way of Young measure-valued solutions, Bauzet-Vallet-
Wittbold [BVW12] proved a result of existence and uniqueness of the solution to the multi-dimensional
Cauchy problem in L2

(Ω ×Q). Since the method consists in comparing a weak measure-valued entropy
solution to a regular one (the viscous solution in this case) and not to a strong one, the authors could
consider very general assumptions on the data. In the present work, we will use their theoretical results.
In Bauzet-Vallet-Wittbold [BVW14] the authors investigated the Dirichlet Problem for equation (1)
set in a bounded domain D of Rd with homogeneous boundary conditions. They proved a result of exis-
tence and uniqueness of the stochastic entropy solution by using the concept of measure-valued solutions
and Kruzhkov semi-entropy formulations.
Concerning the study of numerical experiments for scalar conservation laws with multiplicative noise,
there is also, to our knowledge, few papers and none of them proposes a convergence study for a space
and time discretization of the problem. Let us cite the work of Holden-Risebro [HR91] where a time-
discretization of the equation is proposed by the use of an operator-splitting method. They proposed a
result of pathwise convergence to prove the existence of pathwise weak solutions to the Cauchy problem
for (1) in the one-dimensional case.
In the recent paper of Bauzet [Bau14], a generalization of the work of Holden-Risebro [HR91] is pro-
posed in a bounded domain D of Rd. The author proved that the pathwise weak solution obtained in
[HR91] is the unique entropy weak solution of the stochastic conservation law and that the whole sequence
of approximation given by the time-splitting scheme converges in Lp(Ω×Q) for any finite p. As previously,
the convergence study only concerns a time-discretization of the equation. Note that the main result of
such a paper is obtained by using the theoretical study of Bauzet-Vallet-Wittbold [BVW14].
Let us mention the paper of Kröker [Krö08] where the author studied well-posedness of a scalar conser-
vation law perturbed by an additive random noise term. In a first part, they proposed a full time-space
finite volume method in one and two spatial dimensions but without any convergence study. In a second
part, numerical experiments are realized on a few model problems. Note that the stochastic (Itô) part of
the equation is approximated by the Euler-Maruyama method.
In the recent work of Kröker-Rohde [KR12] the authors were interested in a method of handling the
finite volume schemes for the approximate solution of the Cauchy problem for a hyperbolic balance law
with random noise and investigated on a space-discretization of the equation. For a class of strongly
monotone numerical fluxes they established the pathwise convergence of a semi-discrete finite volume
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solution towards a stochastic entropy solution. The main tool was a stochastic version of the compen-
sated compactness approach. It avoids the use of a maximum principle and total-variation estimates but
restricts the study to the one-dimensional case and to the use of genuinely nonlinear flux functions.

1.2 Goal of the study and outline of the paper
The aim of this paper is to fill the gap left by the previous authors by introducing a convergence result
for a both space and time discretization of multi-dimensional nonlinear scalar conservation laws forced by
a multiplicative noise. More precisely, under assumptions H1 to H4, we introduce a flux-splitting finite
volume scheme for the discretization of Problem (1) and show that the finite volume approximate solution
converges in Lploc(Ω ×Q) for all 1 ⩽ p < 2 to the unique stochastic entropy solution of the equation.
Note that the main difficulty of this study is to choose suitable tools of the finite volume framework
compatible with the stochastic one and the restrictions brought by the noise. As we will see thereafter,
there is essentially three main constraints to keep in mind:

. Firstly, the use of classical Kruzhkov’s entropies seems difficult for the discrete entropy inequalities
since the stochastic version of the entropy formulation contains a new term involving the second
order derivative of the entropy (see Definition 1). Although this new term is nonnegative, it is
unfortunately not in the good side of the inequality and can’t be removed of the formulation. In
this way, passing to the limit as in the deterministic case to get a formulation with Kruzhkov’s
entropies is not possible here. This point restricts the available technics of the deterministic finite
volume framework to the one involving smooth entropies. Hence we followed some ideas of the paper
of Champier-Gallouët-Herbin [CGH93] and adapted them to the stochastic case to show the
convergence of the method. In such a paper, the authors were interested in the discretization of a
nonlinear hyperbolic equation and proved the convergence of the solution given by an upwind finite
volume scheme towards the unique entropy weak solution of their problem using smooth entropies.

. Secondly, due to the construction of the Itô integral, an explicit discretization of the noise term seems
to be a more natural choice than an implicit one, see Remark 7.

. Thirdly, note that since the increments of the Brownian motion are not L∞ω , even if u0 ∈ L∞(Rd) a
L∞ω,x,t bound for the finite volume approximate solution is not possible, see Remark 10.

The paper is organized as follows. In Section 2, we recall the definition of a stochastic entropy solution for
(1) proposed in [BVW12] and the main result of their paper. In Section 3 we define the flux-splitting finite
volume scheme used to approximate the stochastic entropy solution of Problem (1). Then, we give the
main result of this paper, which states the convergence of the approximate solution towards the unique
stochastic entropy solution of the equation. We also give a few examples of classical flux-splitting finite
volume schemes. The remainder of the paper is devoted to the proof of this convergence result. For the
sake of readability, the proof will be established only in the case of a nondecreasing flux function f , which
leads to an upwind finite volume scheme. But the extension to the case of a general flux-splitting scheme
is straightforward. In Section 4, we present firstly the upwind finite volume scheme used to approximate
the solution of our problem. In a second time, several preliminary results satisfied by the finite volume
approximate solution denoted uT ,k are stated. Then in Section 5 we present a result of convergence of
uT ,k towards the unique stochastic entropy solution of Problem (1).

1.3 Notations
First of all, we need to introduce some notations and make precise the functional setting.

. Q = Rd × (0, T ).

. Throughout the paper, we denote by Cf and Cg the Lipschitz constants of f and g.

. ∣x∣ denotes the euclidian norm of x in Rd and x.y the usual scalar product of x and y in Rd.

. For p = 1, d or d + 1, ∣∣.∣∣∞ denotes the L∞(Rp) norm.

. V = ∣v∣ ∈ R denotes the euclidian norm of v in Rd.

. E[.] denotes the expectation, i.e. the integral over Ω with respect to the probability measure P .

. D+ (Rd × [0, T )) denotes the subset of nonnegative elements of D(Rd × [0, T )).

. For a given separable Banach space X we denote by N 2
w(0, T,X) the space of the predictable X-

valued processes (cf. Da Prato-Zabczyk [DPZ92] p.94 for example). This space is the space
L2

((0, T ) × Ω,X) for the product measure dt ⊗ dP on PT , the predictable σ-field (i.e. the σ-field
generated by the sets {0} × F0 and the rectangles (s, t] ×A for any A ∈ Fs).
If X = L2

(Rd), one gets that N 2
w(0, T,L

2
(Rd)) ⊂ L2

(Ω ×Q).

. A the set of any C3
(R) convex functions such that the support of η′′ is compact. Note that it implies

in particular that η′′ and η′ are bounded functions.
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. F η denotes the entropy flux defined for any a ∈ R and for any smooth function η ∈ A by
F η(a) = ∫

a

0
η′(σ)f ′(σ)dσ. Note in particular that F η is a Lipschitz-continuous function.

2 The continuous problem
Let us recall the definitions and the result introduced in the paper of Bauzet-Vallet-Wittbold
[BVW12]. These results are obtained under hypotheses H1 to H3.

Definition 1 (Stochastic entropy solution)
A function u of N 2

w (0, T,L2
(Rd)) ∩ L∞ (0, T ;L2

(Ω ×Rd)) is an entropy solution of the stochastic scalar
conservation law (1) with the initial condition u0 ∈ L2

(Rd), if P-a.s in Ω, for any η ∈ A and for any
ϕ ∈ D

+
(Rd × [0, T ))

0 ⩽ ∫
Rd
η(u0)ϕ(x,0)dx + ∫

Q
η(u)∂tϕ(x, t)dxdt + ∫

Q
F η(u)v.∇xϕ(x, t)dxdt

+∫

T

0
∫

Rd
η′(u)g(u)ϕ(x, t)dxdW (t) +

1

2 ∫Q
g2

(u)η′′(u)ϕ(x, t)dxdt.

Remark 2 As mentioned in Section 1.2, the stochastic version of the entropy inequalities limits ourselves
to the use of smooth entropies. Indeed, one is not able to get a formulation with Kruzhkov’s entropies due
to the second order term ∫Q g

2
(u)η′′(u)ϕdxdt.

Remark 3 Any entropy solution in the sense of Definition 1 is a weak solution, i.e. it satisfies the weak
formulation (2) (See [BVW12] Remark 2.6 p.669).

For technical reasons, as in [BVW12], we also need to consider a generalized notion of entropy solution.
In fact, in a first step, we will only prove the convergence of the approximate solution to a measure-valued
entropy solution. Then, thanks to the result of uniqueness stated in Theorem 1, we will be able to deduce
the convergence of the approximate solution to the unique stochastic entropy solution of (1).

Definition 2 (Measure-valued entropy solution)
A function u of N 2

w (0, T,L2
(Rd × (0,1))) ∩ L∞ (0, T ;L2

(Ω ×Rd × (0,1))) is a measure-valued entropy
solution of the stochastic scalar conservation law (1) with the initial condition u0 ∈ L

2
(Rd), if P-a.s in Ω,

for any η ∈ A and for any ϕ ∈ D
+
(Rd × [0, T ))

0 ⩽ ∫
Rd
η(u0)ϕ(x,0)dx + ∫

Q
∫

1

0
η(u(., β))∂tϕ(x, t)dβdxdt + ∫

Q
∫

1

0
F η(u(., β))v.∇xϕ(x, t)dβdxdt

+∫

T

0
∫

Rd
∫

1

0
η′(u(., β))g(u(., β))ϕ(x, t)dβdxdW (t) +

1

2 ∫Q
∫

1

0
g2

(u(., β))η′′(u(., β))ϕ(x, t)dβdxdt.

And the main result of [BVW12] is

Theorem 1 Under assumptions H1 to H3 there exists a unique measure-valued entropy solution for the
Problem (1) and this solution is obtained by viscous approximation. Moreover, it is the unique stochastic
entropy solution in the sense of Definition 1.

Remark 4 The unique stochastic entropy solution of Problem (1) given by Theorem 1 satisfies the initial
condition in the following sense: for any compact set K ⊂ Rd

ess lim
t→0+

E [∫
K

∣u(ω,x, t) − u0(x)∣dx] = 0,

see [BVW12] Remark 2.7 p.670.

