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SET-THEORETIC SOLUTIONS OF THE YANG–BAXTER

EQUATION, RC-CALCULUS, AND GARSIDE GERMS

PATRICK DEHORNOY

Abstract. Building on a result by W.Rump, we show how to exploit the
right-cyclic law (x ∗ y) ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z) in order to investigate
the structure groups and monoids attached with (involutive nondegenerate)
set-theoretic solutions of the Yang–Baxter equation. We develop a sort of
right-cyclic calculus, and use it to obtain short proofs for the existence both of
the Garside structure and of the I-structure of such groups. We describe finite
quotients that exactly play for the considered groups the role that Coxeter
groups play for Artin–Tits groups.

The Yang–Baxter equation (YBE) is a fundamental equation occurring in inte-
grable models in statistical mechanics and quantum field theory [23]. Among its
many solutions, some simple ones called set-theoretic turn out to be directly con-
nected with several interesting algebraic structures. In particular, a group and a
monoid are attached with every set-theoretic solution of YBE [14], and the family
of all groups and monoids arising in this way is known to have rich properties: as
shown by T.Gateva–Ivanova and M.Van den Bergh in [18] and by E. Jespers and
J.Okniński in [21], they admit an I-structure, meaning that their Cayley graph is
isometric to that of a free Abelian group, and, as shown by F.Chouraqui in [4], they
admit a Garside structure, (roughly) meaning that they are groups of fractions of
monoids in which the divisibility relations are lattice orders.

On the other hand, it was shown byW.Rump in [24] that (involutive nondegener-
ate) set-theoretic solutions of YBE are in one-to-one correspondence with algebraic
structures consisting of a set equipped with a binary operation ∗ that obeys the
right-cyclic law (x ∗ y) ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z) and has bijective left-translations.
What we do in this paper is to develop the investigation of the right-cyclic law
(RC-law) and show how to use it to reprove the above mentioned results in a more
simple and explicit way. In terms of divisibility relations, calling a structure as
above an RC-quasigroup, we observe that, starting with any RC-quasigroup, the
formulas of RC-calculus imply the existence of least common multiples in the asso-
ciated monoid and, conversely, starting with a monoid in which atoms admit least
common multiples of length two, the derived right-complement operation obeys
the RC-law. Similarly, in terms of I-structure, we observe that the bijection ν that
witnesses for it can be computed explicitly using sorts of polynomials Πn involving
the RC-operation; the equivalence between the existence of an I-structure and the
property of being associated with a finite RC-quasigroup can then be established
using arguments that are shorter and hopefully conceptually more simple than those
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of [22]. One can also note that the approach via RC-calculus never requires to re-
strict to squarefree solutions of YBE as do some of the developments of [20] or [24]
(a solution ρ is called squarefree if ρ(s, s) = (s, s) holds for every s—corresponding
to RC-quasigroups (S, ∗) that satisfy s ∗ s = s for every s). Another benefit of
the current approach based on RC-calculus and Garside theory is to directly derive
Rump’s result that every finite RC-quasigroup is bijective [24] from the (easy) re-
sult that a right-Garside element with finitely many divisors is a Garside element
(Corollary 4.2).

However, the main benefit of the current approach is to provide a simple and
complete solution to the problem of finding what is called a Garside germ for every
group associated with a finite RC-quasigroup (that is, with the structure group of
a finite involutive nondegenerate set-theoretic solution of YBE), namely a finite
quotient of the group that encodes the whole structure in the way a finite Coxeter
group encodes the associated Artin–Tits group. The precise statement (Propo-
sition 6.2) says that, if we start with the canonical presentation of the group G
associated with an RC-quasigroup (S, ∗) that has cardinality n and class d (a cer-
tain numerical parameter attached with every finite RC-quasigroup) and add the
“RC-torsion relations” s[d] = 1 with s in S (where s[d] is an explicit polynomial
involving ∗), then one obtains a finite group G of order dn such that restricting
the operation of G to those pairs for which the lengths in terms of (the projection
of) S add gives a partial operation (a “germ” in the language of [12]) from which
the Garside structure of G can be retrieved. Partial results in this direction, cor-
responding to the case of RC-quasigroups of class 2, namely those satisfying the
law (x ∗ x) ∗ (x ∗ y) = y, were obtained “by hand” in [5]. Our current approach is
based on RC-calculus and the I-structure, and enables one to address the general
case directly.

At the moment, no exhaustive classification of the finite (involutive, nondegen-
erate) set-theoretic solutions of the Yang–Baxter equation is in view. As will be
recalled in Proposition 5.6, every monoid associated with such a solution based on S
embeds in a wreath product N ≀ SS (that is, a semidirect product NS ⋊ SS) and
it was suggested to use the second projection of the image, a subgroup of SS , for
such a classification: the subgroups of SS that arise in this way are called involutive
Yang–Baxter (IYB) groups in [3]. As suggested in [5] in the class 2 case, the finite
groups G of Proposition 6.2 provide natural alternative options for the classification
problem. No classification of the finite groups that appear in this context is known
at the moment: we hope that further properties of these groups—which, we insist,
should be seen as counterparts in the Yang–Baxter world of Coxeter groups in the
Artin world—will be discovered soon.

The paper is organized as follows. In Section 1, we recall the connection between
set-theoretic solutions of the Yang–Baxter equation and algebraic systems that obey
the RC-law. In Section 2, we establish various formulas that follow from the RC-
law and will be heavily used in the sequel. In Section 3, we recall the definition
of the structure group and monoid attached with an set-theoretic solution of YBE
and use the formulas of Section 2 to show that such monoids are Garside monoids,
meaning that the associated divisibility relations have nice lattice properties. Next,
in Section 4, we use the RC-calculus again to show that, conversely, every Garside
monoid that admits a presentation of a certain syntactic type actually comes from
an RC-quasigroup (hence a solution of the YBE). Then, in Section 5, we use the
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RC-calculus once more to show that every structure monoid admits what is called
an I-structure and that, conversely, every monoid with an I-structure comes from
an RC-quasigroup. Finally, in Section 6, we merge the RC-calculus and the I-
structure to construct a finite quotient that encodes the whole structure of the
group attached to a finite RC-quasigroup and gives several descriptions of this
“Coxeter-like” group, in particular as a group of isometries of an Hermitian space.

Sections 3 and 4 on the one hand, and Section 5 are independent (except for the
definition of the structure group and monoid) and can be read in any order. By
contrast, all sections from Section 3 heavily use the formulas of Section 2.
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and Jan Okniński for discussions about the content of this paper.

1. Several equivalent frameworks

In this introductory section, we recall the definition of set-theoretic solutions of
the Yang–Baxter equation [14] and their connection with what we shall call RC-
quasigroups, which are sets equipped with a binary operation obeying the right-
cyclic law (x ∗ y) ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z), as established by W.Rump in [24].

Definition 1.1. A set-theoretic solution of YBE (or braided quadratic set) is a
pair (S, ρ) where S is a set and ρ is a bijection of S × S into itself that satisfies

(1.1) ρ12ρ23ρ12 = ρ23ρ12ρ23.

where ρij is the map of S3 to itself obtained when ρ acts on the ith and jth entries.

If (S, ρ) is a set-theoretic solution of YBE and V is a vector space based on S,
then the (unique) linear operator R on V ⊗ V that extends ρ is a solution of the
(non-parametric, braid form of) the (quantum) Yang–Baxter equation

(1.2) R12R23R12 = R23R12R23,

and, conversely, every solution of YBE such that there exists a basis S of the
ambient vector space such that S⊗2 is globally preserved is of this type.

Definition 1.2. A set-theoretic solution (S, ρ) of YBE is called nondegenerate
if, writing ρ1(s, t) and ρ2(s, t) for the first and second entries of ρ(s, t), the left-
translation y 7→ ρ1(s, y) is one-to-one for every s in S and the right-translation
x 7→ ρ2(x, t) is one-to-one for every t in S.

On the other hand, a solution (S, ρ) is naturally called involutive if ρ ◦ ρ is the
identity of S × S. There exist six set-theoretic solutions of YBE based on the
2-element set {a, b}, among which two are nondegenerate and involutive, namely

a b

a (a, a) (b, a)
b (a, b) (b, b)

and
a b

a (b, b) (a, b)
b (b, a) (a, a) .

A map from S × S to itself is a pair of maps from S × S to S, hence a pair
of binary operations on S. Translating into the language of binary operations the
constraints that define set-theoretic solutions of YBE is straightforward.
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Lemma 1.3. Define a birack to be an algebraic system (S, ⌉, ⌈) consisting of a
set S equipped with two binary operations ⌉ and ⌈ that satisfy

(a⌉b)⌉((a⌈b)⌉c) = a⌉(b⌉c),(1.3)

(a⌉b)⌈((a⌈b)⌉c) = (a⌈(b⌉c))⌉(b⌈c),(1.4)

(a⌈b)⌈c = (a⌈(b⌉c))⌈(b⌈c),(1.5)

and are such that the left-translations of ⌉ and the right-translations of ⌈ are one-
to-one, and call a birack involutive if it satisfies in addition

(1.6) (a⌉b)⌉(a⌈b) = a and (a⌉b)⌈(a⌈b) = b.

(i) If (S, ρ) is a nondegenerate set-theoretic solution of YBE, then defining a⌉b =
ρ1(a, b) and a⌈b = ρ2(a, b) yields a birack (S, ⌉, ⌈). If (S, ρ) is involutive, then the
birack (S, ⌉, ⌈) is involutive.

(ii) Conversely, if (S, ⌉, ⌈) is a birack, then defining ρ(a, b) = (a⌉b, a⌈b) yields a
nondegenerate set-theoretic solution (S, ρ) of YBE. If the birack (S, ⌉, ⌈) is involu-
tive, then (S, ρ) is involutive.

