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CONSERVATIVE NUMERICAL SCHEMES FOR THE RADIAL

VLASOV-POISSON SYSTEM: STABILITY AND LANDAU

DAMPING

CYRIL RIGAULT

Abstract. In this paper, we build numerical conservative schemes for the ra-
dial Vlasov-Poisson system in order to observe the behavior of solutions around
steady states. These schemes are based on finite differences method and provide
the conservation of the mass (L1 norm) and the Hamiltonian. To assure these
properties and the convergence of the schemes we treat in particular the problem
of singularities linked to the radial geometry.

For the moment, this first version of this paper give the expression of the
schemes and proves the conservational properties The next version, coming very
soon, will add the visualization of the stable behavior and of the Landau Damping
phenomenon.

1. Introduction

The gravitational Vlasov-Poisson equation is a very well known stellar model
which describes the motion of a self-graviting system. In the general 3D case, it
takes the form







∂tf + v · ∇xf −∇xφf · ∇vf = 0, (t, x, v) ∈ R+ × R
3 × R

3,

f(t = 0, x, v) = f0(x, v) ≥ 0,
(1.1)

where the gravitational potential φf satisfies






△φf (x) = ρf (x) =

∫

R3

f(x, v)dv,

φf (x) → 0 quand |x| → +∞.
(1.2)

Our aim is this paper is to discuss trough numerical results about stability of sta-
tionary solutions for this system. In the past decade, our knowledge in this domain
improves greatly. In one hand, in a toric space, Villani and Mouhot [3] proved that
Landau Damping holds around all stationary solutions homogeneous in the velocity
variable v. Recently, Bedrossian, Masmoudi and Mouhot [1] gave a new, simpler,
proof for this result. In the other hand, in the entire R

3 × R
3 space, M. Lemou,

F. Méhats and P. Raphaël [4] proved the orbital stability of a very large class of
stationary solutions. However, in this case, the question of the Landau Damping
stays open.

In this paper we do not propose any theorical result but we build conservative
numerical schemes, which could be used to better understand the phenemenom of
Landau Damping for the Vlasov-Poisson system.
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To avoid the complexity corresponding to the 7 dimensions of the system (1.1),
we choose to restrain our study to the Vlasov-Poisson system in the radial coordi-
nates (|x|, |v|, |x · v|). This choice does not seems too restritive: indeed, all class of
stationary solutions which has been studied in previous articles are radial, up to a
translation shift in space.

Moreover we gain 3 dimensions which gives a set of work Ω defined by

Ω = {(r, u, s) ∈ R+ × R+ × R, |s| ≤ ru},
where the variables (r, u, s) correspond to (|x|, |v|, |x · v|). Hence, in radial coordi-
nates, the Vlasov-Poisson equation takes the form

∂tf +
s

r
∂rf − s

ru
φ′
f (r)∂uf +

(

u2 − rφ′
f (r)

)

∂sf = 0, (t, r, u, s) ∈ R+ × Ω, (1.3)

and the expressions of the gravitational force and the density can be rewrited

φ′
f (r) =

1

r2

∫

r̃<r

r̃2ρf (r̃)dr̃ and ρf (r) =
2π

r

∫

u>0, |s|<ru

f(r, u, s)ududs <; (1.4)

Remark that both equations (1.3) and (1.4) are not equivalent to the Vlasov-Poisson
system (1.1): indeed the set Ω has a typical form with a border

∂Ω = {(s, r, u) ∈ Ω, s = ru},
on which the border condition is

∇f · −→n = 0,

where −→n is the normal to the border ∂Ω. Then we have our complete system of
equations and we aim to obtain a numerical scheme to visualize their solutions.

First let talk about our numerical approach and about the type of method that we
will use. Our purpose is to obtain numerical conservative schemes mainly for three
reasons. The first one that some studies treat numerically this equation ([5] with
PIC methods, [2] with operator Splitting methods) but none of them preserved the
L1-norm and the Hamiltonien. Second it would imply the robustness of our scheme
and third it would be well adapted with the theorical studies which strongly use the
rigidity of the flow.