Remark 5 Following Vallet [Val08] Section 6.1, if we assume in addition the following hypotheses

(i) 0 ⩽ u0(x) ⩽ 1 for almost all x in Rd.
(ii) supp g ⊂ [0,1].

then we can show that 0 ≤ u ≤ 1. Indeed, thanks to the Itô formula, this maximum principle is direct for
the viscous solution uε, then it is conserved at the limit for u.

3 Main result
In the sequel, assume that assumptions H1 to H4 hold. Let us first give a definition of the admissible
meshes for the finite volume scheme.
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3.1 Meshes and scheme
Definition 3 (Admissible mesh) An admissible mesh T of Rd for the discretization of Problem (1) is
given by a family of disjoint polygonal connected subset of Rd such that Rd is the union of the closure of the
elements of T (which are called control volumes in the following) and such that the common interface of any
two control volumes is included in a hyperplane of Rd. It is assumed that h = size(T ) = sup{diam(K),K ∈

T } < ∞ and that, for some α ∈ R⋆
+, we have

αhd ≤ ∣K ∣, and ∣∂K ∣ ≤
1

α
hd−1, ∀K ∈ T , (3)

where we denote by

. ∂K the boundary of the control volume K.

. ∣K ∣ the d-dimensional Lebesgue measure of K.

. ∣∂K ∣ the (d − 1)-dimensional Lebesgue measure of ∂K.

. EK the set of interfaces of the control volume K.

. N(K) the set of control volumes neighbors of the control volume K.

. K ∣L the common interface between K and L for any L ∈ N(K).

. E the set of all the interfaces of the mesh T .

. ∣σ∣ the (d − 1)-dimensional Lebesgue measure of the interface σ, for any σ ∈ E.

. nK,σ the unit normal to interface σ, outward to the control volume K, for any σ ∈ EK .

Consider an admissible mesh T in the sense of Definition 3. In order to compute an approximation of u

on [0, T ] we take N ∈ N⋆ and define the time step k =
T

N
∈ R⋆

+. In this way [0, T ] =
N−1

⋃
n=0

[nk, (n + 1)k].

The discrete unknowns are unK , n ∈ {0, ...,N − 1}, K ∈ T . The set {u0
K , k ∈ T } is given by the initial

condition,

u0
K =

1

∣K ∣
∫
K
u0(x)dx,∀K ∈ T . (4)

The equations satisfied by the discrete unknowns unK , n ∈ {0, ...,N−1}, K ∈ T , are obtained by discretizing
Problem (1). For the discretization of such a problem, we consider the following flux-splitting finite volume
scheme: we write f as the sum of a nondecreasing function denoted f1 and a nonincreasing one denoted f2

(note that such a decomposition is always possible, since the flux-function f is supposed to be Lipschitz-
continuous):
For any K ∈ T , any n ∈ {0, ...,N − 1}

∣K ∣

k
(un+1
K − unK) + ∑

σ∈EK
σ=K∣L

∣σ∣[(v.nK,σ)
+
(f1(u

n
K) + f2(u

n
L)) − (v.nK,σ)

−
(f1(u

n
L) + f2(u

n
K))]

= ∣K ∣g(unK)
Wn+1

−Wn

k
,

(5)

where Wn
∶=W (nk) ∀n ∈ {0, ...,N − 1}. The approximate finite volume solution uT ,k may be defined on

Ω ×Rd × [0, T ) from the discrete unknowns unK , K ∈ T , n ∈ {0, ...,N − 1} which are computed in (5):

uT ,k(ω,x, t) = u
n
K for ω ∈ Ω, x ∈K and t ∈ [nk, (n + 1)k), (6)

where {u0
K ,K ∈ T } is determined by (4).

Remark 6 (On the measurability of the approximate finite volume solution) Let us mention
that using properties of the Brownian motion, for all K in T and all n in {0, ...,N − 1}, unK is Fnk-
measurable and so, as an elementary process adapted to the filtration (Ft)t⩾0, uT ,k is predictable with
values in L2

(Rd).

Remark 7 (On the explicit choice in the stochastic integral) We chose in the present work an
explicit discretization for the stochastic term, as it is generally done for the discretization of SDEs and
SPDEs. Note that with an implicit discretization of such a term, the scheme may be ill-posed if g is
nonlinear.
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3.2 Main result
We now state the main result of this paper.

Theorem 2 (Convergence to the stochastic entropy solution) Assume that hypotheses H1 to H4

hold. Let T be an admissible mesh in the sense of Definition 3, N ∈ N⋆ and k = T
N
∈ R⋆

+ be the time step.
Let uT ,k be the finite volume approximation defined by (5) and (6). Then uT ,k converges to the unique
stochastic entropy solution of (1) in the sense of Definition 1, in Lploc(Ω ×Q) for any p < 2 as h tends to
0 and k/h tends to 0.

Remark 8 Under the CFL condition

k ⩽ (1 − ξ)
α2h

CfV
(7)

one gets for ξ = 0 the L∞t L2
ω,x stability of uT ,k stated in Proposition 1 p.7, and for some ξ ∈ (0,1) the

“weak BV” estimate stated in Proposition 2 p.9. In the deterministic case, condition (7) for some ξ ∈ (0,1)
is sufficient to show the convergence of uT ,k to the unique entropy solution of the problem, whereas in the
stochastic case this condition doesn’t seem to be sufficient to show the convergence of the scheme, that is
why we assume the stronger assumption k/h → 0 as h → 0. Note that this hypothesis on k/h is perhaps
technical, and as mentioned above, it is not needed for the deterministic case (that is g = 0). It is used
here for proving the convergence to 0 of two new terms (denoted respectively T̃h,k1 and T̃h,k2 in the proof
of Proposition 4) brought in the discrete entropy formulation by the stochastic noise. It is a quite weak
hypothesis (with respect to the usual deterministic CFL condition (7)), since k/h can goes to 0 as slowly
as we want, and unfortunately we are not able to see, by using numerical simulations, if it seems to be a
necessary condition.

Remark 9 This theorem can easily be generalized to the case of a stochastic finite dimensional perturba-
tion of the form g(u).dW where g takes values into Rp and W is a p-dimensional Brownian motion.

Since every Lipschitz-continuous function can be decomposed as the sum of a nondecreasing function
and a nonincreasing one, for the sake of readability we will only prove this theorem in the case where
the flux f is a nondecreasing Lipschitz-continuous function. In this case, the Scheme (5) leads to an
upwind finite volume scheme (see Equations (8)). Note that the extension of the proof to the case of
a general Lipschitz-continuous flux function is straightforward. Some preliminary results on the upwind
finite volume approximate solution will be established in Section 4 and the proof of Theorem 2 will finally
be given in Section 5.

3.3 Examples of flux-splitting finite volume schemes
Here are some classical examples of “flux-splitting schemes” for which the convergence result of the present
paper holds:

• The most simple example corresponds to the case where the flux function f is monotone, which
leads to an upwind scheme, see Equations (8) below.

• The Engquist-Osher scheme concerns a convex or concave flux-function f . In this case either f is
monotone and it comes down to the previous case, or f ′ vanishes in a unique interval of R. In the
second case R is the union of two intervals and f is monotone on each of them, which leads to a
natural splitting.

• The modified Lax-Friedrichs scheme in the sense of [EGH00], whose generalization in the case of an
hyperbolic system is called the Rusanov scheme, corresponds to a decomposition of the flux in the
following way: f = f1 + f2 where f1(x) = f(x)/2 +Dx and f2(x) = f(x)/2 −Dx, with 2D ⩾ Cf .

4 Preliminary results on the finite volume approximation
Assume in the sequel that the flux function f is additionally nondecreasing. In this way, the flux-splitting
scheme (5) is reduced to the following upwind finite volume scheme:
For any K ∈ T , any n ∈ {0, ...,N − 1}

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∣K ∣

k
(un+1
K − unK) + ∑

σ∈EK
∣σ∣v.nK,σf(u

n
σ) = ∣K ∣g(unK)

Wn+1
−Wn

k
,

u0
K =

1

∣K ∣
∫
K
u0(x)dx,

(8)
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where Wn
∶=W (nk) ∀n ∈ {0, ...,N − 1} and unσ denotes the upstream value at time nk with respect to σ.

More precisely, if σ is the interface between the control volumes K and L, unσ is equal to unK if v.nK,σ ≥ 0
and to unL if v.nK,σ < 0.
The approximate upwind finite volume solution uT ,k is as previously defined on Ω ×Rd × [0, T ) from the
discrete unknowns unK , K ∈ T , n ∈ {0, ...,N − 1} computed in (8):

uT ,k(ω,x, t) = u
n
K for ω ∈ Ω, x ∈K and t ∈ [nk, (n + 1)k). (9)

Note that since divv = 0, the finite volume scheme (8) can be rewritten as follows:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∣K ∣

k
(un+1
K − unK) + ∑

σ∈EK
∣σ∣v.nK,σ(f(u

n
σ) − f(u

n
K)) = ∣K ∣g(unK)

Wn+1
−Wn

k
,

u0
K =

1

∣K ∣
∫
K
u0(x)dx.

(10)

4.1 Stability estimates
Let us state several results on the finite volume approximate solution uT ,k defined by (8) and (9).
Proposition 1 (L∞t L2

ω,x estimate) Let T > 0, u0 ∈ L2
(Rd), T be an admissible mesh in the sense of

Definition 3, N ∈ N⋆ and k = T
N
∈ R⋆

+ satisfying the Courant-Friedrichs-Levy (CFL) condition

k ⩽
α2h

CfV
. (11)

Let uT ,k be the finite volume approximate solution defined by (8) and (9).
Then we have the following bound

∣∣uτ,k ∣∣L∞(0,T ;L2(Ω×Rd)) ⩽ e
C2
gT /2

∣∣u0∣∣L2(Rd).

As a consequence we get
∣∣uT ,k ∣∣

2
L2(Ω×Q) ⩽ Te

TC2
g ∣∣u0∣∣

2
L2(Rd).

Proof. Let us show by induction on n ∈ {0, ..,N − 1} the following property:

∑
K∈T

∣K ∣E[(unK)
2
] ⩽ (1 + kC2

g)
n
∣∣u0∣∣

2
L2(Rd). (Pn)

First one has

∑
K∈T

∣K ∣E[(u0
K)

2
] = ∑

K∈T
∣K ∣E

⎡
⎢
⎢
⎢
⎣
(

1

∣K ∣
∫
K
u0(x)dx)

2⎤
⎥
⎥
⎥
⎦

⩽ ∣∣u0∣∣
2
L2(Rd).

Set n ∈ {0, ...,N − 1} and assume that (Pn) holds.
Since for any σ ∈ EK , u

n
σ = u

n
K if v.nK,σ ≥ 0 and unσ = unL if v.nK,σ < 0, the formulation of the scheme (10)

is then equivalent to

∣K ∣

k
(un+1
K − unK) + ∑

σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
(f(unK) − f(unL)) = ∣K ∣g(unK)

Wn+1
−Wn

k
.