Lemma 1.3 appears as Remark 1.6 in [19], using the notation (ab, ab) for (a⌉b, a⌈b).
Biracks appeared in low-dimensional topology as a natural algebraic counterpart
of Reidemeister move III [15]. When ⌈ is trivial in the sense that a⌈b = a always
holds, (1.3)–(1.5) reduce to the left-selfdistributivity law (a⌉b)⌉(a⌉c) = a⌉(b⌉c),
corresponding, when left-translations are bijective, to (S, ⌉) being what is known
as a rack [16]. Note that a birack obtained from a rack is involutive only if s⌉t = t
holds for all s, t (trivial birack).

Thus, investigating involutive nondegenerate set-theoretic solutions of YBE and
investigating involutive biracks are equivalent tasks.

We now make a second step and move to a new framework according to the
approach of [24]. The point is that, if ⌉ is a binary operation on S and its left-
translations are one-to-one, then putting

a ∗ b = the unique c satisfying a⌉c = b

provides a well-defined binary operation on S, which can be viewed as a left-inverse
of ⌉. The seminal observation of [24] is that, if (S, ⌉, ⌈) is a birack, then the left-
inverse ∗ of the operation ⌉ obeys a simple algebraic law and the whole structure can
be recovered from the unique operation ∗, that is, there is no need to simultaneously
consider the right-inverse of the second operation ⌈ , as could be expected a priori.

Definition 1.4 (Rump [24]). A right-cyclic system, or RC-system, is a pair (S, ∗)
where ∗ is a binary operation on the set S that obeys the right-cyclic law RC

(1.7) (x ∗ y) ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z).

An RC-quasigroup is an RC-system whose left-translations are one-to-one, that is,
for every s in S, the map t 7→ s ∗ t is one-to-one. An RC-system is called bijective
if the map (s, t) 7→ (s ∗ t, t ∗ s) is a bijection of S × S to itself.

In [24], RC-quasigroups are called “cycle sets” (and RC-systems are called “cy-
cloids”), but the current terminology may seem more convenient in view of the
subsequent variants (and of the widely used convention that “quasigroup” refers to
bijective translations).
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Example 1.5. A typical (semi-trivial) example of a bijective RC-quasigroup is
provided by every operation of the form s ∗ t = f(t) where f is a permutation of S.

Another example (that will be important in Section 3 below) is provided by
the right-complement operation in a monoid: if M is a left-cancellative monoid
in which any two elements admit a unique least common right-multiples—see Sec-
tion 3 below—then the operation \ defined by the condition that f(f\g) is the
least common right-multiple of f and g obeys the law (1.7), as easily follows from
the commutativity and associativity of the right-lcm operation. So (M, \) is an
RC-system (but, in general, not an RC-quasigroup).

The following result, which is essentially [24, Prop. 4.1] shows that the context
of a bijective RC-quasigroup is entirely equivalent to that of an involutive nonde-
generate set-theoretic solution of the YBE.

Proposition 1.6. (i) Assume that (S, ρ) is an involutive nondegenerate set-theoretic
solution of YBE. Let ∗ be the binary operation on S defined by

(1.8) s ∗ t = the unique r satisfying ρ1(s, r) = t.

Then (S, ∗) is a bijective RC-quasigroup.
(ii) Conversely, assume that (S, ∗) is a bijective RC-quasigroup. Define a map

ρ : S2 → S2 by

(1.9) ρ(a, b) = the unique (a′, b′) satisfying a ∗ a′ = b and a′ ∗ a = b′.

Then (S, ⌉, ⌈) is an involutive birack.

As our approach below is slightly different from that of [24], we indicate a proof of
Proposition 1.6. Before completing the argument, it is convenient to first introduce
the following two-operation version of RC-quasigroups.

Definition 1.7. An RLC-system is a triple (S, ∗, ∗̃) such that (S, ∗) is an RC-
system, ∗̃ is a second binary operation on S that obeys the left-cyclic law LC

(1.10) (z ∗̃ x) ∗̃ (y ∗̃ x) = (z ∗̃ y) ∗̃ (x ∗̃ y),

and both operations are connected by

(1.11) (y ∗ x) ∗̃ (x ∗ y) = x = (y ∗̃ x) ∗ (x ∗̃ y).

An RLC-quasigroup is an RLC-system (S, ∗, ∗̃) such that the left-translations of ∗
and the right-translations of ∗̃ are one-to-one.

The next result says that, in an RLC-quasigroup, the operations determine one
another and, as a consequence, RLC-quasigroups and bijective RC-quasigroups are
equivalent structures.

Lemma 1.8. For all binary operations ∗, ∗̃ on S, the following are equivalent:
(i) The system (S, ∗, ∗̃) obeys the involutivity laws (1.11).
(ii) The map Ψ : (s, t) 7→ (s ∗ t, t ∗ s) is a bijection of S × S to itself and ∗̃ is the

unique operation on S such that the map (s, t) 7→ (s ∗̃ t, t ∗̃ s) is the inverse of Ψ

Proof. Assume that (S, ∗, ∗̃) satisfies (1.11). Let (s′, t′) belong to S × S. Put
s = t′ ∗̃ s′ and t = s′ ∗̃ t′. Then, the right-hand equality in (1.11) gives s ∗ t = s′

and t ∗ s = t′, whence Ψ(s, t) = (s′, t′). So Ψ is surjective. Conversely, assume
Ψ(s, t) = (s′, t′). Then the left-hand equality in (1.11) gives s = t′∗s′ and t = s′∗t′.
So Ψ is injective. Moreover, the equalities show that the map (s, t) 7→ (s ∗̃ t, t ∗̃ s)
is Ψ−1. So (i) implies (ii).
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Conversely, assume that Ψ is a bijection from S × S to itself. Then there exists
a unique operation ∗̃ on S such that the map (s, t) 7→ (s ∗̃ t, t ∗̃ s) is Ψ−1, namely
the operation defined by

(1.12) s′ ∗̃ t′ = the unique t such that s ∗ t = s′ and t ∗ s = t′ hold for some s.

Then (1.11) is satisfied by definition, that is, (ii) implies (i). �

We can now complete the argument.

Proof of Proposition 1.6. (i) Owing to Lemma 1.3, we can use a birack language.
So we start with an involutive birack (S, ⌉, ⌈) and consider ∗ defined by

(1.13) s ∗ t = the unique r satisfying s⌉r = t.

By definition, the left-translations of ⌉ are bijective, which guarantees the existence
of ∗, and the fact that the left-translations of ∗ are one-to-one. We will show that
the satisfaction of (1.3)–(1.6) in (S, ⌉, ⌈) implies that ∗ obeys the RC-law (1.7).

Claim 1.— For all x, y, z, the relation y = x⌉z is equivalent to x ∗ y = z and it
implies y ∗ x = x⌈z.

Proof of Claim 1. Assume y = x⌉z. First, by definition of ∗, this relation is equiv-
alent to x∗y = z. Next, (1.6), implies (x⌉z)⌉(x⌈z) = x, so we deduce y⌉(x⌈z) = x.
By definition of ∗, the latter relation is equivalent to y ∗ x = x⌈z. �

Now let r, s, t belong to S. Put a = t, b = t ∗ s, and c = (t ∗ s) ∗ (t ∗ r). We shall
step by step compute the expressions (r ∗ s) ∗ (r ∗ t) and (s ∗ r) ∗ (s ∗ t) in terms
of a, b, and c and, using (1.3)–(1.5), establish that these expressions are equal. The
proof consists in repeatedly using Claim 1 for various relations z = x ∗ y. The
corresponding diagrams are displayed in Figure 3. The latter shows that we are
actually completing a cube and it should make the order of the verifications clear.

Applying Claim 1 to the definition b = t ∗ s with t = a gives s = a⌉b and
s ∗ t = a⌈b.

Next, applying Claim 1 to c = (t ∗ s) ∗ (t ∗ r) with t ∗ s = b gives t ∗ r = b⌉c and
(r ∗ t) ∗ (r ∗ s) = b⌈c.

Then, applying Claim 1 to b⌉c = t ∗ r with t = a gives r = a⌉(b⌉c), hence also
r = (a⌉b)⌉((a⌈b)⌉c) by (1.3), and r ∗ t = a⌈(b⌉c).

Next, the relations s = a⌉b and r = (a⌉b)⌉((a⌈b)⌉c) imply s ∗ r = (a⌈b)⌉c,
and Claim 1 implies r ∗ s = s⌈(s ∗ r) = (a⌉b)⌈((a⌈b)⌉c)), hence also r ∗ s =
(a⌈(b⌉c))⌉(b⌈c) by (1.4).

Next, the relations r ∗ t = a⌈(b⌈c) and r ∗ s = r ∗ s = (a⌈(b⌉c))⌉(b⌈c) imply
(r ∗ t) ∗ (r ∗ s) = b⌈c, and Claim 1 implies (r ∗ s) ∗ (r ∗ t) = (a⌈(b⌉c))⌈(b⌈c), hence
(r ∗ s) ∗ (r ∗ t) = (a⌈b)⌈c by (1.5).

Finally, the relations s ∗ t = a⌈b and s ∗ r = (a⌈b)⌉c imply (s ∗ t) ∗ (s ∗ r) = c,
and Claim 1 implies (s ∗ r) ∗ (s ∗ t) = (a⌈b)⌈c.

