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Abstract

While the basal transcription machinery in archaea is eukaryal-like, transcription factors in archaea and their viruses are
usually related to bacterial transcription factors. Nevertheless, some of these organisms show predicted classical zinc fingers
motifs of the C2H2 type, which are almost exclusively found in proteins of eukaryotes and most often associated with
transcription regulators. In this work, we focused on the protein AFV1p06 from the hyperthermophilic archaeal virus AFV1.
The sequence of the protein consists of the classical eukaryotic C2H2 motif with the fourth histidine coordinating zinc
missing, as well as of N- and C-terminal extensions. We showed that the protein AFV1p06 binds zinc and solved its solution
structure by NMR. AFV1p06 displays a zinc finger fold with a novel structure extension and disordered N- and C-termini.
Structure calculations show that a glutamic acid residue that coordinates zinc replaces the fourth histidine of the C2H2
motif. Electromobility gel shift assays indicate that the protein binds to DNA with different affinities depending on the DNA
sequence. AFV1p06 is the first experimentally characterised archaeal zinc finger protein with a DNA binding activity. The
AFV1p06 protein family has homologues in diverse viruses of hyperthermophilic archaea. A phylogenetic analysis points out
a common origin of archaeal and eukaryotic C2H2 zinc fingers.
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Introduction

It is now well established that transcription in archaea, one of

the three domains of life, displays characteristics of both eukaryal

and bacterial transcription [1,2]. The minimal basal machinery in

archaea consists of an RNA polymerase and the general

transcription factors TBP (TATA-box-binding protein) and TFB

(transcription factor B), required for transcription initiation. These

proteins are homologues of the eukaryal RNA polymerase II

(RNAPII), TBP and TFIIB proteins, respectively. In particular,

the eukaryal and archaeal RNA polymerases show a striking

structural similarity [3,4]. The archaeal basal machinery is thus

homologous structurally and functionally to the core components

of the eukaryal RNAPII machinery. In contrast, non-general

transcription factors (TF) in archaea are often bacterial-like, and

only a few are predicted to be of eukaryal type [1,2]. For instance,

a recent in silico analysis based on 52 archaeal genomes suggested

that over 50% of the predicted transcription factors show at least

one homologue in bacteria, about 43% are specific to archaea and

less than 2% have homologues in eukaryotic organisms [5].

Though some transcription factors in archaea have been analysed

in detail [6–8], transcription regulation in archaea is still poorly

documented.

The presence in archaea of proteins with predicted zinc finger

domains of the C2H2 or C2HC type is intriguing as the so-called

‘‘classical’’ zinc finger, hereafter named ZNF, is considered to be

an eukaryal-specific motif. Initially discovered in the transcription

factor TFIIIA from Xenopus oocytes [9], the ZNF domain has been

shown to be very abundant in eukaryotes (e.g. 3% of human genes

encode ZNF-containing proteins), practically absent in bacteria

with some exceptions as in plant pathogens [10] and scarce, but

represented in archaea and their viruses. The classical ZNF motif

consists of a short (,30 residue-long) sequence that uses two or

three cysteines and two or one histidines to coordinate a zinc ion

(C2H2 or C2HC types, respectively). The ZNF domains fold into

a characteristic structure consisting of an a-helix and a b-hairpin

held together by the zinc ion and hydrophobic interactions

between hydrophobic residues at conserved positions of the

sequence. Most of the proteins containing ZNF domains that

have been characterised are involved in transcription regulation

and bind DNA through their ZNF domains, although ZNF

domains can also mediate protein-RNA or protein-protein

interactions [11,12]. ZNFs bind to DNA by inserting the a-helix
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into the major groove and use three or four exposed residues of the

helix to make specific contacts with three or four DNA bases

[13,14]. To recognise their target DNA in a cellular context, ZNFs

are usually present in tandem repeats separated by a short linker.

Each ZNF repeat binds specifically to DNA using the a-helix and

the repeats wrap around the DNA. Some ZNFs like SW15, ADR1

or GAGA, however, are present in only one to three copies and

use extensions of the ZNF motif to further contact DNA [15–17].

Hyperthermophilic archaea that thrive in hot springs (.80uC)

are infected by viruses that show unique morphological and

genomic properties that distinguish them from bacteriophages and

eukaryal viruses [18]. The majority of the proteins of these viruses

does not have detectable homologues in the databases, however, a

relatively high proportion is predicted to carry transcription-factor

associated folds (up to ,10% of proteins encoded in genomes with

about 50 putative genes) [19]. The abundance of putative TFs in

the genomes of hyperthermophilic archaeal viruses probably

reflects the importance of transcription regulation in the life cycle

of the viruses. As in the case of their hosts, the majority of the

predicted TFs are bacterial-like and display a ribbon-helix-helix

(RHH) or a helix-turn-helix (HTH) fold. One viral predicted TF,

the SvtR protein from virus SIRV1, has been characterised and

shown, indeed, to display a RHH structure and to repress

transcription of viral genes [20]. Structural analysis of another

viral protein (E73) coded by the SSV-like virus SSV-RH, also

revealed the presence of a RHH motif involved in DNA

recognition [21]. In addition to bacterial-like TFs, archaeal viruses

from the Rudiviridae, Lipothrixviridae, Fuselloviridae and the Bicaudavir-

idae families as well as the unclassified viruses STSV1 and STIV

typically present one or two sequences with ZNF motifs.