Let us multiply this scheme by unK . We get, by using formula ab = 1
2
[(a+ b)2

− a2
− b2] with a = un+1

K −unK
and b = unK ,

∣K ∣

k
[un+1
K − unK]unK = − ∑

σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
(f(unK) − f(unL))u

n
K

+
∣K ∣

k
g(unK)(Wn+1

−Wn
)unK

⇔
1

2

∣K ∣

k
[(un+1

K )
2
− (unK)

2
− (un+1

K − unK)
2
] = − ∑

σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
(f(unK) − f(unL))u

n
K

+
∣K ∣

k
g(unK)(Wn+1

−Wn
)unK

⇔
∣K ∣

2
[(un+1

K )
2
− (unK)

2
] =

∣K ∣

2
(un+1
K − unK)

2
− k ∑

σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
(f(unK) − f(unL))u

n
K

+∣K ∣g(unK)(Wn+1
−Wn

)unK .

7



Using (8) we can replace (un+1
K − unK)

2 and this gives by taking the expectation

∣K ∣

2
E [(un+1

K )
2
− (unK)

2
] =

∣K ∣

2
E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎝

k

∣K ∣
∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
(f(unL) − f(u

n
K)) + g(unK)(Wn+1

−Wn
)

⎞
⎟
⎟
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− kE

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
(f(unK) − f(unL))u

n
K

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ ∣K ∣E[g(unK)(Wn+1
−Wn

)unK]

=
k2

2∣K ∣
E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎝

∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
(f(unK) − f(unL))

⎞
⎟
⎟
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
k∣K ∣

2
E [(g(unK))

2
]

− kE

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
(f(unK) − f(unL))u

n
K

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Using Cauchy-Schwarz inequality and Assumptions (3) on the mesh we get

∣K ∣

2
E [(un+1

K )
2
− (unK)

2
] ≤

k2

2∣K ∣
E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎝

∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
(f(unL) − f(u

n
K))

2
⎞
⎟
⎟
⎟
⎠

⎛

⎝
∑
σ∈EK

∣σ∣(v.nK,σ)
−⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− kE

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
(f(unK) − f(unL))u

n
K

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
k∣K ∣

2
E [(g(unK))

2
]

≤kE

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
[
kV

2α2h
(f(unL) − f(u

n
K))

2

− (f(unK) − f(unL))u
n
K]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
k∣K ∣

2
E [(g(unK))

2
]

where we have used that

∑
σ∈EK

∣σ∣(v.nK,σ)
−

≤ V ∣∂K ∣

≤
V ∣K ∣

α2h
.

Moreover, consider the function Φ(a) = ∫
a

0
sf ′(s)ds defined for any a ∈ R and note that 0 ⩽ Φ(a) ⩽ Cfa

2.

Using the technical Lemma 4.5 p.107 in [EGH00] on monotone functions which states that for any a, b ∈ R
we have

∣∫

b

a
f(s) − f(a)ds∣ ⩾

1

2Cf
[f(b) − f(a)]2,

and therefore since f is supposed to be nondecreasing

b(f(b) − f(a)) ⩾
1

2Cf
[f(b) − f(a)]2 +Φ(b) −Φ(a).

one shows that (thanks to the CFL Condition (11))

Φ(unL) −Φ(unK) + [f(unK) − f(unL)]u
n
K −

kV

2α2h
[f(unK) − f(unL)]

2
⩾ 0.

In this way

∣K ∣

2
E [(un+1

K )
2
− (unK)

2
] ≤

k∣K ∣

2
C2
gE [(unK)

2
] + k ∑

σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−E[Φ(unL) −Φ(unK)].

Note that

∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−E[Φ(unL) −Φ(unK)] = ∑

σ∈EK
σ=K∣L

∣σ∣E[(v.nL,σ)
+Φ(unL) − (v.nK,σ)

−Φ(unK)].
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By summing on each control volume K and using the fact that divv = 0 we obtain

∑
K∈T

∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−E[Φ(unL) −Φ(unK)] = ∑

σ∈E
σ=K∣L

v.nK,σ≤0

−∣σ∣v.nK,σE[Φ(unL)] + ∣σ∣v.nK,σE[Φ(unK)]

= ∑
σ∈E
σ=K∣L

v.nK,σ≤0

∣σ∣v.nL,σE[Φ(unL)] + ∣σ∣v.nK,σE[Φ(unK)]

= ∑
K∈T

∑
σ∈EK

∣σ∣(v.nK,σ)E[Φ(unK)]

= ∑
K∈T

E[Φ(unK)]∫
K

div(v)dx

= 0.

In this way, using (Pn) we get

∑
K∈T

∣K ∣E [(un+1
K )

2
] ⩽ ∑

K∈T
∣K ∣(1 + kC2

g)E [(unK)
2
]

⩽ (1 + kC2
g)
n+1

∣∣u0∣∣
2
L2(Rd).

We deduce that (Pn+1) holds, and we conclude by induction that

∥uT ,k∥L∞(0,T ;L2(Ω×Rd)) ⩽ e
C2
gT /2

∣∣u0∣∣L2(Rd).

This gives the L∞t L2
ω,x stability of the approximate solution. As a consequence, we have

∣∣uT ,k ∣∣
2
L2(Ω×Q) =

N−1

∑
n=0

∑
K∈T

k∣K ∣E [(unK)
2
]

⩽ TeC
2
gT ∣∣u0∣∣

2
L2(Rd).

Remark 10 (On a L∞ω,x,t estimate) As mentioned in Remark 5, if one is concerned by the modeling of
fluid flow in porous media, if the stochastic entropy solution u has to be a saturation, one gets that 0 ⩽ u ⩽ 1
as soon as hypotheses (i) and (ii) (of Remark 5) are fulfilled. Note that if we assume that u0 ∈ L

∞
(Rd)

with 0 ≤ u0 ≤ 1, this bound does not hold for the approximate solution uT ,k, and this approximation is
even unbounded in L∞(Ω ×Q). This is due to the fact that the increments of the Brownian motion are
not bounded.
For example let {unK ,K ∈ T , n ∈ {0, ...,N − 1}} be given by the finite volume scheme (8) with d=1, v = 1,
f(x) = x, g(x) = x(1 − x)1[0,1](x), 0 < ε < 1 and assume that for all K ∈ T , u0

K = 1 − ε. Then

u1
K = 1 − ε + g(1 − ε)W 1.

Denote by a = g(1 − ε) > 0. Since W 1
∼ N(0, k), P(W 1

> ε
a
) > 0 and so P(u1

K > 1) > 0. Indeed, we can
even prove that u1

K does not belong to L∞(Ω).

4.2 Weak BV estimate
Proposition 2 (Weak BV estimate) Let T be an admissible mesh in the sense of Definition 3, T > 0,
N ∈ N⋆ and let k = T

N
∈ R⋆

+ satisfying the CFL condition

k ⩽
(1 − ξ)α2h

CfV
, (12)

for some ξ ∈ (0,1).
Let {unK ,K ∈ T , n ∈ {0, ...,N − 1}} be given by the finite volume scheme (8).
Then there exists C1 ∈ R⋆

+, only depending on T,u0, ξ,Cf and Cg such that
N−1

∑
n=0

k ∑
σ∈E
σ=K∣L

∣σ∣ ∣v.nK,σ ∣E[(f(unK) − f(unL))
2
] ⩽ C1.

Let T > 0 and R > 0 be such that h < R, we take N ∈ N⋆ and define k = T
N

∈ R⋆
+. We also define

TR = {K ∈ T such that K ⊂ B(0,R)}. Then there exists C ∈ R⋆
+, only depending on R,d, T,α, u0, ξ,Cf

and Cg such that
N−1

∑
n=0

k ∑

σ∈ER
σ=K∣L

∣σ∣ ∣v.nK,σ ∣E[∣f(unK) − f(unL)∣] ⩽ Ch
−1/2,

9



where ER denotes the set of interfaces of TR.

Proof. Multiplying the first equation of (8) by kunK , taking the expectation and summing over K ∈ T

and n = 0, ...,N − 1 yields A +B = C with

A = ∑
K∈T

N−1

∑
n=0

∣K ∣E[(un+1
K − unK)unK]

B = ∑
K∈T

N−1

∑
n=0

k∣σ∣(v.nK,σ) ∑
σ∈EK

E[f(unσ)u
n
K]

= ∑
K∈T

N−1

∑
n=0

k∣σ∣(v.nK,σ)
−
∑
σ∈EK
σ=K∣L

E[(f(unK) − f(unL))u
n
K]

C = ∑
K∈T

N−1

∑
n=0

∣K ∣E[g(unK)unK(Wn+1
−Wn

)] = 0.

Note that the term C is equal to 0 since g(unK)unK is Fnk-measurable, it is therefore independent of the
increment Wn+1

−Wn.
Using the formula ab = 1

2
[(a + b)2

− a2
− b2] with a = un+1

K − unK and b = unK we get

A = −
1

2
∑
K∈T

N−1

∑
n=0

∣K ∣E [(un+1
K − unK)

2
] +

1

2
∑
K∈T

∣K ∣E[(uNK)
2
− (u0

K)
2
],

and using the Scheme (8) gives

A = −
1

2
∑
K∈T

N−1

∑
n=0

∣K ∣E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(g(unK)(Wn+1
−Wn

) −
k

∣K ∣
∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
(f(unK) − f(unL)))

2
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
1

2
∑
K∈T

∣K ∣E[(uNK)
2
− (u0

K)
2
]

∶= A1 +A2.