We thus established the three equalities (r ∗ t) ∗ (r ∗ s) = b⌈c = (t ∗ r) ∗ (t ∗ s),
(t ∗ s) ∗ (t ∗ r) = c = (s ∗ t) ∗ (s ∗ r), and (r ∗ s) ∗ (r ∗ t) = (a⌈b)⌈c = (s ∗ r) ∗ (s ∗ t).
We thus proved that (S, ∗) is an RC-quasigroup (of course, one equality would be
sufficient as r, s, t are arbitrary).

Now, consider the binary operation ∗̃ on S such that x ∗̃ y = z is equivalent to
z⌈x = y, that is, in an obvious sense, the right-inverse of ⌈ , which makes sense
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since, by assumption, the right-translations of ⌈ are one-to-one. Then an entirely
symmetric verification shows that the operation ∗̃ satisfies the LC-law.

Finally, we consider (1.11). Let r, s belong to S. Put a = s and b = s ∗ r. Then
the definition of ∗ gives r = a⌉b, and the claim then implies r∗s = b⌈a. Now, owing
to the relations s∗ r = b and r ∗s = b⌈a, the definition of ∗̃ gives (r ∗s) ∗̃ (s∗ r) = a,
and the symmetric counterpart of the claim then implies (s ∗ r) ∗̃ (r ∗ s) = a⌉b. We
deduce (r ∗ s) ∗̃ (s ∗ r) = s and (s ∗ r) ∗̃ (r ∗ s) = r. So (1.11) is satisfied, (S, ∗, ∗̃) is
an RLC-quasigroup, and, by Lemma 1.8, (S, ∗) is a bijective RC-quasigroup.

t = a

r =
a⌉(

b⌉c)

= (a⌉
b)⌉(

(a⌈
b)⌉c

)

r∗s = (a⌉b)⌈((a⌈b)⌉c)

= ((a⌈(b⌉c))⌉(b⌈c)

s = a⌉b

r∗t = (a⌈b)⌉c

s∗r
= (a⌈

b)⌉c

(s∗r)∗(s∗t) = (a⌈b)⌈c

(r∗s)∗(r∗t) = (a⌈(b⌉c))⌈(b⌈c)

= (a⌈b)⌈c

(r∗t)∗(r∗s)

= b⌈c

(t∗r)∗(t∗s)

= b⌈c

t∗s = b
t∗r

= b⌉c

s∗t = a⌈b

(s∗
t)∗

(s∗
r)
=
c(t∗s

)∗(t
∗r)

= c

Figure 1. Proof of Proposition 1.6(i): one successively evaluates the
edges of the cube in terms of a, b, c and the relations (1.3)–(1.5) guar-
antee that the cube closes. Our convention is to draw a square diagram

a′

b

a b′ whenever a′ = a⌉b and b′ = a⌈b hold, that is, equivalently,

when b = a ∗ a′ and b′ = a′ ∗ a do. The same diagram can be used to
follows the proof of (ii) below, except that one starts with a closed cube
and evaluates some edges in two different ways to establish (1.3)–(1.5).

(ii) The argument is similar to that for (i). Owing to Lemma 1.3, it is enough
to show that, if ⌉ and ⌈ are defined by

a⌉b = the unique a′ satisfying a ∗ a′ = b,(1.14)

a⌉b = the unique b′ satisfying b′ ∗̃ b = a.(1.15)

where ∗̃ is determined by the equalities (s ∗̃ t) ∗ (t ∗̃ s) = s and (t ∗̃ s) ∗ (s ∗̃ t) = t
for all s, t, then (S, ⌉, ⌈) is an involutive birack. We shall repeatedly use

Claim 2.— For all x, y, z, the relation z = x ∗ y is equivalent to x⌉z = y and it
implies x⌈z = y ∗ x.

Proof of Claim 2. Assume z = x ∗ y. By definition of ⌉, this relation is equivalent
to x⌉z = y. Then, by definition of Ψ, we have Ψ(x, y) = (z, y ∗ x), hence (x, y) =
Ψ−1(z, y ∗ x). By definition of ∗̃, this implies z ∗̃ (y ∗x) = x, whence z⌈x = y ∗ x by
definition of the operation ⌈ . �
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Now, let a, b, c belong to S. Put r = a⌉(b⌉c), s = a⌉b, and t = a. We shall now
compute the expressions involved in (1.3)–(1.5) in terms of r, s, t, and establish the
expected equalities.

First, applying Claim 2 to s = a⌉b with t = a gives b = t ∗ s and a⌈b = s ∗ t.
Next, applying Claim 2 to r = a⌉(b⌉c) with t = a gives b⌉c = t ∗ r and

a⌈(b⌉c) = r ∗ t.
Then, applying Claim 2 to t∗r = b⌉c with t∗s = b gives c = (t∗s)∗ (t∗r), hence

also c = (s∗t)∗(s∗r) by (1.7), and b⌈c = (t∗r)∗(t∗s), hence also b⌈c = (r∗t)∗(r∗s)
by (1.7) again.

Next, the relation (s∗ t)∗ (s∗r) = c with (s∗ t = a⌈b implies (a⌈b)⌉c = s∗r, and
Claim 2 then implies (a⌈b)⌈c = (s∗ r)∗ (s∗ t), whence also (a⌈b)⌈c = (r ∗ s)∗ (r ∗ t)
by (1.7).

Then, the relation (a⌈b)⌉c = s ∗ r with s = a⌉b implies (a⌉b)⌉((a⌈b)⌉c) = r,
which, together with the previously established relation r = a⌉(b⌉c), gives (1.3).
By Claim 2, we deduce (a⌉b)⌈((a⌈b)⌉c = r ∗ s.

Now, b⌈c = (r ∗ t) ∗ (r ∗ s) with r ∗ t = a⌈(b⌉c) implies r ∗ s = ((a⌈(b⌉c))⌉(b⌈c)
which, together the previously established relation (a⌉b)⌈((a⌈b)⌉c = r∗s gives (1.4).
Moreover, Claim 2 then implies (r ∗ s) ∗ (r ∗ t) = (a⌈(b⌉c)⌈(b⌈c which, together the
previously established relation (a⌈b)⌈c = (r ∗ s) ∗ (r ∗ t) gives (1.5). This completes
the proof that (S, ⌉, ⌈) is a birack.

We conclude with involutivity. Let a, b belong to S. Put r = a and s = a⌉b. By
Claim 2, we have r∗s = b and s∗r = a⌈b, that is, (a⌉b)∗a = a⌈b. By Claim 2 again,
the latter is equivalent to (a⌉b)⌉(a⌈b) = a. The argument for (a⌉b)⌈(a⌈b) = b is
symmetric. �

Summarizing the results, we conclude that nondegenerate involutive set-theoretic
solutions of the Yang–Baxter equation, involutive biracks, and bijective RC-quasi-
groups are equivalent frameworks.

2. RC-calculus

Our main claim in this paper is that using the formalism of RC-quasigroups
significantly helps investigating the set-theoretic solutions of YBE and the derived
monoids and groups that will be introduced in Section 3 below. At the technical
level, the point is to exploit the RC-law, what we shall do here by introducing sorts
of polynomials involving the operation that is supposed to obey the RC-law, plus
possibly a symmetric operation obeying the LC-law and a third, associative opera-
tion. So our point in this section is to establish some preliminary algebraic relations
which altogether make a sort of right-cyclic calculus. Most verifications are easy,
but introducing convenient notation is important to obtain simple formulas and
easily perform computations that, otherwise, would require tedious developments.

Everywhere in the sequel, ∗̃, ∗, and · refer to binary operations.

Definition 2.1. For n > 1, we inductively define formal expressions Ωn(x1, ... , xn)

and Ω̃n(xn, ... , x1) by Ω1(x1) = Ω̃1(x1) = x1 and

Ωn(x1, ... , xn) = Ωn−1(x1, ... , xn−1) ∗ Ωn−1(x1, ... , xn−2, xn),(2.1)

Ω̃n(x1, ... , xn) = Ω̃n−1(x1, x3, ... , xn) ∗̃ Ω̃n−1(x2, ... , xn).(2.2)

The expression Ωn(x1, ... , xn)—a term in the language of model theory—should
be seen as a sort of n-variable monomial and an iteration of the operation ∗. For
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instance, we find Ω2(x1, x2) = x1 ∗ x2, then Ω3(x1, x2, x3) = (x1 ∗ x2) ∗ (x1 ∗ x3),
etc. It should be clear that 2n−1 variables xi occur in Ωn(x1, ... , xn), with brackets
corresponding to a balanced binary tree. For instance, for n = 4, the variables
occur in the order 12131214 and, for n = 5, in the order 1213121412131215.

Of course, whenever (S, ∗̃) is an algebraic system, we write Ωn(s1, ... , sn) for
the evaluation of Ωn(x1, ... , xn) when xi is given the value sn. The next result
is an iterated version of the RC-law, which, in terms of the expressions Ωi, is
Ω3(x, y, z) = Ω3(y, x, z).

Lemma 2.2. Assume that (S, ∗) is an RC-system. Then, for all s1, ... , sn in S
and π in Sn−1, we have

(2.3) Ωn(sπ(1), ... , sπ(n−1), sn) = Ωn(s1, ... , sn).

Proof. An induction on n. For n = 1 and n = 2, there is nothing to prove. For
n = 3, the equality Ω3(s1, s2, s3) = Ω3(s2, s1, s3) is the RC-law. Assume n > 4. As
transpositions of adjacent entries generate the symmetric group Sn, it is sufficient
to prove the result when π is a transposition (i, i+1). For i < n− 2, the definition
plus the induction hypothesis give

Ωn(s1, ... , si, si+1, ... , sn)

= Ωn−1(s1, ... , si, si+1, ... , sn−1) ∗ Ωn−1(s1, ... , si, si+1, ... , sn−2, sn)

= Ωn−1(s1, ... , si+1, si, ... , sn−1) ∗ Ωn−1(s1, ... , si+1, si, ... , sn−2, sn)

= Ωn(s1, ... , si+1, si, ... , sn).