In this work, we focused on the protein AFV1p06 coded by the

gene gp06 of the virus AFV1 (Acidianus filamentous virus 1 [22]),

which infects the hyperthermophilic crenarchaeon Acidianus

hospitalis. The protein has 59 residues and displays a single ZNF

motif with the second zinc-binding histidine of the motif missing.

The ZNF motif (28 residues) is flanked by N- and C-terminal

regions of unknown structure. AFV1p06 has homologues in

crenarchaeal spindle-shaped viruses from the Fuselloviridae family

(SSV1, SSV2, SSV4, SSV5, SSV6 and SSVK-1), and is distantly

related to eukaryal ZNF containing proteins [19]. Here, we

describe the solution structure of AFV1p06 and analyse its DNA

binding capabilities.

Materials and Methods

Cloning, Protein Expression and Purification
The gene AFV1p06 of AFV1 (NC_005830.1, also called

ORF59a) was amplified by PCR using primers AFV1p06NdeI

(59-ATGCCATATGATTGAGGTTTCTAGTATGG-39) and

AFV1p06XhoI (59-ATTTCTCGAGTCAGATAATCTTGTT-

TACAT-39). The PCR product was digested with NdeI and XhoI

and ligated with NdeI and XhoI digested pET-30a (Novagen)

plasmid vector.

Recombinant AFV1p06 was expressed without any tag or

cloning-derived additional residues using Escherichia coli RosettaTM

(BL21 DE3) pLysS (Novagen) cells. Cultures at 37uC in rich

(Luria-Bertani broth) or in minimal M9 media for 15N or 15N/13C

labelling, induction with 1 mM isopropyl-b-thio-galactopyrano-
side, cell harvesting after four hours of induction and cell freezing

at 280uC were performed as described [20].

AFV1p06 was purified from inclusion bodies. Frozen cells were

thawed, suspended in 50 mM HEPES pH 7.4, 150 mM NaCl,

3 mM dithiothreitol (DTT, buffer A) and lysed with a French press

at 4uC adding phenyl-methane-sulphonyl fluoride. The cell lysate

was centrifuged 20 min at 7000 g and 4uC and the supernatant

was discarded. The cell pellet was suspended in buffer A

supplemented with DNAse and RNAse to eliminate nucleic acids

and centrifuged at 7000 g for 20 min at 4uC. The cell pellet was

then suspended in buffer A containing 1% Triton to eliminate

hydrophobic compounds, centrifuged and washed twice with

buffer A by means of suspension and centrifugation cycles. The

washed pellet was solubilised in buffer A containing 6 M urea

(buffer B) and loaded into a size exclusion chromatography

column (Sephacryl HR100, GE Healthcare) pre-equilibrated with

buffer B. The sample was eluted with buffer B and the AFV1p06

containing fractions were pooled and dialysed at low concentration

(,25 mM) and temperature (4uC) against buffer A containing

500 mM arginine and 50 mM ZnCl2 (buffer C) to renature the

unfolded protein. After renaturation, arginine was eliminated by

dialysis against buffer C prepared without arginine (buffer D) and

loaded on an ion-exchange column (SP Sepharose, GE Health-

care) previously equilibrated with the loading buffer. Proteins were

eluted using a linear gradient of NaCl from 150 mM to 1 M in

buffer D. The AFV1p06 containing fractions, which eluted at ca.
650 mM NaCl, were pooled, dialysed against the desired buffer

(typically 50 mM HEPES pH 7.4, 100 or 150 mM NaCl, 50 mM

ZnCl2, 3 mM DTT) and concentrated by centrifugation using

Vivaspin (Sartorius) tubes with a 3 kDa cut-off. Protein prepara-

tions were aliquoted and kept at 280uC or used directly for NMR

experiments.

Protein preparations were homogeneous as assessed by SDS-

PAGE and NMR; protein integrity and identity were checked by

SELDI-TOF mass spectrometry (Jacques d’Alayer, Microsequen-

cing Facilities, Institut Pasteur). The concentration of the protein

was determined using a molar extinction coefficient of

5960 M21.cm21 calculated from its sequence [23].

Flame Atomic Emission Spectrophotometry
Experiments were carried out at the Ecole Polytechnique

(Palaiseau, France) on a Varian AA220 spectrophotometer

equipped with an air-acetylene burner. Readings were performed

at 213.9 nm in the peak height mode. Two samples in buffer A

were analysed: one was prepared as described above and

extensively dialysed to eliminate free zinc ions from the sample;

the second one was obtained without adding ZnCl2 during

renaturation or the following purification steps and adding a forty

fold excess of NaEDTA relative to the protein during the refolding

step.