Since 2
k

∣K ∣
g(unK)(f(unK)− f(unL)) is Fnk-measurable it is therefore independent of the increment Wn+1

−

Wn, so that

A1 = −
1

2
∑
K∈T

N−1

∑
n=0

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

k∣K ∣E[(g(unK))
2
] +

k2

∣K ∣
E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( ∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
(f(unK) − f(unL)))

2
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

⩾ −
1

2
∑
K∈T

N−1

∑
n=0

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

k∣K ∣E[(g(unK))
2
] + (1 − ξ)

k

Cf
∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−E[(f(unK) − f(unL))

2
]

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

,

where we have used an argument similar to one used in the proof of Proposition 1 (under the CFL
Condition (12)), namely

k2

∣K ∣
E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( ∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
(f(unK) − f(unL)))

2
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤
k2

∣K ∣
E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−
(f(unK) − f(unL))

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛

⎝
∑
σ∈EK

∣σ∣(v.nK,σ)
−⎞

⎠

≤
k2

∣K ∣
∣∂K ∣V ∑

σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−E[(f(unK) − f(unL))

2
]

≤ (1 − ξ)
k

Cf
∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−E[(f(unK) − f(unL))

2
].
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In this way, thanks to Proposition 1 there exists C̃ > 0 which only depends on T,Cg and ∣∣u0∣∣L2(Rd) such
that

A ⩾ −
1

2Cf
(1 − ξ) ∑

K∈T

N−1

∑
n=0

k ∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−E[(f(unK) − f(unL))

2
] −

1

2
∑
K∈T

∣K ∣[u0
K]

2
−

1

2
∑
K∈T

N−1

∑
n=0

∣K ∣kE[(g(unK))
2
]

⩾ −
1

2Cf
(1 − ξ) ∑

K∈T

N−1

∑
n=0

k ∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−E[(f(unK) − f(unL))

2
] −

1

2
∣∣u0∣∣

2
L2(Rd) −

1

2
TC2

ge
TC2

g ∣∣u0∣∣
2
L2(Rd)

⩾ −
1

2Cf
(1 − ξ) ∑

K∈T

N−1

∑
n=0

k ∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−E[(f(unK) − f(unL))

2
] −

1

2
C̃.

We now study the term B = ∑
K∈T

N−1

∑
n=0

k ∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−E[(f(unK) − f(unL))u

n
K]. Let us introduce again

the function Φ defined on R by Φ(a) = ∫

a

0
sf ′(s)ds. Using again the technical Lemma 4.5 p.107 in

[EGH00], and the same arguments as in the proof of Proposition 1 we get

B ⩾
1

2Cf
∑
K∈T

N−1

∑
n=0

k ∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−E[(f(unK) − f(unL))

2
]

Therefore, since A +B = C

0 ⩾
ξ

2Cf
∑
K∈T

N−1

∑
n=0

k ∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−E[(f(unK) − f(unL))

2
] −

1

2
C̃,

which, in turn, gives the existence of C1 ∈ R⋆
+, only depending on T,Cf ,Cg, ξ and ∣∣u0∣∣L2(Rd) such that

N−1

∑
n=0

k ∑
K∈T

∑
σ∈EK
σ=K∣L

∣σ∣(v.nK,σ)
−E[(f(unK) − f(unL))

2
] ⩽ C1,

or equivalently
N−1

∑
n=0

k ∑
σ∈E
σ=K∣L

∣σ∣ ∣v.nK,σ ∣E[(f(unK) − f(unL))
2
] ⩽ C1.

Set R > 0 be such that h < R and define the set TR = {K ∈ T such that K ⊂ B(0,R)}.
Using Cauchy-Schwarz inequality, we finally get

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
K∈TR

∑
σ∈EK
σ=K∣L

N−1

∑
n=0

k∣σ∣(v.nK,σ)
−E[∣f(unK) − f(unL)∣]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2

⩽

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
K∈TR

∑
σ∈EK
σ=K∣L

N−1

∑
n=0

k∣σ∣(v.nK,σ)
−E[∣f(unK) − f(unL)∣

2
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎛
⎜
⎜
⎜
⎝

∑
K∈TR

∑
σ∈EK
σ=K∣L

N−1

∑
n=0

k∣σ∣(v.nK,σ)
−
⎞
⎟
⎟
⎟
⎠

⩽ C1V T ∑
K∈TR

∣∂K ∣

⩽ C1V T
1

α
hd−1

∑
K∈TR

1

⩽ C1V T
1

α
hd−1 ∣B(0,R)∣

αhd

⩽ C1V T
c

α2h
,

for some constant c depending only on ∣B(0,R)∣, and thus with C = (C1V T
c
α2 )

1/2 one gets

N−1

∑
n=0

k ∑

σ∈ER
σ=K∣L

∣σ∣ ∣v.nK,σ ∣E[∣f(unK) − f(unL)∣] ⩽ Ch
−1/2,

which concludes the proof of the proposition.
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4.3 Convergence of the finite volume approximate solution
First of all, note that the a priori estimates on uT ,k only provide (up to a subsequence) weak convergence
for uT ,k. Moreover, due to the nonlinearity of f and g, one needs compactness arguments to pass to
the limit in the nonlinear terms and these arguments have to be compatible with the random variable.
The concept of Young measures is appropriate here and the technique is based on the notion of narrow
convergence of Young measures (or entropy processes), we refer to Balder [Bal00] but also to Eymard-
Gallouët-Herbin [EGH95].

Thanks to the a priori estimate stated in Proposition 1, the approximate finite volume solution uT ,k
converges (up to a subsequence still denoted uT ,k) in the sense of Young measures to an “entropy process”
denoted by u in L2

(Ω×Q× (0,1)). Precisely, given a Carathéodory function Ψ ∶ Ω×Q×R→ R such that
Ψ(., uT ,k) is uniformly integrable, one has:

E [∫
Q

Ψ(., uT ,k)dxdt] → E [∫
Q
∫

1

0
Ψ(.,u(., α))dαdxdt] .

We recall that a function Ψ ∶ Ω ×Q ×R→ R is a Carathéodory function if for almost any (ω,x, t) ∈ Ω ×Q
the function ν ↦ Ψ(ω,x, t, ν) is continuous and for all ν ∈ R, the function (ω,x, t) ↦ Ψ(ω,x, t, ν) is
measurable.

Remark 11 (On the measurability of u) Since uT ,k is bounded in the Hilbert space N 2
w(0, T,L2

(Rd)),
by identification one shows that uT ,k → ∫

1

0 u(., α)dα weakly in L2
(Ω ×Q) so that ∫

1

0 u(., α)dα is a pre-
dictable process with values in L2

(Rd). The interesting point is the measurability of u with respect to all
its variables (ω,x, t, α). Revisiting the work of Panov [Pan96] with the σ-field PT ⊗L(Rd), one shows
that u is measurable for the σ-field PT ⊗L(Rd×]0,1[), thus u ∈ N

2
w(0, T,L2

(Rd×]0,1[)). See Appendix
A.3.3 p.707 [BVW12].

Remark 12 (L∞(0, T ;L2
(Ω × Rd × (0,1)))) regularity of u) Since the sequence of approximate solu-

tions uT ,k is bounded in L∞(0, T ;L2
(Ω×Rd)) according to Proposition 1, following [BVW12] Remark 2.4

p.667-668 we show that u ∈ L∞(0, T ;L2
(Ω ×Rd × (0,1))).

Note that if one is able to show that u is a measure-valued entropy solution of Problem (1) in the sense of
Definition 2, then, using the reduction result of [BVW12] stated in Theorem 1, we will be able to conclude
that all the sequence uT ,k converges in L1

loc(Ω×Q) to the unique stochastic entropy solution of (1) in the
sense of Definition 1. Since u satisfied the regularities required by Definition 2, it remains to show that
u satisfies the following entropy inequalities:
∀η ∈ A, ∀ϕ ∈ D

+
(Rd × [0, T )) and P-a.s. in Ω

0 ⩽ ∫
R
η(u0)ϕ(x,0)dx + ∫

Q
∫

1

0
{η(u(., α))∂tϕ(x, t) + F

η
(u(., α))v.∇xϕ(x, t)}dαdxdt

+∫

T

0
∫

Rd
∫

1

0
η′(u(., α))g(u(., α))ϕ(x, t)dαdxdW (t)

+
1

2 ∫Q
∫

1

0
g2

(u(., α))η′′(u(., α))ϕ(x, t)dαdxdt.

This is the aim of the next section.

5 Convergence of the scheme
We propose in this section entropy inequalities satisfied by the finite volume approximate solution and aim
to pass to the limit in these formulations in order to show the convergence of the scheme. For technical
reasons, one needs to consider a time-continuous approximate solution constructed from uT ,k, denoted
vT ,k in the sequel.

5.1 A time-continuous approximation
Set K ∈ T , n ∈ {0, ...,N − 1} and consider vK the stochastic process defined on Ω × [nk, (n + 1)k] from
the discrete unknowns unK by :

vK(ω, s) = unK +
s − nk

∣K ∣
∑
σ∈EK

∣σ∣(v.nK,σ)
−
(f(unσ) − f(u

n
K)) + g(unK)(W (s) −W (nk))

= unK + ∫

s

nk
∑
σ∈EK

∣σ∣(v.nK,σ)
− f(u

n
σ) − f(u

n
K)

∣K ∣
dt + ∫

s

nk
g(unK)dW (t). (13)

12



In this way, vK(ω,nk) = unK and vK(ω, (n + 1)k) = un+1
K .

Let us now define the time-continuous approximate solution vT ,k on Ω ×Rd × [0, T ) by

vT ,k(ω,x, t) = vK(ω, t), ω ∈ Ω, x ∈K and t ∈ [0, T ). (14)

We now estimate the difference between the continuous approximation vT ,k and the finite volume solution
uT ,k.

Proposition 3 Let u0 ∈ L
2
(Rd) and T be an admissible mesh in the sense of Definition 3, N ∈ N⋆ and

let k = T
N
∈ R⋆

+ satisfying the CFL Condition (12).
Let vT ,k be the time-continuous approximate solution defined by (13) and (14), and uT ,k be the finite
volume approximate solution defined by (8) and (9).
Then there exists C1,C2 ∈ R⋆

+ independent of h and k such that

∣∣uT ,k − vT ,k ∣∣
2
L2(Ω×Q) ⩽ C1h +C2k.

Proof.

∣∣uT ,k − vT ,k ∣∣
2
L2(Ω×Q)

= ∑
K∈T

N−1

∑
n=0

∫

(n+1)k

nk
∫
K
E

⎡
⎢
⎢
⎢
⎢
⎣

( − g(unK)(W (s) −Wn
) −

s − nk

∣K ∣
∑
σ∈EK

∣σ∣(v.nK,σ)
−
(f(unσ) − f(u

n
K)))

2⎤
⎥
⎥
⎥
⎥
⎦

dxds

= ∑
K∈T

N−1

∑
n=0

∫

(n+1)k

nk
∫
K
E[(g(unK)(Wn

−W (s)))
2

] +E[(
s − nk

∣K ∣
∑
σ∈EK

∣σ∣(v.nK,σ)
−
(f(unσ) − f(u

n
K)))

2

]dxds

⩽ ∑
K∈T

N−1

∑
n=0

∣K ∣k2C2
gE[(unK)

2
] + k

k2

∣K ∣
∣∂K ∣V ∑

σ∈EK
∣σ∣(v.nK,σ)

−E[(f(unσ) − f(u
n
K))

2

]

⩽ kC2
g ∣∣uT ,k ∣∣

2
L2(Ω×Q) + ∑

K∈T

N−1

∑
n=0

k(1 − ξ)2α4 h2

V 2C2
f

1

αhd
hd−1

α
V ∑
σ∈EK

∣σ∣(v.nK,σ)
−E[(f(unσ) − f(u

n
K))

2

]

⩽ kC2
g ∣∣uT ,k ∣∣

2
L2(Ω×Q) + h

(1 − ξ)2α2

V C2
f

∑
K∈T

N−1

∑
n=0

k ∑
σ∈EK

∣σ∣(v.nK,σ)
−E[(f(unσ) − f(u

n
K))

2

]

⩽ kC2
g ∣∣uT ,k ∣∣

2
L2(Ω×Q) + h

(1 − ξ)2α2

V C2
f

C1,

where we have used the constant C1 given by Proposition 2.