For i = n− 2, writing ~s for s1, ... , sn−3, the definition plus the RC-law give

Ωn(s1, ... , sn) = Ωn(~s, sn−2, sn−1, sn)

= Ωn−1(~s, sn−2, sn−1) ∗ Ωn−1(~s, sn−2, sn)

= (Ωn−2(~s, sn−2) ∗ Ωn−2(~s, sn−1)) ∗ (Ωn−2(~s, sn−2) ∗ Ωn−2(~s, sn))

= (Ωn−2(~s, sn−1) ∗ Ωn−2(~s, sn−2)) ∗ (Ωn−2(~s, sn−1) ∗ Ωn−2(~s, sn))

= Ωn−1(~s, sn−1, sn−2) ∗ Ωn−1(~s, sn−1, sn) = Ωn(~s, sn−2, sn−1, sn). �

Of course, the counterpart of (2.3) involving Ω̃n is valid when ∗̃ satisfies the
LC-law (1.10). Further results appear when the monomials Ωn are evaluated in an
RC-quasigroup, that is, when left-translations are one-to-one.

Lemma 2.3. Assume that (S, ∗) is an RC-quasigroup and s1, ... , sn lie in S.
(i) The map s 7→ Ωn+1(s1, ... , sn, s) is a bijection of S into itself.
(ii) There exist r1, ... , rn in S satisfying Ωi(r1, ... , ri) = (s1, ... , si) for 1 6 i 6 n.
(iii) Put s̃i = Ωn(s1, ... , ŝi, , ... , sn, si) for 1 6 i 6 n. Then, for all i, j, the

relations si = sj and s̃i = s̃j are equivalent.

Proof. (i) We use induction on n. For n = 1, the considered map is the left-
translation s 7→ s1 ∗ s, a bijection of S into itself by assumption. Assume n > 2.
By definition of Ωn+1, we have Ωn+1(s1, ... , sn, s) = t ∗ Ωn(s1, ... , sn−1, s) with
t = Ωn(s1, ... , sn−1). By induction hypothesis, the map s 7→ Ωn(s1, ... , sn−1, s) is
bijective. Hence composing it with the left-translation by t yields a bijection.

(ii) Use once more induction on n. For n = 1, take t1 = s1. Assume n > 2. By
induction hypothesis, there exist r1, ... , rn−1 satisfying Ωi(r1, ... , ri) = (s1, ... , si) for
1 6 i 6 n− 1. Then, by definition of Ωn and owing to Ωn−1(r1, ... , rn−1) = sn−1,
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we have Ωn(r1, ... , rn−1, x) = sn−1 ∗ Ωn−1(r1, ... , rn−2, x). As the left-translation
by sn−1 is surjective, there exists s satisfying sn−1 ∗ s = sn. Then, by (i), there
exists rn satisfying Ωn−1(r1, ... , rn−2, rn) = s, whence Ωn(r1, ... , rn) = sn.

(iii) Again an induction on n. For n = 1 there is nothing to prove. For n = 2,
we find s̃1 = s2 ∗ s1 and s̃2 = s1 ∗ s1. It is clear that s1 = s2 implies s̃1 = s̃2.
Conversely, assume s1 ∗ s2 = s2 ∗ s1. Using the assumption, the RC-law, and the
assumption again, we obtain

(s1 ∗ s2) ∗ (s2 ∗ s2) = (s2 ∗ s1) ∗ (s2 ∗ s2) = (s1 ∗ s2) ∗ (s1 ∗ s2) = (s1 ∗ s2) ∗ (s2 ∗ s1).

As the left-translations associated with s1 ∗ s2 and s2 are injective, we first deduce
s2 ∗ s2 = s2 ∗ s1, and then s2 = s1. Assume now n > 3. Fix i, j, write ~s for
s1, ... , ŝi, ... , ŝj , ... , sn and put tk = Ωn−1(~s, sk). Then, by (i) and by definition, we
have

s̃i = Ωn(~s, sj , si) = Ωn−1(~s, sj) ∗ Ωn−1(~s, si) = tj ∗ ti,

and, similarly, s̃j = ti ∗ tj . If si = sj holds, we have ti = tj , whence s̃i = s̃j .
Conversely, assume s̃i = s̃j, that is, tj ∗ ti = ti ∗ tj . By the result for n = 2, we
deduce ti = tj , that is, Ωn−1(~s, si) = Ωn−1(~s, sj), which is an equality of the form
r1 ∗ (... ∗ (rn−2 ∗ si)...) = r1 ∗ (... ∗ (rn−2 ∗ sj)...). By applying n − 2 times the
assumption that the left-translations of (S, ∗) are injective, we deduce si = sj . �

Further results appear when two operations connected under the involutivity
laws (1.11) are involved. In the language of Ω1 and Ω2, (1.11) says that, if

we put s̃1 = Ω2(s1, s2) and s̃2 = Ω2(s2, s1), then we have s1 = Ω̃2(s̃1, s̃2) and

s2 = Ω̃2(s̃2, s̃1): two elements can be retrieved from their Ω2 images using the

monomial Ω̃2. Here is an n-variable version of this result.

Lemma 2.4. Assume that (S, ∗, ∗̃) is an RLC-system and s1, ... , sn belong to S.
For 1 6 i 6 n, put s̃i = Ωn(s1, ... , ŝi, , ... , sn, si). Then, for 1 6 i 6 n, and for
every permutation π in Sn, we have

(2.4) Ωi(sπ(1), ... , sπ(i)) = Ω̃n+1−i(s̃π(i), ... , s̃π(n)).

Proof. For n = 1, (2.4) reduces to the tautology sπ(1) = sπ(1). Now we fix n > 2
and use induction on i decreasing from n to 1. Assume first i = n. Then

(2.4) is Ωn(sπ(1), ... , sπ(i)) = Ω̃1(s̃π(i)). By Lemma 2.2, the left-hand term is also
Ωn(s1, ... , ŝi, ... , sn−1, sπ(i)), which is s̃π(i)) by definition, so (2.4) is satisfied.

Assume now i < n. Put

s = Ωi(sπ(1), ... , sπ(i)), s′ = Ωi(sπ(1), ... , sπ(i−1), sπ(i+1)),

t = Ωi+1(sπ(1), ... , sπ(i), sπ(i+1)), t′ = Ωi+1(sπ(1), ... , sπ(i−1), sπ(i+1), sπ(i)).

Using the definition of Ωi+1 from Ωi, we find t = s ∗ s′ and t′ = s′ ∗ s, whence
s = t′ ∗̃ t and s′ = t ∗̃ t by the involutivity law. Now the induction hypothesis gives

t = Ω̃n−i(s̃π(i+1), ... , s̃π(n)), t′ = Ω̃n−i(s̃π(i), s̃π(i+2), ... , s̃π(n)).

Using the definition of Πn+1−i from Πn−i, we find s = t′ ∗̃t = Ω̃n+1−i(s̃π(i), ... , s̃π(n))

(and s′ = t ∗̃ t = Ω̃n+1−i(s̃π(i+1), s̃π(i), s̃π(i+2), ... , s̃π(n))), which is (2.4). �

We now introduce terms that involve, in addition to ∗̃ and ∗̃, a third operation ·
that will be evaluated into an associative product.



YANG–BAXTER EQUATION, RC-CALCULUS, AND GARSIDE GERMS 11

Definition 2.5. For n > 1, we introduce the formal expressions

Πn(x1, ... , xn) = Ω1(x1) · Ω2(x1, x2) · ··· · Ωn(x1, ... , xn)(2.5)

Π̃n(x1, ... , xn) = Ω̃n(x1, ... , xn) · Ω̃n−1(x2, ... , xn) · ··· · Ω̃1(xn).(2.6)

Note that (2.5) implies Πn(x1, ... , xn) = Πn−1(x1, ... , xn−1) · Ωn(x1, ... , xn) for
n > 2. We shall subsequently consider monoids generated by S in which the
relations s(s ∗ t) = t(t ∗ s), that is, Π2(s, t) = Π2(t, s), are satisfied. Then we have
the following iterated version.

Lemma 2.6. Assume that (S, ∗) is an RC-system and M is a monoid including S
in which Π2(s, t) = Π2(t, s) holds for all s, t in S. Then the evaluation of Πn in M
is a symmetric function, meaning that, for all s1, ... , sn in S and π in Sn, we have

(2.7) Πn(sπ(1), ... , sπ(n)) = Πn(s1, ... , sn).

Proof. We use induction on n. For n = 1, there is nothing to prove. For n = 2, (2.7)
is the equality s1(s1 ∗ s2) = s2(s2 ∗ s1), which is valid in M by assumption. Assume
n > 3. As in Lemma 2.2, it is sufficient to consider transpositions (i, i+1), that is, to
compare Πn(s1, ... , sn) and Πn(s1, ... , si+1, si, ... , sn). By definition, Πn(s1, ... , sn)
is the product of the values Ωj(s1, ... , sj) for j increasing from 1 to n, whereas
Πn(s1, ... , si+1, si, ... , sn) is a similar product of Ωj(s

′
1, ... , s

′
j) with s

′
i = si+1, s

′
i+1 =

si, and s′k = sk for k 6= i, i + 1. For j < i, the entries si and si+1 do not occur
in Ωj(s1, ... , sj) and Ωj(s

′
1, ... , s

′
j), which are therefore equal. For j > i + 1, the

expressions Ωj(s1, ... , sj) and Ωj(s
′
1, ... , s

′
j) differ by the permutation of two non-

final entries, so they are equal by Lemma 2.2. There remains to compare the central
entries

t = Ωi(s1, ... , si) · Ωi+1(s1, ... , si+1) and t′ = Ωi(s
′

1, ... , s
′

i) · Ωi+1(s
′

1, ... , s
′

i+1).