Oligonucleotides
Oligonucleotides were purchased from Proligo (Sigma-Aldrich).

Double-stranded DNA was obtained by annealing the corre-

sponding single strand oligonucleotides following standard tech-

niques. For PAGE experiments, oligonucleotides were 32P

radiolabelled using the T4-polynucleotide kinase (Fermentas).

DNA Binding
Two 25-bp duplex DNA oligonucleotides, called dsATcomb

(top strand sequence 59-AATGATTCTAAGTATCTTA-

GAAACA-39) and dsGCcomb (top strand sequence 59-

AGGGTGGCAGCGTCGGAGCCTCGCA-39) were obtained

by annealing the corresponding single strand complementary

oligonucleotides. Prior to annealing, one strand of each oligonu-

cleotide was 32P-radiolabelled. Each double-stranded labelled

oligonucleotide (75 nM) was incubated with increasing amounts of

AFV1p06 (from 0 to 2 mM) for 15 min at 48uC in 20 ml of binding

buffer: 50 mM HEPES, 10 mM ZnCl2, 150 mM NaCl, 5% (v/v)

glycerol, 0.02% Tween, 3 mM DTT, pH 7.4. The binding buffer
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was supplemented with 50 ng/mL of unspecific salmon sperm

DNA. The DNA-protein mixtures were deposited in a non-

denaturing 6% 37.5:1 acrylamide/bisacrylamide gel. PAGE was

run in TBE buffer (89 mM Tris-borate, 2 mM NaEDTA, pH 8.3).

After migration, the gel was vacuum-dried, exposed with

Amersham Biosciences HyperfilmTM MP and developed with a

Kodak X-OMAT 2000 processor.

Binding of dsATcomb and dsGCcomb to AFV1p06 was also

tested by competition experiments in which labelled dsATcomb or

dsGCcomb at a fixed concentration (75 nM) were used as probes

in electromobility gel shift assays (EMSA) and unlabelled

dsGCcomb or dsATcomb at varying concentrations (0, 0.5, 1, 2

and 5-fold molar ratio of unlabelled/labelled oligonucleotide),

were used as competitors. Oligonucleotides and AFV1p06

(0.5 mM) were incubated 15 min at 48uC in 20 mL of binding

buffer. PAGE, gel drying and development were performed as

described above.

NMR Samples
Samples were prepared in buffer E: 50 mM HEPES pH 7.4,

100 mM NaCl, 44 mM ZnCl2, 4.5 mM DTT, 12% D2O. Protein

concentration typically ranged between 0.4 and 1.0 mM for 15N

labelled and 13C/15N labelled samples.

NMR
Experiments were performed on a Varian NMR System 600

spectrometer (Agilent Technologies, Santa Clara) with a proton

resonating frequency of 599.4 MHz. The spectrometer was

equipped with a cryogenic probe. Spectra were recorded at

25uC and referenced to sodium 4,4-dimethyl-4-silapentane-1-

sulphonate following IUPAC recommendations. Data were

collected using VnmrJ 2.3A (Agilent Technologies), processed

with NMRPipe [24] and analysed with NMRView 5.2.2 [25].

Standard two- and three-dimensional experiments were record-

ed to assign chemical shifts to the protein 1H, 13C and 15N nuclei:
13C or 15N HSQC (heteronuclear single quantum coherence)

[26]), HNCO, HNCACB, CBCA(CO)NH [27], H(CC-TOC-

SY)NNH, C(CC-TOCSY)NNH [28,29], (HB)CB(CGCD)HD and

(HB)CB(CGCDCE)HE [30].

AFV1p06 backbone dynamics analysis was based on 15N

relaxation experiments [31] used to calculate the longitudinal (R1)

and transverse 15N (R2) relaxation rates.

NMR and structure calculations– Distance constraints for structure

calculations were obtained from 3D 13C-edited (aromatic and

aliphatic regions) and 15N-edited NOESY-HSQC (nuclear Over-

hauser effect spectroscopy - HSQC) experiments recorded with

120 ms mixing times [26,32]. Proton JHN-HA scalar couplings were

calculated from a HNHA experiment [33,34] and transformed

into dihedral Q angle constraints as follows: 2120u625u for 3JHN-

Ha $ 8.0 Hz, 265u625u for 3JHN-Ha # 5.5 Hz. Further dihedral

Q and y constraints were obtained with Talos [35]. A backbone

hydrogen bond in regions of secondary structure was added as

distance constraint if the chemical shift data, the nOe pattern and

the amide hydrogen exchange data were in agreement with a

hydrogen bond, and if it was present in at least 75% of the

structures calculated without any hydrogen bond. Hydrogen

exchange was analysed using the HET-SOFAST experiment

[36]: two spectra with (saturation) or without (reference) inversion

of the water signal were acquired to evaluate the protection against

exchange from the saturation transfer between water and amide

protons. The residues with a ratio of intensities higher than 0.75

between the saturation and reference experiments were considered

to be exchange protected.