5.2 Entropy inequalities for the approximate solution
In this section, an entropy estimate of the approximate solution is proved (Proposition 5), which will be
used in the proof of convergence of the numerical scheme (Theorem 3). In order to obtain this entropy
estimate, some discrete entropy inequalities satisfied by the approximate solution are first derived in the
following proposition.

Proposition 4 (Discrete entropy inequalities) Assume that hypotheses H1 to H4 hold. Let T be an
admissible mesh in the sense of Definition 3, N ∈ N⋆ and let k = T

N
∈ R⋆

+ be the time step and assume that

k

h
→ 0 as h→ 0. (15)

Then P-a.s in Ω, for any η ∈ A and for any ϕ ∈ D
+
(Rd × [0, T )):

−
N−1

∑
n=0

∑
K∈TR

∫
K

(η(un+1
K ) − η(unK))ϕ(x,nk)dx

+
N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
∫
K
F η(unK)v.∇xϕ(x,nk)dxdt

+
N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
∫
K
η′(unK)g(unK)ϕ(x,nk)dxdW (t)

+
1

2

N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
∫
K
η′′(unK)g2

(unK)ϕ(x,nk)dxdt

⩾ Rh,k (16)

where for any P-measurable set A, E[1AR
h,k

] → 0 as h→ 0.
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Proof. The proof of this proposition will be separated in two steps: in the first one we will show that
inequality (16) holds for a convenient Rh,k and in the second step, we will prove that for any P-measurable
set A, E[1AR

h,k
] → 0 as h→ 0.

Let T > 0, u0 ∈ L
2
(Rd), T be an admissible mesh in the sense of Definition 3, N ∈ N⋆ and k = T

N
∈ R⋆

+. We
assume that k/h→ 0 as h→ 0, in this way we can suppose that the CFL condition

k ⩽
(1 − ξ)α2h

CfV
,

holds for some ξ ∈ (0,1). In this manner, the estimates given by Proposition 1 and Proposition 2 hold.
Consider η ∈ A and ϕ ∈ D

+
(Rd × [0, T )), thus there exists R > h such that suppϕ ⊂ B(0,R − h) × [0, T [.

We also define TR = {K ∈ T such that K ⊂ B(0,R)}.

Step 1: Let us show that inequality (16) holds for a convenient Rh,k.
The application of Itô’s formula to the process vK defined by Equation (13) and the function F ∶ (t, v) ∈
[0, T ] ×R↦ η(v) ∈ R on the interval [nk, (n + 1)k] yields P-a.s in Ω

η(vK((n + 1)k)) =+η(vK(nk)) + ∫
(n+1)k

nk
η′(vK(t)) ∑

σ∈EK
∣σ∣(v.nK,σ)

− f(u
n
σ) − f(u

n
K)

∣K ∣
dt

+ ∫

(n+1)k

nk
η′(vK(t))g(unK)dW (t)

+
1

2 ∫
(n+1)k

nk
η′′(vK(t))g2

(unK)dt. (17)

Let us multiply Equation (17) by ∣K ∣ϕnK , where ϕnK =
1

∣K ∣
∫
K
ϕ(x,nk)dx, and sum for all K ∈ TR and

n ∈ {0, ...,N − 1}. One gets P-a.s in Ω

N−1

∑
n=0

∑
K∈TR

[η(un+1
K ) − η(unK)] ∣K ∣ϕnK =+

N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
η′(vK(t)) ∑

σ∈EK
∣σ∣(v.nK,σ)

−
(f(unσ) − f(u

n
K))dtϕnK

+
N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
η′(vK(t))g(unK)dW (t)∣K ∣ϕnK

+
1

2

N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
η′′(vK(t))g2

(unK)dt∣K ∣ϕnK .

This can be written as Ah,k = Bh,k +Ch,k +Dh,k, where

Ah,k =
N−1

∑
n=0

∑
K∈TR

[η(un+1
K ) − η(unK)] ∣K ∣ϕnK ,

Bh,k =
N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
η′(vK(t)) ∑

σ∈EK
∣σ∣(v.nK,σ)

−
(f(unσ) − f(u

n
K))dtϕnK ,

Ch,k =
N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
η′(vK(t))g(unK)dW (t)∣K ∣ϕnK ,

Dh,k
=

1

2

N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
η′′(vK(t))g2

(unK)dt∣K ∣ϕnK .

Let us analyze separately these terms.

1. Study of Ah,k: we note that −Ah,k is equal to the first left hand side term of inequality (16).

2. Study of Bh,k: we decompose Bh,k in the following way

Bh,k = Bh,k − B̃h,k + B̃h,k −Bh,k1 +Bh,k1 ,

where

B̃h,k =
N−1

∑
n=0

∑
K∈TR

kη′(unK) ∑
σ∈EK

∣σ∣(v.nK,σ)
−
(f(unσ) − f(u

n
K))ϕnK

Bh,k1 =
N−1

∑
n=0

∑
K∈TR

k ∑
σ∈EK

∣σ∣(v.nK,σ)
−
[F η(unσ) − F

η
(unK)]ϕnK ,

Firstly, note that

B̃h,k −Bh,k1 =
N−1

∑
n=0

∑
K∈TR

k ∑
σ∈EK

∫
σ
(v.nK,σ)

−
[η′(unK)(f(unσ) − f(u

n
K)) − (F η(unσ) − F

η
(unK))]ϕnK .

14



Since f and η′ are nondecreasing one gets

η′(unK)[f(unσ) − f(u
n
K)] − [F η(unσ) − F

η
(unK)] = ∫

unσ

un
K

η′(unK)f ′(s)ds − ∫
unσ

un
K

η′(s)f ′(s)ds

= ∫

unσ

un
K

(η′(unK) − η′(s))f ′(s)ds

⩽ 0,

thus B̃h,k −Bh,k1 ⩽ 0.
Secondly, since divv = 0, Bh,k1 can be rewritten as

Bh,k1 = −
N−1

∑
n=0

∑
K∈TR

k ∑
σ∈EK

∣σ∣v.nK,σF
η
(unσ)ϕ

n
K .

By denoting xσ the center of the edge σ and ϕnσ the value ϕ(xσ, nk), note that since nK,σ = −nL,σ if
σ =K ∣L, and unσ = unK if v.nK,σ ≥ 0 and unσ = unL if v.nK,σ < 0, one gets

N−1

∑
n=0

∑
K∈TR

k ∑
σ∈EK

∣σ∣v.nK,σF
η
(unσ)ϕ

n
σ = 0,

and so

Bh,k1 = −
N−1

∑
n=0

∑
K∈TR

k ∑
σ∈EK

∣σ∣v.nK,σF
η
(unσ) [ϕ

n
K − ϕnσ] ,

which can also be rewritten as

Bh,k1 = −
N−1

∑
n=0

∑
K∈TR

k ∑
σ∈EK

∣σ∣v.nK,σF
η
(unK) [ϕnK − ϕnσ] +R

h,k
1 ,

where

Rh,k1 =
N−1

∑
n=0

∑
K∈TR

k ∑
σ∈EK

∣σ∣v.nK,σ [F η(unK) − F η(unσ)] [ϕ
n
K − ϕnσ] .

Using again the fact that divv = 0, Bh,k1 is also equal to

Bh,k1 =
N−1

∑
n=0

∑
K∈TR

k
⎛

⎝
∑
σ∈EK

∣σ∣v.nK,σϕ
n
σ

⎞

⎠
F η(unK) +Rh,k1 .

In this manner, Bh,k1 can be rewritten as Bh,k1 = Th,k2 +Rh,k1 , where

Th,k2 =
N−1

∑
n=0

k ∑
K∈TR

∑
σ∈EK

∫
σ
v.nK,σϕ(x,nk)dγ(x)F

η
(unK) +Rh,k2 ,

and

Rh,k2 =
N−1

∑
n=0

k ∑
K∈TR

∑
σ∈EK

[∣σ∣v.nK,σϕ
n
σ − ∫

σ
v.nK,σϕ(x,nk)dγ(x)]F

η
(unK).

Moreover,

k
N−1

∑
n=0

∑
K∈TR

∑
σ∈EK

∫
σ
v.nK,σϕ(x,nk)dγ(x)F

η
(unK) = k

N−1

∑
n=0

∑
K∈TR

∫
∂K

v.nK,σϕ(x,nk)dγ(x)F
η
(unK)

= k
N−1

∑
n=0

∑
K∈TR

∫
K

div (vϕ(x,nk))dxF η(unK)

= k
N−1

∑
n=0

∑
K∈TR

∫
K
F η(unK)v.∇xϕ(x,nk)dx,

and in this way

Bh,k1 = Rh,k1 +Rh,k2 +
N−1

∑
n=0

k ∑
K∈TR

∫
K
F η(unK)v.∇xϕ(x,nk)dx.
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Finally,

Bh,k ⩽ Bh,k − B̃h,k +Bh,k1

= Bh,k − B̃h,k +Rh,k1 +Rh,k2 +
N−1

∑
n=0

k ∑
K∈TR

∫
K
F η(unK)v.∇xϕ(x,nk)dx.

3. Study of Ch,k: we decompose Ch,k in the following way

Ch,k = Ch,k − C̃h,k + C̃h,k,

where

C̃h,k = ∑
K∈TR

N−1

∑
n=0

∫
K
∫

(n+1)k

nk
η′(unK)g(unK)ϕ(x,nk)dW (t)dx. (18)

4. Study of Dh,k: we decompose Dh,k in the following way

Dh,k
=Dh,k

− D̃h,k
+ D̃h,k,

where

D̃h,k
=

1

2

N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
∫
K
η′′(unK)g2

(unK)ϕ(x,nk)dxdt. (19)

Since P a.s in Ω, Ah,k = Bh,k +Ch,k +Dh,k, we get

−Ah,k +
N−1

∑
n=0

k ∑
K∈TR

∫
K
F η(unK)v.∇xϕ(x,nk)dx + C̃

h,k
+ D̃h,k

⩾ B̃h,k −Bh,k + C̃h,k −Ch,k + D̃h,k
−Dh,k

−Rh,k1 −Rh,k2 ,

i.e.