Now put r = Ωi(s1, ... , si) and r′ = Ωi(s1, ... , si−1, si+1). By definition of s′k, we
have also r = Ωi(s

′
1, ... , s

′
i−1, s

′
i+1) and r

′ = Ωi(s
′
1, ... , s

′
i). Then, by definition of Ωi

and Ωi+1, we have t = r(r ∗ r′) and t′ = r′(r′ ∗ r), whence t = t′ in M . �

Lemma 2.6 says in particular that, when we start with n elements s1, ... , sn and,
starting from s1, ... , sn, construct in the Cayley graph of the monoid M the n-cube
displayed in Figure 2, then the cube converges to a unique final vertex and all paths
from the initial to the final vertex represent the element Π(s1, ... , sn).

Ω1(s1)

Ω1(s3)

Ω1(s2)

Ω2(s1, s2)

Ω2(s2, s1) Ω2(s1, s3)

Ω2(s3, s1)Ω2(s2, s3)

Ω2(s3, s2)

Ω3(s1, s2, s3)

Ω3(s1, s3, s2)

Ω3(s2, s3, s1)

Figure 2. The monomials Ωi occur at the ith level in an n-cube built
from s1, ... , sn using ∗ to form elementary squares (here n = 3).
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Lemma 2.7. Assume that (S, ∗, ∗̃) is an involutive RLC-system andM is a monoid
including S in which Π(s, t) = Π2(t, s) holds for all s, t in S. Then, for all s1, ... , sn
in S, the equality

Πn(s1, ... , sn) = Π̃n(s̃1, ... , s̃n).(2.8)

holds for s̃i = Ωn(s1, ... , ŝi, , ... , sn, si).

Proof. Using (2.4) and the definitions of Πn and Π̃n, we obtain

Πn(s1, ... , sn) = Ω1(s1) · Ω2(s1, s2) · ··· · Ωn(s1, ... , sn)

= Ω̃n(s̃1, ... , s̃n) · Ω̃n−1(s̃2, ... , s̃n) · ··· · Ω̃1(s̃n) = Π̃n(s̃1, ... , s̃n). �

3. Structure monoids and groups

According to [14], a group and a monoid can be associated with every involutive
nondegenerate set-theoretic solution of YBE, hence, equivalently, with every (bi-
jective) RC-quasigroup. As shown by F.Chouraqui in [4], the monoids arising in
this way turn out to be Garside monoids [8] and, conversely, every Garside monoid
with a certain syntactic type of presentation arises in this way—see also [17]. What
we do here is to show how to easily derive such results from the computations of
Section 2.

Definition 3.1. The structure group (resp. monoid) associated with an involutive
nondegenerate set-theoretic solution (S, ρ) of YBE is the group (resp. monoid)
defined by the presentation

(3.1) 〈S | {ab = a′b′ | a, b, a′, b′ ∈ S satisfying ρ(a, b) = (a′, b′)}〉.

The structure group (resp. monoid) associated with an RC-quasigroup (S, ∗) is the
group (resp. monoid) defined by the presentation

(3.2) 〈S | {s(s ∗ t) = t(t ∗ s) | s 6= t ∈ S}〉.

As all relations in (3.1) and (3.2) involve positive words only (no inverse), it
makes sense to consider the monoid defined by the presentations. Note that (3.1)
is redundant and contains trivial relations: as ρ is bijective, most relations occur
twice and ρ1(a, b) = a implies ρ2(a, b) = b and, in this case, we obtain the trivial
relation ab = ab.

We know that involutive nondegenerate set-theoretic solutions of YBE and bi-
jective RC-quasigroups are equivalent data. The first observation is that, as can be
expected, the associated monoids and groups coincide.

Lemma 3.2. Assume that an involutive nondegenerate set-theoretic solution (S, ρ)
of YBE and a bijective RC-quasigroup are connected as described in Proposition 1.6,
that is, s ∗ t is the unique element r of S satisfying ρ1(s, r) = t. Then the structure
monoids of (S, ρ) and (S, ∗) coincide, and so do the corresponding groups.

Proof. Assume that ab = a′b′ is a relation of (3.1). Then, by definition of ∗ from ρ,
we have b = a ∗ a′ and b′ = a′ ∗ a. If a and a′ coincide, the assumption that ρ is
nondegenerate implies that b and b′ coincide as well, and the relation ab = a′b′ is
trivial. Otherwise, the relation rewrites as a(a ∗ a′) = a′(a′ ∗ a), and it is a relation
of (3.2).

Conversely, consider a relation s(s ∗ t) = t(t ∗ s) of (3.2). Put a = s, a′ = t,
b = s ∗ t and b′ = t′ ∗ s′. Then, by the claim in the proof of Proposition 1.6, we
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have a′ = a⌉b and t′ = a⌈b in the language of biracks, that is, (a′, b′) = ρ(a, b) in
the language of set-theoretic solutions of YBE. So the relation s(s ∗ t) = t(t ∗ s),
which is ab = a′b′, is a relation of (3.1). �

Thus establishing results for the structure monoids of (involutive nondegen-
erate) set-theoretic solutions of YBE and for the structure monoids of bijective
RC-quasigroups are entirely equivalent tasks. We shall see now that the second
framework is specially convenient.

In the sequel, we often appeal to the divisibility relations of a monoid. If M
is a (left)-cancellative monoid and f, g belong to M , we say that f left-divides g
or, equivalently, that g is a right-multipleof g, denoted f 4 g, if fg′ = g holds for
some g′ in M . If 1 is the only invertible element in M , the relation 4 is a partial
ordering on M . We naturally say that h is a least common right-multiple, or right-
lcm, of f and g if h is a least upper bound of f and g with respect to 4, that is,
if h is a common right-multiple of f and g and every common right-multiple of f
and g is a right-multiple of h. Always under the assumption that 1 is the only
invertible element in the ambient monoid, the right-lcm is unique when it exists.
If f and g admit a right-lcm, the right-complement f\g of f in g is the unique
element g′ such that fg′ is the right-lcm of f and g. As already mentionned in
Example 1.5, the operation \ obeys the RC-law whenever any two elements of the
ambient monoid admit a right-lcm. Of course, we have symmetric counterparts
involving the right-divisibility relation, where f is said to right-divide g if g = g′f
holds for some g′.

Here is the result we shall establish. The definitions of a Garside family and a
Garside monoid will be recalled below.

Proposition 3.3. Assume that (S, ∗) is a bijective RC-quasigroup and M,G are
the associated structure monoid and group.

(i) The monoid M contains no nontrivial invertible element, it is Noetherian,
and its atoms are the elements of S.

(ii) The monoid M is a Ore monoid, it admits unique left- and right-lcms and
left- and right-gcds, and G is a group of left- and right-fractions for M ; this group
is torsion-free.

(iii) The structure (S, ∗) can be retrieved from M : the set S is the set of atoms
of M and, for s, t in S, s∗ t is the right-complement s\t for s 6= t, and is the unique
element of S \ {s\t | t 6= s ∈ S} otherwise.

(iv) The right-lcm ∆I of a cardinal n subset I of S belongs to Sn, it is the left-
lcm of (another) cardinal n subset of S, the map I 7→ ∆I is injective, and its image
is the smallest Garside family containing 1 in M .

(v) If S is finite with n elements and ∆ is the right-lcm of S in M , then M is a
Garside monoid with Garside element ∆, and G is its group of fractions; the family
of divisors of ∆ in M has 2n elements, and ∆ is also the left-lcm of S.

Of course, there exists an entirely similar statement starting from the assump-
tion that M and G are associated with an involutive nondegenerate set-theoretic
solution (S, ρ) of YBE, the only difference being that, in (iii) becomes “For a, b
in S, the value of ρ(a, b) is determined by ρ(a, b) = (a′, a′\a) if there exists a′ in M
satisfying a\a′ = b, and ρ(a, b) = (a, b) otherwise”.

Most of the properties listed in Proposition 3.3 appear in a close form in [4].
Our point here is to observe that using the RC-calculus of Section 2 gives short
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arguments, a large part of which do not require the assumption that the considered
RC-quasigroup is bijective. We shall go in several steps.

Lemma 3.4. Assume that (S, ∗) is an RC-quasigroup and M is the associated
monoid.

(i) The monoid M has no nontrivial invertible element and is Noetherian, that
is, there is no infinite descending sequence with respect to left- or right-divisibility.

(ii) It is left-cancellative, and any two elements of M admit a unique right-lcm
and a unique left-gcd.

(iii) The system (S, ∗) can be retrieved from M : the set S is the set of atoms
of M and, for s 6= t, the value of s ∗ t is the right-complement s\t in M and the
value of s ∗ s is the unique element of S \ {s\t | t 6= s ∈ S}.

Proof. (i) The relations of the presentation (3.2) preserve the length, that is, an
S-word can be equivalent to another S-word of the same length only. In particular,
if u is a nonempty S-word, then uv cannot be equivalent to the empty word and,
therefore, the element of M represented by u cannot be invertible. More generally,
the length of S-words induces a well-defined length for the elements of M : if f
is a proper left- or right-divisor of g, then the length of f must be strictly less
than the length of g, so no infinite descending sequence with respect to left- or
right-divisibility may exist in M .