Hence in order to obtain this conservation we will choose numerical methods
based on finite diffenrences. Since the conservation of the mass takes the form

M(f(t)) := 8π2

∫

Ω

ruf(t, r, u, s)drduds = M(f0),

every finite differences scheme will give the preservation of the mass in the inner of
Ω. However, from the form of Ω, it seems rather complated to obtain a preserving
one’s near ∂Ω.

To avoid this difficulty, we proceed to a change of variables. Some new sets of
variables are possible, as for exemple

(r, u, θ) = (|x|, |v|, arccos( x · v
|x||v|)) or (r, q, l) = (|x|, x · v

|x| , |x ∧ v|),

but for all of them, a better form of domain corresponds to the appearance of
singularities in the equation. Hence, since the form of domain and the singularities
are linked (which is evident), we are going to take the best equilibrium between
these both difficulties.
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Note that a complexe form of domain is not as bad as it seems if the dimension
of the space is small. Thus, a first idea is to take as variable the invariants of the
transport operator

s

r
∂rf − s

ru
φ′
f (r)∂uf +

(

u2 − rφ′
f (r)

)

∂sf,

which are completely known for the radial case [?]: they are the microscopic energy
and the square of the kinetic momentum

e =
|v|2
2

+ φf (x) and L = |x ∧ v|2 = r2u2 − s2.

However, with these variables, an other problem appears: the time-dependance
of the domain (since the microscopic energy is not constant in time), which could
become an even bigger difficulty. To avoid it we remplace the our microscopic energy
variable e by the variable w = u2/2.

Our new set of variable is finally

(r, w, L) =

(

sgn(s)r,
u2

2
, r2u2 − s2

)

=
(

sgn(x · v)|x|, |v|, |x ∧ v|2
)

,

where sgn is the sign fonction. The prolongement of the variable r to all R is
necessary since the variable L = |x ∧ v|2 does not take into account the signe of
s = x · v. The domain of study is then

Γ = {(r, w, L) ∈ R× R+ × R+, L ≤ 2r2w},
and the kinetic equation (1.3) gives

∂tf +

√

2

(

w − L

2r2

)

∂rf − φ′
f (r)

√

2

(

w − L

2r2

)

∂wf = 0, (1.5)

where the gravitational field of force φ′
f and the density ρf are defined by

for all r ∈ R
∗, φ′

f (r) =
1

r2

∫ r

−r

r̃2ρf (r̃)dr̃,

for all r ∈ R
∗, ρf (r) =

2π

r2

∫ +∞

0

dw

∫ 2r2w

0

f(r, w, L)
√

2
(

w − L
2r2

)

dL.

(1.6)

Note that we have decompose the real density which corresponds to

ρf (r) + ρf (−r),

which explains the expression of φ′
f : here this field of forces is just the even pro-

longement of the real φ′
f . Moreover this change of variable brings some border

conditions: indeed if we decompose our domain such that

Γ =
⋃

L≥0

ΓL =
⋃

L≥0

{

(r, w, L) ∈ R× R+ × R+, 2r2w ≥ L
}

, (1.7)

the border domain ∂Γ appears in a graphic representation of ΓL (see figure 1) Then
the border conditions corresponds to the continuity of the distribution function f
and the conservation of the mass passing from one zone the other: from {r < 0} to



4 CYRIL RIGAULT

Figure 1. Sens of transport in the characteristic plan ΓL for L > 0.

{r > 0} or the inverse and since ΓL is a characterisitic plan (L is an invariant for
the transport operator), these conditions can be mathematicaly writed as

f(−r, w, 2r2w) = f(r, w, 2r2w) (1.8)

lim
r
√
2w→−

√
L
−

√

2

(

w − L

2r2

)

∇f ·n− = − lim
r
√
2w→−

√
L
+

√

2

(

w − L

2r2

)

∇f ·n+, (1.9)

where n+ and n− are the outgoing normals to ∂Ω respectively at r = −
√

L/2w

and at r =
√

L/2w. the second condition (1.9) implies en particular






























lim
r
√
2w→−

√
L
−

√

2

(

w − L

2r2

)

∂rf = lim
r
√
2w→−

√
L
+

√

2

(

w − L

2r2

)

∂rf,

lim
r
√
2w→−

√
L
−

√

2

(

w − L

2r2

)

∂wf = − lim
r
√
2w→−

√
L
+

√

2

(

w − L

2r2

)

∂wf.