−
N−1

∑
n=0

∑
K∈TR

∫
K

(η(un+1
K ) − η(unK))ϕ(x,nk)dx

+
N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
∫
K
F η(unK)v.∇xϕ(x,nk)dxdt

+
N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
∫
K
η′(unK)g(unK)ϕ(x,nk)dxdW (t)

+
1

2

N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
∫
K
η′′(unK)g2

(unK)ϕ(x,nk)dxdt

⩾ B̃h,k −Bh,k + C̃h,k −Ch,k + D̃h,k
−Dh,k

−Rh,k1 −Rh,k2 ,

one finally gets inequality (16) by choosing

Rh,k = B̃h,k −Bh,k + C̃h,k −Ch,k + D̃h,k
−Dh,k

−Rh,k1 −Rh,k2 . (20)

Step 2: Let us show that for any P-measurable set A, E[1AR
h,k

] → 0 as h→ 0.

Consider A a P-measurable set and let us analyze separately the convergence of E[1A(B̃
h,k

− Bh,k)],

E[1A(C̃
h,k

−Ch,k)], E[1A(D̃
h,k

−Dh,k
)], E[1A(R

h,k
1 )] and E[1A(R

h,k
2 )].

1. Convergence of E[1A(B̃
h,k

−Bh,k)]

Note that here the assumption k/h→ 0 as h→ 0 is crucial.

∣E[1A(B̃
h,k

−Bh,k)]∣ =

RRRRRRRRRRRR

E

⎡
⎢
⎢
⎢
⎢
⎣

N−1

∑
n=0

∑
K∈TR

1A ∫
(n+1)k

nk
{η′(vK(s)) − η′(unK)}ds ∑

σ∈EK
∣σ∣(v.nK,σ)

−
(f(unσ) − f(u

n
K))ϕnK

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

=

RRRRRRRRRRRR

E

⎡
⎢
⎢
⎢
⎢
⎣

N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
1Aη

′′
(ξnK){vK(s) − unK}ds ∑

σ∈EK
∣σ∣(v.nK,σ)

−
(f(unσ) − f(u

n
K))ϕnK

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

⩽

RRRRRRRRRRRRR

E

⎡
⎢
⎢
⎢
⎢
⎣

N−1

∑
n=0

∑
K∈TR

1A ∫
(n+1)k

nk
η′′(ξnK)

s − nk

∣K ∣
ds

⎛

⎝
∑
σ∈EK

∣σ∣(v.nK,σ)
−
(f(unσ) − f(u

n
K))

⎞

⎠

2

ϕnK

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRRR

+

RRRRRRRRRRR

E[
N−1

∑
n=0

∑
K∈TR

1A ∫
(n+1)k

nk
η′′(ξnK)g(unK)(W (s) −W (nk))ds

× ∑
σ∈EK

∣σ∣(v.nK,σ)
−
(f(unσ) − f(u

n
K))ϕnK]

RRRRRRRRRRR

=T̃h,k1 + T̃h,k2 ,
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We analyze separately T̃h,k1 and T̃h,k2 . Note that in both cases, we use the constant C1 > 0 given by the
weak BV estimate of Proposition 2 and the assumption (3) on the mesh.

∣T̃h,k1 ∣ =

RRRRRRRRRRRRR

E

⎡
⎢
⎢
⎢
⎢
⎣

N−1

∑
n=0

∑
K∈TR

1A ∫
(n+1)k

nk
η′′(ξnK)

s − nk

∣K ∣
ds

⎛

⎝
∑
σ∈EK

∣σ∣(v.nK,σ)
−
(f(unσ) − f(u

n
K))

⎞

⎠

2

ϕnK

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRRR

⩽ ∥η′′∥∞∥ϕ∥∞
N−1

∑
n=0

∑
K∈TR

k
k

∣K ∣

⎛

⎝
∑
σ∈EK

∣σ∣(v.nK,σ)
−⎞

⎠

⎛

⎝
∑
σ∈EK

∣σ∣(v.nK,σ)
−E[(f(unσ) − f(u

n
K))

2
]
⎞

⎠

⩽ ∥η′′∥∞∥ϕ∥∞V
N−1

∑
n=0

∑
K∈TR

k
k

∣K ∣
∣∂K ∣ ∑

σ∈EK
∣σ∣(v.nK,σ)

−E[(f(unσ) − f(u
n
K))

2
]

⩽ ∥η′′∥∞∥ϕ∥∞V
k

α2h

N−1

∑
n=0

k ∑
K∈TR

∑
σ∈EK

∣σ∣(v.nK,σ)
−E[(f(unσ) − f(u

n
K))

2
]

⩽
k

h
∥η′′∥∞∥ϕ∥∞

V

α2
C1

→ 0 as h→ 0.

∣T̃h,k2 ∣
2
=

RRRRRRRRRRRR

E

⎡
⎢
⎢
⎢
⎢
⎣

N−1

∑
n=0

∑
K∈TR

∫
K
∫

(n+1)k

nk
1Aϕ(x,nk)η

′′
(ξnK)g(unK){W (s) −W (nk)}dsdx ∑

σ∈EK
∣σ∣(v.nK,σ)

−
(
f(unσ) − f(u

n
K)

∣K ∣
)

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

2

⩽ E

⎡
⎢
⎢
⎢
⎢
⎣

N−1

∑
n=0

∑
K∈TR

∫
K
∫

(n+1)k

nk
∣1Aη

′′
(ξnK)ϕ(x,nk)g(unK)∣

2
dsdx

⎤
⎥
⎥
⎥
⎥
⎦

⩽ ×E

⎡
⎢
⎢
⎢
⎢
⎣

N−1

∑
n=0

∑
K∈TR

∫
K
∫

(n+1)k

nk

RRRRRRRRRRR

[W (s) −W (nk)] ∑
σ∈EK

∣σ∣(v.nK,σ)
−
(
f(unσ) − f(u

n
K)

∣K ∣
)

RRRRRRRRRRR

2

dsdx

⎤
⎥
⎥
⎥
⎥
⎦

⩽ kV ∥η′′∥2
∞∥ϕ∥2

∞C
2
g ∣∣uT ,k ∣∣

2
L2(Ω×Q)

N−1

∑
n=0

k ∑
K∈TR

∣∂K ∣

∣K ∣
∑
σ∈EK

∣σ∣(v.nK,σ)
−E[(f(unσ) − f(u

n
K))

2
]

⩽
k

h

C1V

α2
∥η′′∥2

∞∥ϕ∥2
∞C

2
gTe

TC2
g ∣∣u0∣∣

2
L2(Rd)

→ 0 as h→ 0.

In this way,
E[1A(B̃

h,k
−Bh,k)] → 0 as h→ 0.

2. Convergence of E[1A(C̃
h,k

−Ch,k)]

∣E[1A(C̃
h,k

−Ch,k)]∣ =

RRRRRRRRRRRR

E

⎡
⎢
⎢
⎢
⎢
⎣

∑
K∈TR

N−1

∑
n=0

∫
K

1A ∫
(n+1)k

nk
[η′(vK(t)) − η′(unK)]g(unK)ϕ(x,nk)dW (t)dx

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

⩽

RRRRRRRRRRRR

E

⎡
⎢
⎢
⎢
⎢
⎣

∑
K∈TR

N−1

∑
n=0

∫
K

1A ∫
(n+1)k

nk
[η′(vK(t)) − η′(unK)]g(unK) {ϕ(x,nk) − ϕ(x, t)}dW (t)dx

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

+

RRRRRRRRRRRR

E

⎡
⎢
⎢
⎢
⎢
⎣

∑
K∈TR

N−1

∑
n=0

∫
K

1A ∫
(n+1)k

nk
[η′(vK(t)) − η′(unK)]g(unK)ϕ(x, t)dW (t)dx

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

=Sh,k1 + Sh,k2 .

Using successively Cauchy-Schwarz inequality on Ω ×B(0,R) and Itô isometry one gets

Sh,k1 =

RRRRRRRRRRRR

E

⎡
⎢
⎢
⎢
⎢
⎣

∑
K∈TR

N−1

∑
n=0

∫
K

1A ∫
(n+1)k

nk
{η′(vK(t)) − η′(unK)}g(unK){ϕ(x,nk) − ϕ(x, t)}dW (t)dx

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

⩽
√

∣B(0,R)∣
N−1

∑
n=0

⎡
⎢
⎢
⎢
⎢
⎣

∑
K∈TR

∫
K
E

⎡
⎢
⎢
⎢
⎣
(∫

(n+1)k

nk
{η′(vK(t)) − η′(unK)}g(unK){ϕ(x,nk) − ϕ(x, t)}dW (t))

2⎤
⎥
⎥
⎥
⎦
dx

⎤
⎥
⎥
⎥
⎥
⎦

1/2

=
√

∣B(0,R)∣
N−1

∑
n=0

⎡
⎢
⎢
⎢
⎢
⎣

∑
K∈TR

∫
K
∫

(n+1)k

nk
E[{η′(vK(t)) − η′(unK)}

2
g2

(unK){ϕ(x,nk) − ϕ(x, t)}
2
]dtdx

⎤
⎥
⎥
⎥
⎥
⎦

1/2

⩽
√
k
√

∣B(0,R)∣2Cg ∣∣ϕt∣∣∞∣∣η′∣∣∞
N−1

∑
n=0

k( ∑
K∈TR

∣K ∣E[(unK)
2
])

1/2

⩽
√
k
√

∣B(0,R)∣2Cg ∣∣ϕt∣∣∞∣∣η′∣∣∞Te
TC2

g/2∣∣u0∣∣L2(Rd)
→ 0 as h→ 0.
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Note that here Assumption H4 on the function g is important:

(Sh,k2 )
2
=

RRRRRRRRRRRR

E

⎡
⎢
⎢
⎢
⎢
⎣

N−1

∑
n=0

∑
K∈TR

1A ∫
K
∫

(n+1)k

nk
{η′(vK(t)) − η′(unK)}g(unK)ϕ(x, t)dW (t)dx

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

2

=

RRRRRRRRRRR

E [1A ∫
B(0,R) ∫

T

0
{η′(vT ,k) − η

′
(uT ,k)}g(uT ,k)ϕ(x, t)dW (t)dx]

RRRRRRRRRRR

2

⩽ ∣B(0,R)∣ ∫
B(0,R)

E
⎡
⎢
⎢
⎢
⎣
(∫

T

0
{η′(vT ,k) − η

′
(uT ,k)}g(uT ,k)ϕ(x, t)dW (t))

2⎤
⎥
⎥
⎥
⎦
dx

= ∣B(0,R)∣ ∫
B(0,R) ∫

T

0
E[{η′(vT ,k) − η

′
(uT ,k)}

2
g2

(uT ,k)ϕ
2
(x, t)]dtdx

⩽ ∣B(0,R)∣∥ϕ∥2
∞∥η′′∥2

∞∥g∥2
∞∥vT ,k − uT ,k∥

2
L2(Ω×Q)

→ 0 as h→ 0 using Proposition 3.