NOESY spectra assignments and structure calculations were

performed with ARIA 2.2 [37,38] coupled to CNS 1.2 [39]

following ARIA’s standard protocols with spin diffusion correc-

tion.

Spin diffusion was corrected using an isotropic rotation

correlation time of 6.3 ns (60.6 ns), which was determined from
15N relaxation data as described in [40]. Chemical shift tolerances

were set to 0.03 and 0.04 ppm for protons in the direct and

indirect dimensions, respectively, 0.5 ppm for 13C and 0.35 ppm

for 15N. For structure calculations and nOe (nuclear Overhauser

enhancement) assignments, the zinc atom was coordinated with a

tetrahedral geometry by the Sc atoms of cysteines 13 and 16 and

the Ne2 atom of histidine 29 (see Results section). Histine was

unprotonated. The zinc ion was attached to the Sc atom of residue

16, and the tetrahedral geometry was maintained by modifying the

force field topology and parameter files. Once the nOes were

assigned and the distance constraints were obtained, two different

final structure ensembles were calculated using either the full-

length protein (residues 1–59) or only the structured region

(residues 7–51). The final structures were obtained by calculating

200 structures with ARIA 2.2/CNS 1.2 and refining the lower

energy 150 structures in explicit water using the PARALLHDG

5.3 force field [41]. The 10 lowest-total-energy structures were

selected. The quality of the structures was analysed with Procheck

3.5.4 [42], What_check [43], Molmol 2K.2 [44] and Pymol

(Schrödinger LLC).

Phylogenetic Analysis
To gather the amino acid sequences for phylogenetic analysis,

we searched the non-redundant protein sequence database (nr) at

NCBI for homologues of AFV1 virus p06-ORF59a (GI:

82056192) using the PSI-BLAST algorithm 2.2.26+ [45] in ten

iterative steps with default parameters. Whenever the algorithm

ran out of new proteins to include in the iteration, the protein with

the best E-value and with a conserved C2H2 motif was manually

picked. Sequences were aligned using the CLC Sequence Viewer

software (CLC Bio, Denmark) with default parameters. The tree

was calculated using the Neighbour-Joining method and a 100

replicate bootstrap analysis.

The protein knowledgebase UniProtKB database was ques-

tioned using the query ‘‘zinc AND finger AND C2H2’’ to obtain

the sequences of proteins with predicted ZNF motifs in the three

domains of life.

Accession Codes
The structure and chemical shifts of AFV1p06 have been

deposited in the PDB protein data bank (http://www.pdb.org) and

the BMRB database (http://www.bmrb.wisc.edu) under the

accession numbers 2LVH and 18570, respectively.

Results

Zinc Chelation by AFVIp06
As the homology of AFV1p06 to C2H2 and C2HC zinc fingers

suggested that the protein could bind zinc, we performed flame

photometry experiments on samples that had been carefully

depleted of free zinc. These experiments confirmed that AFV1p06

binds zinc and showed that one mole of protein binds one mole of

zinc. In addition, sedimentation-diffusion equilibrium ultracentri-

fugation experiments performed at a 50 mM concentration

(Bertrand Raynal, Plate-forme de Biophysique, Institut Pasteur),

and NMR 1H-15N HSQC spectra, which were invariant for

AFV1p06 concentrations between 50 mM and 1.0 mM, indicated

Structure and DNA Binding of AFV1p06
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that the protein is monomeric up to millimolar concentrations.

Thus, one AFV1p06 monomer binds one zinc ion.

In ZNF proteins, zinc is tetra-coordinated by two Cys and two

His residues (C2H2) or three Cys and one His residue (C2HC).

AFV1p06 contains two Cys residues (C13 and C16) and a single

His residue (H29) that are part of the ZNF motif and that could be

involved in zinc coordination. Nevertheless, the protein lacks the

fourth zinc ligand, which could be either a water molecule or the

side chain of residue E34 that in the sequence alignments with

ZNF proteins is positioned close to the fourth zinc ligand (H or C).

We performed a NMR chemical shift analysis to verify if residues

C13, C16 and H29 could be involved in metal chelation. On the

one hand, the Cb and Ca chemical shifts of residues C13 and C16

were in agreement with those of metalloproteases [46], indicating

that both cysteine Sc atoms bind zinc; on the other hand, the

comparison of the aromatic ring carbon chemical shifts (Cd2 and

Ce1) of H29 with that of histidine residues (deposited in the

BMRB database) that bind or do not bind zinc, indicated that H29

binds zinc and that it ligates zinc through its Ne2 atom. This

analysis was corroborated by a recently published method to

determine the coordination of zinc by His residues based on the

difference of the aromatic Cd2 and Ce1 chemical shifts [47]: in the

case of AFV1p06, this difference is 12.96 ppm, which corresponds

well to the value observed for Ne2 coordination 12.3260.86 ppm.