(1.10)

If we look at the figure 1, these conditions correspond to the transfert of the mass
from A− to A+ and from B+ to B−.

Remark that the term
√

2
(

w − L
2r2

)

converges to 0 on the border domain. But

it is necessary to add it in the condition (1.10) to compensate a possible blow-up of
the gradiant ∇f . (this blow-up could appear even if f is a C

1 function on R
6.)

To complete this model and before considering its numerical study, we give the
expression of the mass and the Hamiltonian with these variables:

M(f(t)) = 8π2

∫

Γ

f(r, w, L)
√

2
(

w − L
2r2

)

drdwdL = Ml(f0), (1.11)

and

H(f(t)) = Ekin(f(t))− Epot(f(t)) = H(f0), (1.12)
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where the kinetic energy Ekin(f) and the potential energy Epot(f) are defined by


























Ekin(f) = 8π2

∫

Γ

wf(r, w, L)
√

2
(

w − L
2r2

)

drdwdL

Epot(f) = 2π

∫ +∞

0

r2
[

φ′
f (r)

]2
dr.

(1.13)

In the next section, we propose a numerical scheme which preserved the mass and
the Hamiltonian.

2. Numerical conservative schemes for the radial VP system

2.1. Discretisation and notations. At fixed T > 0 , we choose classic discreti-
sations (t0 = 0, ..., tn, ..., tN = T ) with tn = n∆t, and (rk)k≥1 and (wi)i≥1 such
that

for k ≥ 1, rk =
(

k − 1
2

)

∆r and r−k = −rk,

for i ≥ 1, wi =
(

i− 1
2

)

∆w.
(2.1)

Note that the time steps ∆t, ∆r and ∆w are constant. Futhermore, since it L is an
invariant of the transport operator, we can take a variable step for L as small as we
want (there will not be CFL condition on it) : thus, we assure the non emptiness
of the sets

{Lj , Lj < 2r2kwi}, at fixed rk and wi,

and a good approximation of the distribution for r and u small. Hence, for exemple,
by defining the subdivision (Lj)j≥0 corresponding to

0 <
∆L

2p
<

∆L

2p−1
< ... <

∆L

2
< ∆L < 2∆L < 3∆L < ... (2.2)

we could considere the following centred discretisation with respect of L:

for all j ≥ 0, Lj =
Lj + Lj+1

2
. (2.3)

It completes our system of discretisations. Now, let pass to the definition of our
numerical schem. We note (fn

k,i,j) the classical approximation

fn
k,i,j ≃ f(tn, rk, wi, Lj)

of the distribution function f , solution of the kinetic equation

∂tf +

√

2w − L

r2
∂rf − φ′

f (r)

√

2w − L

r2
∂wf = 0. (2.4)

on Γ with the border conditions (1.8) and (1.10). Then this approximation will
satisfies a numerical schem of the general form

Global scheme : Dtf
n =

f̃n+1 − f̃n

∆t
= −αk,i,jDrf

n+
[

φ′
fn

]

rk
αk,i,jDwf

n, (2.5)
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where Dr et Du are numerical diffential operators and the terms
[

φ′
fn

]

rk
and αk,i,j

are approximations of respectively, φ′
fn and

√

2w − L
r2

. In the expression of the

differential operator Dt, the terms f̃n are approximations of fn and their expressions
provide the order of the operator Dt.

To simplify the notation in the following study, for an differential operator D
and an identity operator (f) 7→ (f̃), we will not their differential adjoint operators,

respectively D∗ and (f) 7→ (f̃∗), which satisfy
∑

g∆f =
∑

f∆∗g and
∑

f̃ g =
∑

fg̃∗.