In this way,
E[1A(C̃

h,k
−Ch,k)] → 0 as h→ 0.

3. Convergence of E[1A(D̃
h,k

−Dh,k
)]

∣E[1A(D̃
h,k

−Dh,k
)]∣ =

RRRRRRRRRRRR

1

2
E

⎡
⎢
⎢
⎢
⎢
⎣

∑
K∈TR

N−1

∑
n=0

∫
K
∫

(n+1)k

nk
1A [η′′(unK) − η′′(vK(t))] g2

(unK)ϕ(x,nk)dxdt

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

⩽
1

2
∣∣g∣∣2∞∣∣ϕ∣∣∞∣∣η′′(uT ,k) − η

′′
(vT ,k)∣∣L1(Ω×B(0,R)×(0,T ))

→ 0 as h→ 0 using Proposition 3.

4. Convergence of E[1A(R
h,k
1 )]

Thanks to the weak BV estimate stated in Proposition 2, one shows that E [1AR
h,k
1 ] → 0 as h → 0.

Indeed,

∣E[1AR
h,k
1 ]∣ =

RRRRRRRRRRRR

E

⎡
⎢
⎢
⎢
⎢
⎣

N−1

∑
n=0

∑
K∈TR

1Ak ∑
σ∈EK

∣σ∣v.nK,σ [F η(unK) − F η(unσ)] [ϕ
n
K − ϕnσ]

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

=

RRRRRRRRRRRR

E

⎡
⎢
⎢
⎢
⎢
⎣

N−1

∑
n=0

∑
K∈TR

1Ak ∑
σ∈EK

∣σ∣(v.nK,σ)
−
[F η(unK) − F η(unσ)] [ϕ

n
K − ϕnσ]

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

⩽ ∥ϕx∥∞h
N−1

∑
n=0

k ∑
K∈TR

∑
σ∈EK

∣σ∣(v.nK,σ)
−E [∣∫

unK

unσ

η′(s)f ′(s)ds∣]

⩽ ∥ϕx∥∞∥η′∥∞h
N−1

∑
n=0

k ∑
K∈TR

∑
σ∈EK

∣σ∣(v.nK,σ)
−E[ ∣f(unσ) − f(u

n
K)∣ ]

⩽
h

√
h
C∥ϕx∥∞∥η′∥∞

→ 0 as h→ 0,

where C is the constant given by Proposition 2.

5. Convergence of E[1A(R
h,k
2 )]

By denoting xσ the center of the edge σ, let us recall that Rh,k2 is equal to

N−1

∑
n=0

k ∑
K∈TR

∑
σ∈EK

[∣σ∣v.nK,σϕ(xσ, nk) − ∫
σ
v.nK,σϕ(x,nk)dγ(x)]F

η
(unK).

Using the regularity of ϕ we have for all x ∈ σ

ϕ(x,nk) = ϕ(xσ, nk) + ϕ
′
(xσ, nk)(x − xσ) + (x − xσ)ε(x − xσ),

where ε(x − xσ) → 0 as x − xσ → 0. In this way,

Rh,k2 = −
N−1

∑
n=0

k ∑
K∈TR

∑
σ∈EK

[∫
σ
v.nK,σ{ϕ

′
(xσ, nk)(x − xσ) + (x − xσ)ε(x − xσ)}dγ(x)]F

η
(unK).
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Since xσ denotes the center of the edge σ,

∫
σ
ϕ′(xσ, nk)(x − xσ)dγ(x) = 0.

Moreover,

∣∫
σ
(x − xσ)ε(x − xσ)dγ(x)∣ ⩽ ∣σ∣hε(h),

where ε(h) → 0 as h→ 0. Thus,

∣E[1AR
h,k
2 ]∣ ⩽ V

N−1

∑
n=0

∑
K∈TR

∑
σ∈EK

kE[∣F η(unK)∣]∣σ∣hε(h)

⩽ V Cf∥η
′
∥∞ε(h)

N−1

∑
n=0

∑
K∈TR

k
hd

α
E[∣unK ∣]

⩽
V

α2
Cf ε(h)

N−1

∑
n=0

∑
K∈TR

k∣K ∣E[∣unK ∣]

⩽
V

α2
Cf ε(h)∣∣uT ,k ∣∣L1(Ω×(0,T )×B(0,R))

→ 0 as h→ 0.

To summarize, we proved in this second step that E[1AR
h,k

] → 0 as h → 0 which concludes the proof of
the proposition.

The following proposition investigates the entropy inequalities which are satisfied by the approximate
solution uT ,k.

Proposition 5 (Continuous entropy inequality on the discrete solution) Assume that hypotheses
H1 to H4 hold. Let T be an admissible mesh in the sense of Definition 3, N ∈ N⋆ and let k = T

N
∈ R⋆

+ be
the time step and assume that

k

h
→ 0 as h→ 0. (21)

Then, P-a.s. in Ω, for any η ∈ A and for any ϕ ∈ D
+
(Rd × [0, T )):

∫
Rd
η(u0)ϕ(x,0)dx + ∫

Q
η(uT ,k)ϕt(x, t)dxdt + ∫

Q
F η(uT ,k)v.∇xϕ(x, t)dxdt

+∫

T

0
∫

Rd
η′(uT ,k)g(uT ,k)ϕ(x, t)dxdW (t) +

1

2 ∫Q
η′′(uT ,k)g

2
(uT ,k)ϕ(x, t)dxdt

⩾ R̃h,k (22)

where for any P-measurable set A, E[1AR̃
h,k

] → 0 as h→ 0.

Proof. The proof of this proposition will be separated in two steps: in the first one we will show that
inequality (22) holds for a convenient R̃h,k and in the second step, we will prove that for any P-measurable
set A, E[1AR̃

h,k
] → 0 as h→ 0.

Let T > 0, u0 ∈ L
2
(Rd), T be an admissible mesh in the sense of Definition 3, N ∈ N⋆ and k = T

N
∈ R⋆

+. We
assume that k/h→ 0 as h→ 0. Consider η ∈ A and ϕ ∈ D

+
(Rd × [0, T )), thus there exists R > h such that

suppϕ ⊂ B(0,R − h) × [0, T [. We also define TR = {K ∈ T such that K ⊂ B(0,R)}.

Step 1: Let us show that inequality (22) holds for a convenient R̃h,k.

Note that the first term of inequality (16) given by Proposition 4 can be rewritten in the following
way:

−
N−1

∑
n=0

∑
K∈TR

[η(un+1
K ) − η(unK)]∫

K
ϕ(x,nk)dx

=∫

T

k
∫

Rd
η(uT ,k)ϕt(x, t − k)dxdt + ∑

K∈TR
∫
K
η(u0

K)ϕ(x,0)dx.

Indeed, thanks to the discrete integration by part formula

N

∑
n=1

an(bn − bn−1) = aNbN − a0b0 −
N−1

∑
n=0

bn(an+1 − an)
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and by using the fact that for all x in K ϕ(x,Nk) = 0 we get

∫

T

k
∫

Rd
η(uT ,k)ϕt(x, t − k)dxdt =+

N−1

∑
n=1

∑
K∈TR

∫
K
η(unK) [ϕ(x,nk) − ϕ(x, (n − 1)k)]dx

= −
N−1

∑
n=0

∑
K∈TR

∫
K

[η(un+1
K ) − η(unK)]ϕ(x,nk)dx

+ ∑
K∈TR

∫
K
η(uNK)ϕ(x,Nk) − η(u0

K)ϕ(x,0)dx

= −
N−1

∑
n=0

∑
K∈TR

∫
K

[η(un+1
K ) − η(unK)]ϕ(x,nk)dx

− ∑
K∈TR

∫
K
η(u0

K)ϕ(x,0)dx.

By denoting

Ch,k1 = ∫

T

0
∫

Rd
η′(uT ,k)g(uT ,k)ϕ(x, t)dxdW (t)

Dh,k
1 =

1

2 ∫Q
η′′(uT ,k)g

2
(uT ,k)ϕ(x, t)dxdt

one gets from inequality (16), inequality (22) with R̃h,k defined by

R̃h,k = Rh,k + ∫
Rd
η(u0)ϕ(x,0)dx − ∑

K∈TR
∫
K
η(u0

K)ϕ(x,0)dx

+∫
Q
η(uT ,k)ϕt(x, t)dxdt − ∫

T

k
∫

Rd
η(uT ,k)ϕt(x, t − k)dxdt

+∫
Q
F η(uT ,k)v.∇xϕ(x, t)dxdt −

N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
∫
K
F η(unK)v.∇xϕ(x,nk)dxdt

+Ch,k1 − C̃h,k +Dh,k
1 − D̃h,k.

where C̃h,k, D̃h,k,Rh,k are given respectively by (18), (19), (20) in the proof of the previous proposition.

Step 2: Let us show that for any P-measurable set A, E[1AR̃
h,k

] → 0 as h→ 0.
Thanks to Proposition 4, we know that for any P-measurable set A, E[1AR

h,k
] → 0 as h → 0. Then it

remains to study the convergence of the following quantities:

E

⎡
⎢
⎢
⎢
⎢
⎣

1A
⎛

⎝
∫

Rd
η(u0)ϕ(x,0)dx − ∑

K∈TR
∫
K
η(u0

K)ϕ(x,0)dx
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

,

E [1A (∫
Q
η(uT ,k)ϕt(x, t)dxdt − ∫

T

k
∫

Rd
η(uT ,k)ϕt(x, t − k)dxdt)] ,

E

⎡
⎢
⎢
⎢
⎢
⎣

1A
⎛

⎝
∫
Q
F η(uT ,k)v.∇xϕ(x, t)dxdt −

N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
∫
K
F η(unK)v.∇xϕ(x,nk)dxdt

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

,

E[1A(C
h,k
1 − C̃h,k)] and E[1A(D

h,k
1 − D̃h,k

)].

Let us analyze separately the convergence of these terms as h→ 0.

1. Convergence of E
⎡
⎢
⎢
⎢
⎢
⎣

1A
⎛

⎝
∫

Rd
η(u0)ϕ(x,0)dx − ∑

K∈TR
∫
K
η(u0

K)ϕ(x,0)dx
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

Since u0 ∈ L
1
loc(Rd), one shows that this term tends to 0 as h→ 0.