(ii) The presentation (3.2) contains exactly one relation of the form s... = t...
for each pair of generators s, t in S. There exists for such presentations, which are
called right-complemented, a general approach that enables one to easily establish
properties of the associated monoid provided the latter is Noetherian, as is the case
for M by (i). The point is as follows. Assume we consider a monoid generated by
a set S and relations of the form sθ(s, t) = tθ(t, s) where θ is a map from S × S
to S (or, more generally to the family S∗ of all S-words). Then, by [9, Prop. 6.1
and 6.9] (or [11, Prop. II.4.16]), it is known that, whenever the “cube condition”

(3.3) θ(θ(r, s), θ(r, t)) = θ(θ(s, r), θ(s, t))

holds for all r, s, t in S, the involved monoid is left-cancellative, any two of its
elements admit a right-lcm, and the right-lcm of distinct elements s, t of S is s(s∗ t)
(and t(t ∗ s)). In the current case of M , the map θ is precisely the operation ∗,
and the assumption that (S, ∗) obeys the RC-law guarantees that (3.3) is satisfied.
Hence M is left-cancellative and any two elements of M admit a right-lcm. In a
Noetherian context, this implies that any two elements also admit a left-gcd, that
is, a greatest lower bound with respect to the left-divisibility relation.

(iii) As there is no relation involving a word of length one in (3.2), the elements
of S are atoms, and every element not lying in S ∪ {1} is not an atom. So S is
exactly the set of atoms in M . Next, for distinct s, t in S, the right-lcm of s and t
is s(s ∗ t), so, by definition, s\t is equal to s ∗ t. Thus all nondiagonal values s ∗ t
can be retrieved from M . Finally, all left-translations of (S, ∗) are one-to-one,
so s ∗ s must be the unique element of S \ {s ∗ t | s, t ∈ S, s 6= t}, that is, of
S \ {s\t | t 6= s ∈ S}. �

At this point, we can easily establish the first three items in Proposition 3.3.

Proof of Proposition 3.3(i)–(iii). Points (i) and (iii) directly appear in Lemma 3.4.
As for (ii), Lemma 3.4(ii) guarantees left-cancellativity and existence of right-lcms
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and left-gcds, so what is missing is the symmetric counterpart involving right-
cancellativity and right-divisibility. For this, we use the assumption that the RC-
quasigroup (S, ∗) is bijective. Indeed, let ∗̃ be the operation on S provided from ∗
by Lemma 1.8. Then (S, ∗, ∗̃) is an RLC-quasigroup, and (S, ∗̃) is a bijective LC-
quasigroup. Moreover the presentation

(3.4) 〈S | {(s ∗̃ t)t = (t ∗̃ s)s | s 6= t ∈ S}〉+,

coincides with the one of (3.2), and therefore it is a presentation of M . Indeed, let
(s ∗̃ t)t = (t ∗̃ s)s be a relation of (3.4). Put s′ = s ∗̃ t and t′ = t ∗̃ s. As (S, ∗, ∗̃) is
involutive, we obtain s′∗t′ = (s∗̃t)∗(t∗̃s) = t and t′∗s′ = (t∗̃s)∗(s∗̃t) = s by (1.11),
so the above relation is the relation s′(s′ ∗ t′) = t′(t′ ∗ s′) of (3.2). A symmetric
argument shows that every relation of (3.2) is a relation of (3.4). Then, by the
counterpart of Lemma 3.4—or by Lemma 3.4 applied to the opposed monoid M opp

and to the RC-quasigroup (S, ∗̃opp)—M must be right-cancellative and admit left-
lcms and right-gcds. Hence M is in particular a Ore monoid (that is, a cancellative
monoid where any two elements admit common left- and right-multiples). By a
classical theorem of Ore [6], its enveloping group G, which admits as a group the
presentation (3.2), is a group of left- and right-fractions forM . It is then known [10]
that the group of fractions of a torsion-free monoid is torsion-free. �

For the next properties, we use RC-calculus. The point is that the “polynomi-
als” Πn characterize right-lcms.

Lemma 3.5. Assume that (S, ∗) is an RC-quasigroup and M is the associated
monoid. Then, for all s1, ... , sn in S, the following are equivalent:

(i) The elements s1, ... , sn are pairwise distinct;
(ii) The element Πn(s1, ... , sn) is the right-lcm of s1, ... , sn in M .

If the above relations hold and, in addition, (S, ∗) is bijective, Πn(s1, ... , sn) is also
the left-lcm of the elements s̃1, ... , s̃n defined by s̃i = Ωn(s1, ... , ŝi, ... , sn, si).

Proof. Assume first that s1, ... , sn are pairwise distinct in S. Let Ω′
n and Π′

n be the
counterparts of Ωn and Πn respectively where the right-complement operation \
replaces ∗. We first prove using induction on i the equality

(3.5) Ωi(sπ(1), ... , sπ(i)) = Ω′

i(sπ(1), ... , sπ(i))

for every i and every permutation π in Si. For i = 1, we have Ω1(sπ(1)) = sπ(1) =
Ω′

1(sπ(1)), and the result is straightforward. Assume n > 2. Put

s = Ωi(sπ(1), ... , sπ(i)) and s′ = Ωi(sπ(1), ... , sπ(i−2), sπ(i), sπ(i−1)),

t = Ωi(sπ(1), ... , sπ(i)) and t′ = Ωi−1(sπ(1), ... , sπ(i−2), sπ(i)).

By definition of Ωi from Ωi−1, we have s = t ∗ t′ and s′ = t′ ∗ t. By Lemma 2.3
applied to (sπ(1), ... , sπ(i)), the assumption sπ(i−1) 6= sπ(i) implies s 6= s′, which
implies t ∗ t′ 6= t′ ∗ t. By Lemma 3.4, the latter relation implies t ∗ t′ = t\t′ and
t′ ∗ t = t′\t in M . The induction hypothesis implies

t = Ω′

i(sπ(1), ... , sπ(i)) and t′ = Ω′

i−1(sπ(1), ... , sπ(i−2), sπ(i)),

so we deduce s = t\t′ = (Ω′
i(sπ(1), ... , sπ(i)))\(Ω

′
i−1(sπ(1), ... , sπ(i−2), sπ(i))), that is,

s = Ω′
i(sπ(1), ... , sπ(i)).

Now, (3.5) immediately implies the equalities Πn(s1, ... , sn) = Π′
n(s1, ... , sn),

which is precisely (ii). Indeed, a trivial induction using the defining property of the
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right-complement operation shows that Π′
n(s1, ... , sn) is the right-lcm of s1, ... , sn

for every n. So (i) implies (ii).
For the other direction, let n′ be the cardinal of {s1, ... , sn}. Point (i) implies

that, if I is a cardinal n′ subset of S, then the right-lcm ∆I of I has length n′

in M . So, if n′ < n holds, the right-lcm of {s1, ... , sn} is an element of M that has
length n′, and it cannot be Πn(s1, ... , sn) which, by definition, has length n. So (ii)
implies (i).

Finally, assume that (S, ∗) is bijective and (i)–(ii) are satisfied. Let ∗̃ be the
second operation provided by Lemma 1.8. Then (S, ∗, ∗̃) is an RLC-quasigroup.
By Lemma 2.3, the assumption that s1, ... , sn are pairwise distinct implies that
s̃1, ... , s̃n are pairwise distinct. Then (S, ∗̃) is an LC-quasigroup, so the counterpart

of the above results implies that Π̃n(s̃1, ... , s̃n) is a left-lcm of s̃1, ... , s̃n in M . Now,

by (2.8), Π̃n(s̃1, ... , s̃n) is equal to Πn(s1, ... , sn). �

We recall from [12] that a Garside family in a monoidM is a generating family Σ
such that every element of M admits a (unique) Σ-normal decomposition, meaning
a decomposition s1 ···sp such that, for every i, the element si is the greatest left-
divisor of si ···sp lying in Σ.

Lemma 3.6. Assume that (S, ∗) is an RC-quasigroup and M is the associated
monoid. Then there exists a smallest Garside family containing 1 in M , namely
the family Σ of all right-lcms of finite subsets of S. Mapping a finite subset of S to
its right-lcm defines a bijection from Pfin(S) to Σ.

Proof. We know that the monoid M is left-cancellative, Noetherian, and that
any two elements of M admit a right-lcm. Hence, by [12, Prop. 3.25] (or [11,
Prop. IV.2.46]), M admits a smallest Garside family Σ, namely the closure of the
atoms, that is, of S, under the right-lcm and right-complement operations. We
claim that Σ actually coincides with the closure Σ′ of S under the sole right-lcm
operation.

By definition, Σ′ is included in Σ, and the point is to prove that Σ′ is closed
under the right-complement operation. Now, this will follow from the formula

(3.6) f\lcm(g1, ..., gn) = lcm(f\g1, ..., f\gn),

which holds in a monoid that admits unique right-lcms as shows an easy induc-
tion from f\lcm(g, h) = lcm(f\g, f\h), which itself follows from the fact that the
right-lcm of f, g, h is both the right-lcm of lcm(f, g) and lcm(f, h), and that of f
and lcm(g, h). So assume that g belongs to Σ′, that is, g is a right-lcm of elements
t1, ... , tn of S. If f lies in S, then, for every i, the element f\ti belongs to S ∪ {1}
since it is either f ∗ ti, if f and ti are distinct, or 1, if f and ti coincide. Then (3.6)
shows that f\g belongs to Σ′ for every f in S. Using induction on the length of f ,
we deduce a similar result for every f in M from the formula (f1f2)\g = f2\(f1\g).
So Σ′ is closed under \, it coincides with Σ, and it is the smallest Garside family
containing 1 in M .