Finally, to complete the notations, we note mk,i,j , the local mass, which corresponds
to the following definitions:

Definition 2.1. From the distribution function (fn
k,i,j), we define numerically the

density (ρnk), the mass Mn, the gravitational field (En
k ) and the Hamiltonian Hn by

• ∀k ∈ N
∗, ρnk =

2π

r2k

∑

i,j
Lj+1<2r2

k
wi

mk,i,jf
n
k,i,j∆w(∆L)j ,

• Mn = 4π
+∞
∑

k=1

r2k
(

ρnk + ρn−k

)

∆r = 8π2
∑

k,i,j
Lj+1<2r2

k
wi

mk,i,jf
n
k,i,j∆r∆u(∆L)j ,

• En
k =

1

r2k

k
∑

k̃=−k+1

I
k̃
(r2ρn)∆r, where I

k̃
(g)∆r ≃

∫ rk
rk−1

gdr,

• Hn = En
cin − En

pot, avec



























En
cin = 8π2

∑

k,i,j
Lj+1<2r2

k
wi

wimk,i,jf
n
k,i,j∆r∆u(∆L)j

En
pot = 2π

+∞
∑

k=1

r2k (E
n
k )

2∆r.

(2.6)

In the next part, we precise this notation, which are very general for the moment.

2.2. Conservative numerical schemes. We propose here to give the expression
of all the quantities define in the previous part. This expression will come from our
purpose to have conservative and converging schems.

2.2.1. First order expansion with respect of the kinetic momentum L and conserva-

tion of the mass. Let first precise the local mass mk,i,j . At fixed r and w non zeros,

and for Lj+1 < 2r2w, a first order Taylor expansion of f around Lj provides

∫ Lj+1

Lj

f
√

2w − L
r2

dL = 2r2





√

2w − Lj

r2
−

√

2w − Lj+1

r2



 (f(r, w, Lj) + ((∆L)j)) .
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Figure 2. Discretisation at fixed w > 0 and L > 0

Thus we define mk,i,j by

mk,i,j(∆L)j = 2r2

(
√

2wi −
Lj

r2k
−
√

2wi −
Lj+1

r2k

)

. (2.7)

With the same approach, we approximate the terms
√

2w − L
r2

in (2.4) by

αk,i,j =
1

2

(
√

2wi −
Lj

r2k
+

√

2wi −
Lj+1

r2k

)

, (2.8)

which implies mk,i,jαk,i,j = 1 for all (k, i, j). By supposing that Dr and Du are
independant of the variable Lj , we obtain then the conservation of the mass. Let
detail this property for the operator Dr. At fixed w > 0 and L > 0, let watch
the figure 2. To have the stability of the scheme, for k 6= k0, we choose an upwind
scheme of the form

Drfk =
fk − fk−1

∆r
,

where (f) 7→ (f) is an identity operator. This operator is consistant. To assure the
conservation of the mass, we have then to take in k = k0

Drfk0 =
fk0

− f−k0

∆r
, (2.9)

instead of the expression Drfk0 =
fk0

−f
−k0

2∆
which seems consistant. In reality,

to study consistance, we have to study both terms α and Dr together and not
separately. Indeed in the theorical model and near the border ∂rf blows up and α
goes to 0. Thus, in fact, the conservation of the mass brings consistance. Hence the
definitions of the operator Dr and Dw follows:

Definition of the differential operators Dr and Dw

For (k, i, j) such that Lj+1 < 2r2kwi, we note






















































∀i > 0, Drkf
n =

f
n

k − f
n

k−1

∆r
, if rk−1 >

√

Lj+1

2wi

or if rk < −

√

Lj+1

2wi

,

∀k > 0, Dwi
fn =

f̂n
i+1 − f̂n

i

∆w
, if wi >

Lj+1

2r2k
,

∀k < 0, Dwi
fn =

f̂n
i − f̂n

i−1

∆w
, if wi−1 >

Lj+1

2r2k
,

(2.10)
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with the border conditions,



























∀i > 0, Drkf
n =

f
n

k − f
n

−k

∆r
if rk−1 ≤

√

Lj+1

2wi

< rk,

∀k < 0, Dwi
fn =

f̂n
−k,i − f̂n

k,i

∆w
if wi−1 ≤

Lj+1

2r2k
< wi.

(2.11)

where the application (f) 7→ (f) and (f) 7→ (f̂) are approximation of the identity
which we choose in function of the desired order of the differential operators.