2. Convergence of E [1A (∫
Q
η(uT ,k)ϕt(x, t)dxdt − ∫

T

k
∫

Rd
η(uT ,k)ϕt(x, t − k)dxdt)]

Using the regularity of the function ϕ and the a priori estimate on uT ,k, one shows that this term tends
to 0 as h→ 0.

3. Convergence of E
⎡
⎢
⎢
⎢
⎢
⎣

1A
⎛

⎝
∫
Q
F η(uT ,k)v.∇xϕ(x, t)dxdt −

N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
∫
K
F η(unK)v.∇xϕ(x,nk)dxdt

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

Using again the regularity of the function ϕ and the a priori estimate on uT ,k, one shows that this term
tends to 0 as h→ 0.
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4. Convergence of E[1A(C
h,k
1 − C̃h,k)]

Using Cauchy-Schwarz inequality on Ω ×B(0,R) and Itô isometry one gets

∣E[1A(C
h,k
1 − C̃h,k)]∣ =

RRRRRRRRRRRR

E

⎡
⎢
⎢
⎢
⎢
⎣

1A
N−1

∑
n=0

∑
K∈TR

∫
K
∫

(n+1)k

nk
η′(unK)g(unK){ϕ(x,nk) − ϕ(x, t)}dW (t)dx

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

⩽
N−1

∑
n=0

√
∣B(0,R)∣

⎛

⎝
∑
K∈TR

∫
K
E

⎡
⎢
⎢
⎢
⎣
(∫

(n+1)k

nk
η′(unK)g(unK){ϕ(x,nk) − ϕ(x, t)}dW (t))

2⎤
⎥
⎥
⎥
⎦
dx

⎞

⎠

1/2

=
N−1

∑
n=0

√
∣B(0,R)∣

⎛

⎝
∑
K∈TR

∫
K
∫

(n+1)k

nk
E[(η′(unK)g(unK){ϕ(x,nk) − ϕ(x, t)})

2

]dtdx
⎞

⎠

1/2

⩽
√
k
√

∣B(0,R)∣Cg ∣∣ϕt∣∣∞∣∣η′∣∣∞
N−1

∑
n=0

k( ∑
K∈TR

∣K ∣E[(unK)
2
])

1/2

⩽
√
k
√

∣B(0,R)∣Cg ∣∣ϕt∣∣∞∣∣η′∣∣∞Te
TC2

g/2∣∣u0∣∣L2(Rd)
→ 0 as h→ 0.

5. Convergence of E[1A(D
h,k
1 − D̃h,k

)]

∣E[1A(D
h,k
1 − D̃h,k

)]∣ =

RRRRRRRRRRRR

1

2
E

⎡
⎢
⎢
⎢
⎢
⎣

N−1

∑
n=0

∑
K∈TR

∫

(n+1)k

nk
∫
K

1Aη
′′
(unK)g2

(unK)[ϕ(x,nk) − ϕ(x, t)]dxdt

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

⩽
1

2
k∣∣η′′∣∣∞∣∣g∣∣2∞∣∣ϕt∣∣∞T ∣B(0,R)∣

→ 0 as h→ 0.

To summarize, we proved in this second step that E[1AR̃
h,k

] → 0 as h→ 0, which concludes the proof of
the proposition.

5.3 Proof of the convergence
And we prove now the convergence of the finite volume approximation uT ,k to the stochastic entropy
solution of Problem (1).

Theorem 3 (Convergence to the stochastic entropy solution) Assume that hypotheses H1 to H4

hold. Let T be an admissible mesh in the sense of Definition 3, N ∈ N⋆ and let k = T
N

∈ R⋆
+ be the time

step and assume that

k

h
→ 0 as h→ 0. (23)

Let uT ,k be the finite volume approximation defined by (8) and (9). Then uT ,k converges in Lploc(Ω ×Q)

for any 1 ⩽ p < 2 to the unique stochastic entropy solution of (1) in the sense of Definition 1.

Proof. Let T be an admissible mesh in the sense of Definition 3, N ∈ N⋆ and let k = T
N
∈ R⋆

+ be the time
step such that k/h → 0 as h → 0. Consider A a P-measurable set, η ∈ A, ϕ ∈ D

+
(Rd × [0, T )), thus there

exists R > h such that suppϕ ⊂ B(0,R − h) × [0, T [. We also define TR = {K ∈ T such that K ⊂ B(0,R)}.
Let us multiply inequality (22) by 1A and take the expectation. This yields:

E[1A ∫
Rd
η(u0)ϕ(x,0)dx] +E[1A ∫

Q
η(uT ,k)ϕt(x, t)dxdt] +E[1A ∫

Q
F η(uT ,k)v.∇xϕ(x, t)dxdt]

+E[1A ∫
T

0
∫

Rd
η′(uT ,k)g(uT ,k)ϕ(x, t)dxdW (t)] +

1

2
E[1A ∫

Q
η′′(uT ,k)g

2
(uT ,k)ϕ(x, t)dxdt]

⩾ E[1AR̃
h,k

]. (24)

To show the convergence of uT ,k towards the unique stochastic entropy solution of our problem, we aim to
pass to the limit in the above inequality. Thanks to Proposition 5 we know that for any P-measurable set
A, E[1AR̃

h,k
] → 0 as h→ 0. Thus it remains to study the convergence of the left-hand side of (24). Recall

that thanks to the a priori estimate stated in Proposition 1, uT ,k converges (up to a subsequence denoted
in the same way) in the sense of Young measures to an “entropy process” denoted by u in L2

(Ω×Q×(0,1))
(see Section 4.3).
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1. Study of E[1A ∫
Q
η(uT ,k)ϕt(x, t)dxdt]

Note that Ψ ∶ (ω,x, t, ν) ∈ Ω × Q × R ↦ 1A(ω)η(ν)ϕt(x, t) ∈ R is a Carathéodory function such that
Ψ(., uT ,k) is bounded in L2

(Ω ×Q), thus

E [1A ∫
Q
η(uT ,k(x, t))ϕt(x, t)dxdt] → E [1A ∫

Q
∫

1

0
η(u(x, t, β))dβϕt(x, t)dxdt] as h→ 0.

2. Study of E[1A ∫
Q
F η(uT ,k)v.∇xϕ(x, t)dxdt]

Since F η(uT ,k) is bounded in L2
(Ω ×Q), using the same arguments as previously, we obtain

E [1A ∫
Q
F η(uT ,k)v.∇xϕ(x, t)dxdt] → E [1A ∫

Q
∫

1

0
F η(u(x, t, β))v.∇xϕ(x, t)dβdxdt] as h→ 0.

3. Study of E[1A ∫
T

0
∫

Rd
η′(uT ,k)g(uT ,k)ϕ(x, t)dxdW (t)]

By denoting Ψ ∶ (ω,x, t, ν) ∈ Ω × Q × R ↦ η′(ν)g(ν)ϕ(x, t) ∈ R, thanks to Proposition 1, Ψ(., uT ,k) is
bounded in L2

(Ω ×Q), and therefore Ψ(., uT ,k) converges weakly (up to a subsequence denoted in the
same way) in L2

(Ω ×Q) to an element called χ.
But, for any φ ∈ L2

(Ω×Q), (ω,x, t, ν) ∈ Ω×Q×R↦ φ(ω,x, t)Ψ(ω,x, t, ν) is a Carathéodory function such
that (φΨ(., uT ,k)) is uniformly integrable. It is based on the fact that for any subset H of Ω ×Q,

∫
H

∣φΨ(., uT ,k)∣dxdtdP ⩽ C(∣∣Ψ(., uT ,k)∣∣L2(H)) [∫
H

∣φ∣2dxdtdP ]
1/2

.

Thus, at the limit,

∫
Ω×Q

χφdxdtdP = ∫
Ω×Q ∫

1

0
Ψ(.,u(., β))dβφdxdtdP.

By identification, Ψ(., uT ,k) → ∫
1

0
Ψ(.,u(., β))dβ weakly in L2

(Ω×Q). Using now the linear continuity of

the stochastic integral from L2
(Ω×Q) to L2

(Ω×Rd), which implies the continuity for the weak topology:

∫

T

0
η′(uT ,k)g(uT ,k)ϕdW (t) → ∫

T

0
∫

1

0
η′(u(., β))g(u(., β))ϕdβdW (t) weakly in L2

(Ω ×Rd).

As 1A1B(0,R) ∈ L
2
(Ω ×Rd) one gets at the limit

E[1A ∫
T

0
∫

Rd
η′(uT ,k)g(uT ,k)ϕ(x, t)dxdW (t)] → E[1A ∫

T

0
∫

Rd
∫

1

0
η′(u(x, t, β))g(u(x, t, β))ϕ(x, t)dβdxdW (t)].

4. Study of
1

2
E[1A ∫

Q
η′′(uT ,k)g

2
(uT ,k)ϕ(x, t)dxdt]

Since Ψ ∶ (ω,x, t, ν) ∈ Ω × Q × R ↦ η′′(ν)g2
(ν)ϕ(x, t)1A(ω) ∈ R is a Carathéodory function such that

Ψ(., uT ,k) is bounded in L2
(Ω ×Q), at the limit we get:

1

2
E[1A ∫

Q
η′′(uT ,k)g

2
(uT ,k)ϕ(x, t)dxdt] →

1

2
E[1A ∫

Q
∫

1

0
η′′(u(x, t, β))g2

(u(x, t, β))ϕ(x, t)dβdxdt].

Finally, by passing to the limit in inequality (24), we obtain:
For any P-measurable set A, for any η ∈ A and for any ϕ ∈ D

+
(Rd × [0, T ))

0 ⩽ E[1A ∫
Rd
η(u0)ϕ(x,0)dx] +E[1A ∫

Q
∫

1

0
η(u(x, t, β))ϕt(x, t)dβdxdt]

+E[1A ∫
Q
∫

1

0
F η(u(x, t, β))v.∇xϕ(x, t)dβdxdt]

+E[1A ∫
T

0
∫

Rd
∫

1

0
η′(u(x, t, β))g(u(x, t, β))ϕ(x, t)dβdxdW (t)]

+E[1A
1

2 ∫Q
∫

1

0
η′′(u(x, t, β))g2

(u(x, t, β))ϕ(x, t)dβdxdt].

Hence u is a measure-valued entropy solution in the sense of Definition 2. Thanks to Theorem 1, u is
the unique stochastic entropy solution in the sense of Definition 1 and we denote it by u. Hence, all the
sequence of approximate solution uT ,k converges to u in L1

loc(Ω ×Q). In addition, since uT ,k is bounded
in L2

(Ω ×Q), all the sequence converges in Lploc(Ω ×Q) for any 1 ⩽ p < 2.
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