For I a finite subset of S, write ∆I for the right-lcm of I. Lemma 3.5 implies
that, if I has p elements, say s1, ... , sp, then ∆I is equal to Πp(s1, ... , sp). So, in
particular, ∆I has length p. Now, assume that I, J are finite subsets of S and
∆I = ∆J holds. Then every element of I ∪ J left-divides ∆I , so we must have
∆I∪J = ∆I = ∆J . It follows that I ∪J has the same cardinal as I and J , implying
I = I ∪ J = J . So the map I 7→ ∆I is a bijection of Pfin(S) to Σ. �
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Finally, we turn to the property of being a Garside monoid. We recall from [8]
that a monoid M is said to be a Garside monoid if it is cancellative, Noetherian,
every two elements admit left- and right-lcms and gcds, and it admits a Garside
element, defined to be an element ∆ such that the left- and right-divisors of ∆
coincide, generate the monoid, and are finite in number. In such a case, the family
consisting of all divisors of ∆ is a (finite) Garside family in M .

Lemma 3.7. Assume that (S, ∗) is a finite RC-quasigroup of cardinal n and M is
the associated monoid. Then the right-lcm ∆ of S is a Garside element in M , it
admits 2n (left- or right-) divisors, and M is a Garside monoid.

Proof. As in Lemma 3.6, write ∆I for the right-lcm of I for I ⊆ S, and write ∆
for ∆S . By Lemma 3.6, the family Σ of all elements ∆I is the smallest Garside
family containing 1 inM , and it has 2n elements. By definition, ∆I left-divides ∆S ,
that is, every element of Σ left-divides ∆, and, moreover, ∆ lies in Σ. By definition,
this means that the Garside family Σ is what is called right-bounded by ∆ [11,
Def. VI.1.1], and ∆ is a right-Garside element in M .

Now, as Σ is finite, [11, Prop. VI.2.6] says that Σ is not only right-bounded,
but even bounded by ∆, meaning that ∆ is a Garside element in M , and that
M must be right-cancellative. Let us briefly recall the argument, which already
appears in [8]: for every g in Σ, let s∗ be the unique element satisfying ss∗ = ∆.
By a general property of Garside families, s∗ must belong to Σ, so it makes sense
to consider φ(s) = s∗∗. Now, for every s in Σ, we obtain s∆ = ss∗s∗∗ = ∆φ(s),
and one easily deduces that φ extends into a well-defined endomorphism of M . As
M is left-cancellative, the map s 7→ s∗ is injective on Σ, hence so is φ. As Σ is
finite, φ must be a permutation of Σ, and the derived endomorphism must be a
(finite order) automorphism of M . From there, one easily deduces that s∆ = t∆
implies s = t, and then that M is right-cancellative. Using the duality s 7→ s∗, one
shows that the existence of right-lcms and left-gcds implies that of left-lcms and
right-gcds. �

Completing the proof of Proposition 3.3 is now straightforward.

Proof of Proposition 3.3(iv) and (v). Lemma 3.6 gives most results in (iv), with
the exception of the property involving left-lcms. Now the latter follows from the
last sentence in Lemma 3.5: if s1, ... , sn are pairwise distinct elements of S, then
Πn(s1, ... , sn) is the right-lcm of s1, ... , sn and the latter is also the left-lcm of the
elements s̃1, ... , s̃n defined by s̃i = Ωn(s1, ... , ŝi, ... , sn, si).

Finally, (v) follows from Lemma 3.7 direction. �

Example 3.8. Let S = {a, b, c}, and let ∗ be determined
by x ∗ y = f(y) where f is the cycle a 7→ b 7→ c 7→ a. Then,
as seen in Example 1.5, (S, ∗) is a bijective RC-quasigroup,
and it is eligible for the above results. The associated monoid
admits the presentation

〈a, b, c | ac = b
2, a2 = cb, ba = c

2〉.

The right-lcm ∆ of S is then a
3, which is also b

3 and c
3,

and the lattice of the 8 divisors of ∆ is shown on the right.
1

a b c

b
2

a
2

c
2

∆

Remark 3.9. The notion of a Garside family is not symmetric: it involves normal
decompositions based on a largest left-divisor, and it need not coincide with its
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symmetric counterpart. So, for instance, the uniqueness of the smallest Garside
family in M cannot be invoked in Lemma 3.7 to establish that the right-lcm of S
must coincide with the left-lcm of S without using the finiteness of Σ and Garside
theory. On the other hand, observe that the proof of Lemma 3.7 does not require
that (S, ∗) be bijective.

4. The other direction

We saw in Section 3 that, if (S, ρ) is an involutive nondegenerate set-theoretic
solution of the YBE or, equivalently, if (S, ∗) is a bijective RC-quasigroup, and S
has cardinality n, then the associated monoid is a Garside monoid with a Garside
element ∆ admitting 2n elements. Moreover, by definition, this Garside monoid
admits a presentation containing

(
n
2

)
relations involving length two words, and

the assumption that the left-translations of (S, ∗) are one-to-one implies that no
word may appear in two relations simultaneously. What we shall see now is that,
conversely, every Garside monoid with the above properties is associated with a
(bijective) RC-quasigroup (hence with a set-theoretic solution of YBE). Once again,
the YBE part of the result is essentially present in [4] and the point here is to show
that using the RC-law provides simple arguments (definitely different from those
of [4]). By the way, we shall also be able to easily recover Rump’s result that every
finite RC-quasigroup is bijective.

Proposition 4.1. Assume that M is a monoid with atom set S of cardinal n.
Then the following are equivalent:

(i) There exists a map ρ such that (S, ρ) is an involutive nondegenerate set-
theoretic solution of YBE and M is isomorphic to the structure monoid of (S, ρ);

(ii) There exist two operations ∗, ∗̃ such that (S, ∗, ∗̃) is an RLC-quasigroup and
M is the monoid associated with (S, ∗);

(iii) There exists an operation ∗ such that (S, ∗) is an RC-quasigroup and M is
the monoid associated with (S, ∗);

(iv) The monoid M is a Garside monoid and admits a presentation in terms
of S consisting of

(
n
2

)
relations u = v with u, v of length two such that every length

two S-word appears in at most one relation.

Proof. We proved in Section 1 that (i) and (ii) are equivalent. On the ohter hand,
(ii) trivially implies (iii). Next, by Lemma 3.7, (iii) implies (iv). Hence, in order
to complete the proof, it is sufficient to show that (iv) implies (ii). So we assume
that M is a Garside monoid satisfying (iv) and R is the list of relations involved
in the considered presentation. We shall construct operations ∗ and ∗̃ that make S
into an RLC-quasigroup whose associated monoid is M . To this end, we use the
right- and left-complement operations ofM : we recall that, for f, g inM , we denote
by f\g the (unique) element (right-complement of f in g) such that f(f\g) is the
right-lcm of f and g. Symmetrically, we denote by f/g the (unique) element such
that (f/g)g is the left-lcm of f and g. Then the operation \ obeys the RC-law,
whereas / obeys the LC-law. We shall define ∗ as a slight variation of \, and ∗̃ as
a slight variation of /, the point being to take care of the exceptional values where
the operations \ and ∗ do not coincide.

First, we observe that the list of relations R must contain exactly one relation
of the form s... = t... for all distinct s, t in S. Indeed, assume that s, t are distinct
elements of Σ and R contains at least two relations s... = t..., say st′ = ts′ and
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st′′ = ts′′ with (s′, t′) 6= (s′′, t′′). As M is cancellative, we have st′ 6= st′′, so st′

and st′′ are two common right-multiples of s and t of length 2: this contradicts
the existence of a right-lcm for s and t, as the latter can have neither length 1 nor
length 2. Hence R contains at most one relation s... = t... for all distinct s, t in S.
On the other hand, R contains no relation s... = s... since M is left-cancellative
and st = st′ would imply t = t′. As there are

(
n
2

)
pairs of distinct elements

of S, we deduce that R contains exactly one relation of the form s... = t... for all
distinct s, t in S. By symmetric arguments using left-lcms and right-cancellativity
(or by applying the previous result to the opposite monoid), we see that (S,R)
contains exactly one relation of the form ...s = ...t for all distinct s, t in S.

We now define a binary operation ∗ on S. First, we put s ∗ t = s\t for s 6= t,
that is, we define s ∗ t to be the unique element t′ such that st′ is the right-lcm of s
and t. Then t 6= t′ implies s∗ t 6= s∗ t′ since, otherwise, there would be two relations
of the form s(s ∗ t) = ... in R. So the map x 7→ s ∗ x is injective on Σ \ {s} and,
therefore, the complement of {s ∗ x | x 6= s} in S consists of a unique element: we
define s∗s to be that element. In this way, we obtained a binary operation ∗ whose
left-translations are one-to-one. Of course, we define the operation ∗̃ symmetrically
using /, and its right-translations are one-to-one.

We claim that ∗ and ∗̃ satisfy the involutivity laws (1.11). First, assume s 6= t.
Then s(s ∗ t) = t(t ∗ s) is a relation of R, hence we must have s ∗ t 6= t ∗ s. Next, by
definition of ∗ and ∗̃, the element s(s∗ t) is the right-lcm of s and t, and, as s∗ t and
t∗s are distinct, s(s∗ t) is also the left-lcm of s∗ t and t∗s. This exactly means that
(s∗ t) ∗̃ (t∗s) = t holds in this case. Now, put s′ = s∗s and r = s′ ∗̃s′. For t 6= s, we
have s ∗ t 6= s′, whence r = s′/(s\t). Then r(s\t) = ((s\t)/s′)s′ is a relation of R,
which implies (s\t)/s′ 6= s since, by assumption, R contains no relation ss′ = ....
Since (s\t)/s′ 6= s holds for every t distinct of s, we deduce s′ ∗̃ s′ = s since, by
definition, s′ ∗̃s′ is the only element of S that is not of the form (s\t) ∗̃s′ with t 6= s.
In other words, (s ∗ s) ∗̃ (s ∗ s) = s holds, and the first involutivity law is satisfied
in (S, ∗, ∗̃). By a symmetric argument, the second involutivity law is satisfied as
well.