Based on this experimental data, we calculated AFV1p06

structures considering that zinc was coordinated by residues C13

(Sc), C16(Sc) and H29 (Ne2) and we used the structures to

determine the fourth ligand of zinc. Importantly, no bias that

could influence the determination of the fourth ligand was

introduced in the calculations because the nOe assignments for

distance constraints were performed automatically.

Resonance Assignments of AFV1p06
The 1H, 15N and 13C resonance frequencies of most backbone

and side chain atoms were assigned (92%). Missing assignments

mainly corresponded to exchangeable protons of lysine, arginine,

asparagine and glutamine side chains, as well as to the backbone

amide protons of residues S6, M7 and K23 (the assigned 15N-1H

HSQC spectrum of AFV1p06 is shown in Figure S1).

Structure of AFV1p06
The structure ensemble of AFV1p06 shows a compact and

convergent region between residues 8–50 and disordered N (1–7)

and C (51–59) termini (Figure 1, Table 1). The structure consists of

a three-stranded antiparallel b-sheet (residues 8–13, 19–20 and

45–50) packed against an a-helix (23–32), as well as of a short 310
helix (41–43) located at the end of a long loop between the a-helix
and the third strand of the b-sheet. As expected, the region with

the ZNF sequence motif (residues 9–35) shows a typical zing finger

fold with an antiparallel b-hairpin packed against an a-helix and

with the zinc ion sandwiched between the latter structural

elements. Indeed, a search for structural homologues in the DALI

database (http://www.dali.server.org) with the structure of

AFV1p06 between residues 9–35 produces over 150 ZNF

structures with statistically significant scores and low root mean

square deviations (RMSD#1.8 Å over ,25 CA atoms). When the

coordinates of the structured region between residues 8 and 50

were used to find structural homologues, only the ZNF region gave

significant hits, indicating that AFV1p06 shows a novel extension

of the ZNF fold (loop with a 310 helix+3
rd strand of ZNF b-sheet).

The lack of convergence observed for the N- and C-termini of

the protein correlates with a very low number of nOes shown by

residues 1–7 and 51–59 and more specifically, with the absence of

medium or long range nOes. This disorder is due to the dynamics

of the protein as assessed by the 15N relaxation characteristics of

the backbone amide groups. For instance, most of the N and C-

termini amide groups showed low 15N transverse relaxation rates

(R2) values relative to those observed for the rest of the protein,

indicating high amplitude motions in the nanosecond-picosecond

time scale (Figure S2). Also, residue S5 showed a very high R2 rate,

and amide resonances of residues S6 and M7 were not observed,

presumably due to exchange broadening (high R2 rates),

suggesting that the latter residues exchange between different

conformations in the microsecond-millisecond time scale. Thus,

the N- and C-termini of AFV1p06 are highly dynamic.

The fourth ligand of the zinc ion was identified using the

structure ensemble of AFV1p06: in all the structures, a side-chain

oxygen atom of the carboxylic group of residue E34 is close to the

zinc ion at a distance (1.9960.04 Å) that is in agreement with

those observed for zinc coordinated by a glutamic acid residue

[1.9560.08 Å, [48]]. This observation indicates that residue E34

is the fourth residue implicated in zinc coordination. Although a

glutamic acid residue is not commonly observed as a zinc ligand, it

coordinates zinc in some proteins in which the latter ion plays a

structural role [48]. In AFV1p06, the zinc ion is tightly bound.

Indeed, the protein retains zinc in the presence of a 10 fold excess

of NaEDTA, as evidenced by the lack of changes in the NMR
1H-15N HSQC spectrum of the protein in the presence of the

latter chelating agent.

AFV1p06 Binds Preferentially to GC Rich DNA
The structure and zinc binding properties of AFV1p06 indicate

that this protein is a classical zinc finger. As most of the ZNF

proteins that have been characterised have been shown to bind

double stranded DNA [14], we tested the DNA binding

capabilities of AFV1p06. Because the putative binding site for

AFV1p06 was not known, we initially performed EMSA

experiments in the presence of unspecific DNA and high

concentrations of the protein. We chose two DNA oligonucleotides

that were extremely different in their nucleotide composition: the

oligonucleotides, either single (ssDNA) or double stranded

(dsDNA), were 24 nt long and exclusively composed of the

succession of AT (polyAT) or CG (polyCG) pairs. The EMSA

experiments indicated that AFV1p06 could bind dsDNA at

micromolar concentrations and did not bind the corresponding

single strand DNAs, and this independently of their DNA

composition. Interestingly, the dsDNA polyCG oligonucleotide

was clearly better recognised by AFV1p06 than the polyAT one

(not shown). At high salt concentration (500 mM), AFV1p06 was

also able to bind dsDNA and recognised better the polyCG

oligonucleotide, suggesting that the interaction of this protein with

DNA is not only based on protein – DNA-backbone electrostatic

interactions but involves DNA bases.