With these definition, the scheme (2.5) isconservative. Moreover to assure its
convergence, we need, of course, that a CFL condition

√
2wi

∆t

∆r
+
∣

∣

∣

[

φ′
fn

]

rk

∣

∣

∣

∆t

∆w
< 1. (2.12)

is satisfied. Now let give the expression of the field
[

φ′
fn

]

rk
to obtain the conserva-

tion of the Hamiltonian.

2.2.2. Approximation of the gravitational field for the conservation of the Hamil-

tonian. We begin by analysing the variation of the potential energy given in the
Definition 2.1:

En
pot = 2π

+∞
∑

k=1

r2k (E
n
k )

2∆r,

where the gravitational field En
k is even and satisfies

for all k > 0, r2kE
n
k =

k
∑

k̃=−k+1

I
k̃
(r2ρn)∆r.

We first remark that

Dt

(

En
pot

)

=
Ẽn+1

pot − Ẽn
pot

∆t
= 4π

+∞
∑

k=1

Dt

(

r2kE
n
k

) Ẽn+1
k + Ẽn

k

2
∆r. (2.13)

Furthermore, to determine the variation of Dt

(

r2kE
n
k

)

, we notice from the previous
study on the mass conservation that

Dt(r
2
kρ

n
k) = 2π

∑

i,j
Lj+1<2r2

k
wi

mk,i,jDt(f
n
k,i,j)∆w(∆L)j ,

= −2π
∑

i,j
Lj+1<2r2

k
wi

f
n

k − f
n

k−1

∆r
∆w(∆L)j ,
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where we use the numerical scheme (2.5). Thus we obtain

Dt

(

r2kE
n
k

)

= −2π
∑

k̃=−k+1:k

∑

i,j
Lj+1<2r2

k
wi

I
k̃
(f

n

k − f
n

k−1)∆w(∆L)j ,

= −2π
∑

i,j
Lj+1<2r2

k
wi

[

I(f
n
)k − I(f

n
)−k

]

∆w(∆L)j ,

(2.14)

and finally, by noting I(f) = I(f) and I
∗

its adjoint operator,

Dt

(

En
pot

)

= −8π2
∑

k,i,j
Lj+1<2r2

k
wi

fn
k,i,jI

∗
(

Ẽn+1
k + Ẽn

k

2

)

∆r∆u(∆L)j . (2.15)

Now let study the variation of the kinetic equation given in the Definition 2.1:

En
cin = 8π2

∑

k,i,j
Lj+1<2r2

k
wi

wimk,i,jf
n
k,i,j∆r∆u(∆L)j

From the expression of the numerical scheme (2.5), we have

Dt (E
n
cin) = 8π2

∑

k,i,j
Lj+1<2r2

k
wi

D∗
w(wi)

[

φ′
fn

]

rk
fn
k,i,j∆r∆u(∆L)j ,

and, if Dw is at least an first order differential operator, D∗
w(wi) = −1 and we

obtain the condition
[

φ′
fn

]

rk
= I

∗
(

Ẽn+1
k + Ẽn

k

2

)

, (2.16)

for the conservation of the Hamiltonian. Instead of the Ẽn+1
k term, this schem saty

an explicite one because this term can be directly calculated from the equation
(2.14).

3. Numerical tests

This part will be developped in the months of mars 2014.

References

[1] Bedrossian, J., Masmoudi, N., Mouhot, C., Landau damping: paraproducts and Gevrey regu-

larity, submitted (2013), arXiv:1311.2870.
[2] Heerlein, C., Zwicknagel, G., Nonlinear Landau Damping in Spherically Symmetric Vlasov

Poisson Systems, Journal of Comp. Physics 180, 497-505, 2002.
[3] Mouhot, C., Villani, C., On Landau damping, Acta Mathematica 207 (2011), 29-201.
[4] Lemou, M., Méhats, F., Raphaël, P., Orbital stability of spherical galactic models. Invent

Math (2012) 187: 145-194.
[5] Rodewis,T., Numerical treatment of the symmetric Vlasov-Poisson and Vlasov-Einstein sys-

tem by particle methods, PhD thesis (director Rein, G.), Munich, 1999.



10 CYRIL RIGAULT

Université Pierre et Marie Curie, Laboratoire Jacques Louis Lions

E-mail address: cyril.rigault.math@gmail.com