Following these observations and in order to better characterise

the DNA binding activity of AFV1p06, we designed two additional

double strand oligonucleotides of 25 bp called ‘‘dsATcomb’’ (59-

AATGATTCTAAGTATCTTAGAAACA-39) and ‘‘dsGCcomb’’

(59-AGGGTGGCAGCGTCGGAGCCTCGCA-39). The compo-

sition of these oligonucleotides was inspired by the crystal structure

of the complex of the DNA-binding domain of the transcription

factor Zif268 and its binding site. In the latter complex, each of the

three ZNFs of Zif268 establishes specific contacts with 3 bases on

one strand of the DNA [49–51]. Because the protein AFV1p06

has a single ZNF domain we hypothesized that its a-helix would

interact with a short 3 nt DNA core site. The oligonucleotides

‘‘dsATcomb’’ and ‘‘dsGCcomb’’ were hence designed to carry

regularly interspaced repetitions of different combinations of

triplets (6 from 8 possible) composed of either A or/and T for the

Structure and DNA Binding of AFV1p06
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‘‘dsATcomb’’ and G or/and C for the dsGCcomb oligonucleo-

tides. With this combinatorial approach we tried to create one or

several short DNA sub-regions in the analysed oligonucleotides

that could be better recognised by AFV1p06 to test if the protein is

able to discriminate between different DNA sequences.

PAGE-EMSA experiments were performed with radioactively

labelled dsATcomb and dsGCcomb in the presence of an excess of

non-specific unlabelled dsDNA (Figure 2A). Both oligonucleotides

show a retard in migration in the presence of AFV1p06, indicating

that the protein binds dsDNA on the mM concentration range.

The binding of AFV1p06 to the GC-rich dsDNA oligonucleotide

is at least twice more efficient than that observed for the AT-rich

one. We also compared the efficiency of retardation of each

oligonucleotide in the presence of the second one as a ‘‘cold’’

competitor. Even at a 1:0.5 ratio between 32P labelled dsATcomb

and unlabelled dsGCcomb a clear decrease of the signal

corresponding to the shifted form of dsATcomb is observed,

indicating that dsGCcomb can efficiently displace dsATcomb

(Figure 2B). To observe a similar efficiency, a five-fold excess of

‘‘cold’’ dsATcomb has to be added to ‘‘hot’’ dsGCcomb. These

results suggest that AFV1p06 shows a preference for GC motifs

and thus can sense different bases and display some specificity in

dsDNA recognition.

In an attempt to identify its presumed DNA target sequence, we

followed a target candidate approach testing the binding of the

protein to the region of its own promoter, as very often

transcription regulators show cis-regulation. However, even if the

promoter region of the gp06 gene is unusually GC rich compared

to the generally low GC content of the AFV1 genome (36%),

under the in vitro conditions used, the efficiency of AFV1p06

binding to this region was not significantly different from that of a

‘‘non-specific’’ AT rich DNA from a non related virus (data not

shown).

Phylogenetic Studies
The AFV1p06-related proteins identified by the PSI-BLAST

approach are divided into two clearly separated clusters of

archaeal and eukaryal proteins that show a common origin

(Figure S3). The archaeal proteins are grouped into two sub-

Figure 1. Structure of AFV1p06. The backbone superposition of the 10 structures calculated for the full-length protein is shown in two different
orientations (A and B) and on a main-chain cartoon representation for residues 7–51 (C). A topology diagram of the structure, the sequence of
AFV1p06 in the ZNF region (residues 9–35) and the ZNF sequence motif are shown in (D). Residues in the ZNF region are coloured in red. In (C), the
side-chains of the residues that coordinate zinc are displayed in cyan (C13, C16 and H29) or violet (E34) and the zinc atom in blue. In (D), y stands for
a hydrophobic residue. Helices are represented by rectangles and b-strands by arrows.
doi:10.1371/journal.pone.0052908.g001
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clusters representing the two major archaeal phyla, Cren- and

Euryarchaeota. No homologue could be identified in the domain of

bacteria or in the third phylum of archaea, the Thaumarchaeota.

The group affiliated to Crenarchaeota includes 8 representatives

forming the ‘‘AFV1p06 family’’. All of them are coded either by

crenarchaeal viruses (SVS-K1 [52], SSV1 [53], SSV2 ([54], SSV4

and SSV5 [55], SSV6 [56] and AFV1 [22] or by proviruses

integrated into the chromosome. In the case of S. islandicus

M.14.25 the AFV1p06 homologue (M1425–1829) is annotated as

being coded by a chromosomal gene but a more detailed analysis

of this region, which shows typical viral att-like sites, clearly

indicates the viral origin of the locus. The alignment of the

predicted ZNF regions of these proteins indicates the presence of

the seven highly conserved amino acids of the ZNF motif (two Cys,

two His as well as three hydrophobic amino acids indicated by

squares in Figure 3) except in the case of AFV1p06 in which the

Table 1. Statistics for the ensemble of 10 structures calculated for AFV1p06 calculated with residues 7–51.

Constraints (residues 7–51) Energies (kcal/mol)

Unambiguous restraints 826 Total 21682621

Ambiguous distance restraints 133 Van der Waals 2170613

Total number of distance restraintsa 959 Electrostatic 21867635

Intra-residue | j2i | = 0 380 Mean of pairwise RMSD (Å) (8–50)b

Sequential | j2i | = 1 202 Backbone atoms N, Ca, C9 0.6060.13

Medium range 2#| j2i |#4 157 Heavy atoms 1.6960.20

Long range | j2i |.4 220 Ensemble Ramachandran plot (8–50)b

Backbone dihedral Q angle restraints 40 Residues in most favoured regions 90.8%

Backbone dihedral y angle restraints 37 additionally allowed 9.2%

Total backbone dihedral angle restraints 77

Total number of hydrogen bonds 19 Structure Z scores (8–50)b

Residual distance constraint violations Second generation packing quality 20.4660.44

Number $0.3 Å 6 Ramachandran plot appearance 21.6260.70

Number $0.1 Å 68 Chi1/Chi2 rotamer normality 22.3860.96

RMS deviation from nOes (Å)c 0.019460.0037 Backbone conformation 27.2963.30

Residual dihedral angle constraint violations Unsatisfied H-bond donors per
moleculeb

3.9

Number $5.0u 1 Unsatisfied H-bond acceptors per
moleculeb

0

RMS deviation from dihedrals (u) 0.51260.136 Bumps (8–50)b 0

aDistance constraints used for structure calculations, which excluded fixed intra-residue distances.
bValues for the structured region (between residues 8 and 50).
cIncludes nOe and hydrogen bond data.
doi:10.1371/journal.pone.0052908.t001

Figure 2. DNA binding of AFV1p06 monitored by PAGE-EMSA. (A) Binding to dsATcomb (left) and dsGCcomb (right) at a fixed concentration
(75 nM) with increasing concentrations of AFV1p06 (0 to 2 mM). (B) Competition assays: experiments were performed in the presence of 0.5 mM
AFV1p06 using ‘‘hot’’ radiolabelled dsATcomb and increasing amounts of dsGCcomb as a ‘‘cold’’ competitor (top), or radiolabelled dsGCcomb and
increasing amounts dsATcomb as a ‘‘cold’’ competitor (bottom). The ratios between ‘‘hot’’ and ‘‘cold’’ oligonucleotides are indicated. Arrows show
the position of the shifted DNA band.
doi:10.1371/journal.pone.0052908.g002
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last His residue is replaced by a Glu residue. Thirteen additional

amino acids (Figure 3) are well conserved in crenarchaeal C2H2-

like proteins and six of them (indicated by asterisks) are localised in

the loop, helix and third b-strand situated downstream to the ZNF

fold. The latter six residues are exposed to the solvent in the

structure of AFV1p06, suggesting that these residues are conserved

because of their functional importance rather than their role in

structure maintenance. The conservation pattern of the proteins in

the AFV1p06 family and the nature of the amino residues,

strongly suggest that the crenarchaeal C2H2-like proteins show the

same structure extension of the ZNF fold as AFV1p06.

A distant group of putative ZNF proteins found in the

Euryarchaeota (20 representatives) is very similar to the crenarchaeal

viral AFV1p06 family in the ZNF motif region but does not show

any conservation in the ZNF downstream extension. The origin,

cellular or viral, of the genes belonging to this sister of the

AFV1p06 group of euryarchaeal ZNF proteins is unclear.

Noteworthy, although AFV1p06 is the only protein in the

alignment shown in Figure 3 that displays a Glu residue at the

position of the second histidine of the C2H2 motif, it should be

mentioned that in eukaryotic ZNFs, the 4th ligand in the motif is

also not conserved in a number of variant ZNFs. Conservation of a

histidine seems thus less important at the fourth position, an

observation that could be explained by the fact the 4th ligand is not

crucial to retain zinc binding capabilities as shown in a mutation/

folding and stability analysis [57] or by the fact that it can be

replaced by a water molecule [58].

Discussion

The results described in this paper indicate that the archaeal

virus protein AFV1p06 has a classical ZNF structure composed of

an a-helix and a b-hairpin, a novel extension to this fold and

disordered N and C terminal ends. In addition, the EMSA

experiments show that the protein can bind to DNA at sub-

micromolar concentrations and discriminate between different

DNA sequences. Although the presumed biological target(s) of

AFV1p06 on the AFV1 virus and or its host (Acidianus sp.) genome

remains unknown, these results suggest that AFV1p06 could

potentially be a transcription regulator.

Classical zinc fingers usually bind to DNA using exposed

residues at positions 21, +2, +3 and +6 of the a-helix that make

specific contacts with DNA bases and establish other non-specific

contacts with DNA as well. The electrostatic potential of AFV1p06

on the a-helix face is positive (Figure 4) and seems thus favourable

for interacting with the negatively charged DNA poly-anion.

Moreover, residues that occupy the DNA-contacting positions in

AFV1p06 [T (21), K (+2), Q (+3) and L (+6)] have been observed

in ZNF–DNA complexes and could in principle establish specific

contacts with DNA bases [13]. Manual docking of AFV1p06 into

ZNF–DNA complex structures [PDB codes 2JPA and 2GLI,

[59,60]] suggests that AFV1p06 may also interact with DNA using

the a-helix: the superimposition of the structure of AFV1p06 with

that of ZNFs in complex with DNA indicates that residues at key

positions of the helix could indeed make contacts with DNA and

that the basic residues R8, R21 (22) and K23 (+1), would be close

to the DNA phosphate groups.

To recognise its cognate DNA in a cellular context, more than

three or four specific DNA nucleotide bases/a -helix residue

protein contacts must be established. To this end, eukaryal TFs

usually show tandem repeats of ZNF motifs, or like in the case of

the GAGA protein, make use of another module that also binds

specifically to DNA [16]. The manual docking of AFV1p06 shows

that the novel extension of the ZNF motif (the loop and third

strand of the b-sheet) is far from the ZNF–DNA contact region

(not shown), suggesting that this extension cannot directly

contribute to the interaction without major conformational

changes. Hence, two possibilities can be envisioned for specific

Figure 3. The AFV1p06 family of ZNF proteins in archaea. The figure shows the alignment of 27 hits corresponding to archaeal zinc finger
proteins bearing an AFV1p06-like motif. Squares: position of the seven idiosyncratic residues of the ZNF fold; open circles: amino acids conserved in
archaea but not in eukaryotes; triangles: amino acids specific to cren- or euryarchaea; open squares: amino acids conserved only in crenarchaea in the
ZNF fold extension observed in AFV1p06 (loop+helix+3rd strand of the b-sheet). The horizontal line separates the archaeal viral and cellular proteins.
doi:10.1371/journal.pone.0052908.g003
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binding of AFV1p06 to DNA: (i) the N- and/or C- disordered

termini could participate in the interaction; (ii) another DNA

binding protein could bind to AFV1p06 on the b-sheet face.

Indeed, the hydrophobic character of the exposed b-sheet face and
the conservation of its hydrophobicity in AFV1p06 homologues in

SSV crenarchaeal viruses, make this face of the protein a good

candidate for protein-protein interactions. In this respect, it is

interesting to note that Pérez-Rueda and Janga have observed that

although bacterial-like, predicted TFs in archaea are statistically

smaller (shorter sequence) than in bacteria and specific ligand-

binding modules are under-represented [5]. These authors have

suggested that protein-protein interactions in archaeal TFs could

mediate regulatory feedback. Similarly, it can be hypothesised that

archaeal ZNF proteins could also need a protein partner for

specific DNA recognition. In this sense, predicted archaeal and

archaeal virus ZNFs appear in only one (,74%) or two copies

(,20%) per protein in relatively short proteins (most often less

than 100 residues). This situation is very rare in eukaryotes, in

which very often ZNFs are present in tandem repeats. Although

we cannot exclude that the ZNF fold in archaea may be

preferentially used for protein-protein interactions or RNA-protein

interactions, the fact that AFV1p06, which only contains one ZNF

motif, does interact with non-specific DNA with relatively high

affinities in vitro suggests to us that at least some of these proteins

may be TFs and may use either other modules within the same

protein or may interact with other proteins to control gene

expression. Despite its small size, in the case of the N–terminal

GATA-1 ZNF and its FOG ZNF partner, it has been observed

that the ZNF fold can cope with simultaneous specific protein–

DNA and protein–protein interactions or that two different ZNFs

can bind to form heterodimers that bind DNA specifically [61–

63]. Also, fungal GATA proteins involved in gene regulation

display only one ZNF motif, bind to specific DNA sequences and

can mediate protein–protein interactions that are important to

regulate gene expression [64].

It should be underlined that proteins bearing the C2H2 zinc

finger motif are essentially known and characterised in eukaryotes.

In this domain of life, ZNFs are predicted to be coded by more

than 1% of the genes compared to 0.07% for the archaea (278

examples in the Uniprot database) and only 0.003% (489

examples) for the bacteria. The phylogenetic analysis described

here, clearly indicated a common origin of the AFV1p06-like ZNF

domain for archaea and eukaryotes, and its absence in bacteria. In

crenarchaea all the known genes have a virus related origin.

AFV1p06 is the first archaeal protein with an eukaryal ZNF fold

to be characterised experimentally and the first for which the DNA

binding and sequence preference capabilities have been demon-

strated. It would be interesting in the future to identify its

presumed targets on the AFV1 and/or Acidianus genomes and

understand its role in the virus infection cycle.
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