Next, we claim that (S, ∗) satisfies the RC-law. Let r, s, t lie in S. Assume first
that r, s, t are pairwise distinct. Then we have r ∗ s 6= r ∗ t and s ∗ r 6= s ∗ t, whence

(r ∗ s) ∗ (r ∗ t) = (r\s)\(r\t) = (s\r)\(s\t) = (s ∗ r) ∗ (s ∗ t),

the second equality because, as observed in Example 1.5, the right-complement
operation \ always satisfies the RC-law. Assume now that r and s coincide. Then
the RC-law tautologically holds. So there only remains the cases when r 6= s and t
is either r or s, that is, we would like to establish the equalities

(r ∗ s) ∗ (r ∗ s) = (s ∗ r) ∗ (s ∗ s) and (s ∗ r) ∗ (s ∗ r) = (r ∗ s) ∗ (r ∗ r),

that is, owing to r 6= s,

(4.1) (r\s) ∗ (r\s) = (s\r)\(s ∗ s) and (s\r) ∗ (s\r) = (r\s)\(r ∗ r).

Assume z 6= r, s and put z′ = (r\s)\(r\z), which is also z′ = (s\r)\(s\z) since \
satisfies the RC-law. Then we have r\z 6= r\s, whence z′ 6= (r\s) ∗ (r\s). Also,
we have s\z 6= s ∗ s, whence z′ 6= (s\r)\(s ∗ s). Arguing similarly with r and s
exchanged, we find z′ 6= (s\r) ∗ (s\r) and z′ 6= (r\s)\(r ∗ r). So, it follows that
z′ is distinct from the four expressions occurring in (4.1) and, therefore, that the
only possible values for the latter are the two elements of S that are not of the



20 PATRICK DEHORNOY

form (r\s)\(r\z) with z 6= r, s. Now, as left-translations of ∗ are injective, we must
have (r\s) ∗ (r\s) 6= (r\s)\(r ∗ r) and (s\r)\(s ∗ s) 6= (s\r) ∗ (s\r). So, in order to
conclude that (4.1) is true, it is sufficient to show that (r\s) ∗ (r\s) = (s\r) ∗ (s\r)
is impossible. Now r 6= s implies r ∗ s 6= s ∗ s, so it is enough to prove that x 6= y
implies x ∗ x 6= y ∗ y: this follows from the above established involutivity relation
(x ∗ x) ∗̃ (x ∗ x) = x.

We are done: (S, ∗) is an RC-quasigroup, by a symmetric argument (S, ∗̃) is
an LC-quasigroup, and (S, ∗, ∗̃) is an RLC-quasigroup. Now, by construction,
M admits the presentation (S,R), so it is (isomorphic to) the monoid associated
with (S, ∗). �

A nice application of Proposition 4.1 is

Corollary 4.2. Every finite RC-quasigroup is bijective and carries a second oper-
ation that makes it an RLC-quasigroup.

Proof. Assume that (S, ∗) is a finite RC-quasigroup. According to Lemma 3.7, the
associated structure monoid M is a Garside monoid that satisfies the conditions
of Proposition 4.1(iv). It follows that there exist two operations ∗′, ∗̃ on S such
that (S, ∗′, ∗̃) is an RLC-quasigroup and M is associated with (S, ∗′). Now, by
Lemma 3.4, the latter condition determines ∗′ uniquely, so ∗′ must coincide with ∗.
By Lemma 1.8, the existence of ∗̃ implies that ∗ is bijective. �

Technically, the point in the above corollary is that, if (S, ∗) is a finite RC-
quasigroup, then the associated monoid has (in some heuristic sense) a finite right-
Garside structure and that a finite right-Garside structure must be a Garside struc-
ture, the key factor for the symmetry of the results (in particular right-cancellativity
and existence of left-lcms) being the fact that the endomorphism mentioned in the
proof of Lemma 3.7 must be an automorphism. So Corollary 4.2 appears as a direct
application of what can be called the Garside theory.

5. The I-structure

It has been known since [18] and [21] that the monoids associated with involutive
nondegenerate set-theoretic solutions of YBE admit a nice geometric characteriza-
tion as those monoids that admit an I-structure, meaning that their Cayley graph
is a twisted copy of that of a free abelian monoid. What we will observe below is
that these results can be easily established using the framework of RC-quasigroups
and the computational formulas of Section 2. In particular, we shall see that the
I-structure can be explicitly determined using the polynomials Πn.

Definition 5.1. IfM is a monoid generated by a set S, a (right)-I-structure forM
is a bijective map ν : N(S) →M satisfying ν(1) = 1 and, for every a in N(S),

(5.1) {ν(as) | s ∈ S} = {ν(a)s | s ∈ S}.

A monoid is said to be of right-I-type if it admits a right I-structure.

Note that (5.1) is equivalent to the existence, for every a in N(S), of a permuta-
tion ψ(a) of S such that, for every s in S, one has

(5.2) ν(as) = ν(a) · ψ(a)(s).
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The existence of a right-I-structure ν on a monoid M provides a bijection from the
Cayley graph of the free Abelian monoid N(S) onto that of M that preserves the
length of paths but changes the labels.

We first establish the following explicit version of the result of [18] and [21]:

Proposition 5.2. Assume that (S, ∗) is an RC-quasigroup and M is the associated
monoid. Then the map ν defined from ∗ by ν(s1 ···sn) = Πn(s1, ... , sn) is a right
I-structure on M .

Proof. We first define a map ν∗ from the free monoid S∗ to M by

ν∗(ε) = 1 and ν∗(s1| ··· |sn) = Πn(s1, ... , sn) for n > 1

where s1| ··· |sn denotes the length n word with successive letters s1, ... , sn. By
Lemma 2.6, the value of ν∗(s1 | ··· |sn) does not depend on the order of the entries,
so the map ν∗ induces a well-defined map ν from the free Abelian monoid N(S) toM .
We claim that the latter provides the expected right-I-structure on M . First, the
equalities ν(1) = 1 and ν(s) = s for s in S are obvious. Next, let a belong to N(S),
say a = s1 ···sn. Then the definition of ν gives ν(as) = Πn+1(s1, ... , sn, s), whence
ν(as) = Πn(s1, ... , sn) ·Ωn+1(s1, ... , sn, s). So, by Lemma 2.3(i), the map s 7→ ν(as)
is a bijection of S into itself, that is, (5.1) holds.

It remains to show that ν is a bijection from N(S) to M . Let g be an arbi-
trary element of M , say g = s1 ···sn with s1, ... , sn in S. By Lemma 2.3(ii), there
exist r1, ... , rn in S satisfying Ωi(r1, ... , ri) = (s1, ... , si) for 1 6 i 6 n, whence
Πn(r1, ... , rn) = s1 ···sn = g. By definition, this means that ν(r1 ···rn) = g holds,
and ν is surjective.

Finally, assume that a, a′ belong to N(S) and ν(a) = ν(a′) holds. As the elements
of M have a well-defined length, the length of a and a′ must be the same. Write
a = r1 ···rn, a

′ = r′1 ···r
′
n with r1, ... , r

′
n in S. Define si = Ωi(r1, ... , ri) and s′i =

Ωi(r
′
1, ... , r

′
i). By definition, ν(a) is the class of the S-word s1| ··· |sn in M , whereas

ν(a′) is the class of s′1| ··· |s
′
n. The assumption ν(a) = ν(a′) means that these S-

words are connected by a finite sequence of defining relations ofM . By Lemma 2.3,
the map (x1, ... , xn) 7→ (Ω1(x1), ... ,Ωn(x1, ... , xn)) of S[n] to itself is surjective, so
we can assume without loss of generality that s1| ··· |sn and s′1| ··· |s

′
n are connected

by one relation exactly, that is, there exist i satisfying

si+1 = si ∗ s
′

i, s′i+1 = s′i ∗ si, and s′k = sk for k 6= i, i+ 1.

The relations s′k = sk inductively imply r′k = rk for k < i. Next, writing ~r for
r1, ... , ri−1, we have si = Ωi(~r, ri) and s

′
i = Ωi(~r, r

′
i). Then, we find

Ωi(~r, ri) ∗ Ωi(~r, ri+1) = Ωi+1(~r, ri, ri+1) = si+1 = si ∗ s
′

i = Ωi(~r, ri) ∗ Ωi(~r, r
′

i).

As the left-translation by Ωi(~r, ri) is injective, we deduce Ωi(~r, ri+1) = Ωi(~r, r
′
i),

whence ri+1 = r′i by Lemma 2.3(i). A symmetric argument gives r′i+1 = ri. From
there, everything is easy and, for k > i+1, the relations s′k = sk inductively imply
r′k = rk. Indeed, we have

Ωk(~r, ri, r
′

i, ri+2, ... , rk) = sk = s′k = Ωk(~r, r
′

i, ri, ri+2, ... , r
′

k),

and, by Lemma 2.2, we know that switching the non-final entries ri and r
′
i in Ωk

changes nothing, and r′k = rk follows by Lemma 2.3. We thus proved that the words
r1| ··· |rn and r′1| ··· |r

′
n are obtained by switching two (adjacent) entries, hence they

represent the same element in the free Abelian monoid N(S). Hence ν is injective,
hence bijective, and it provides the expected right-I-structure on M . �
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In the other direction, one can show that every finitely generated monoid of I-
type is the structure monoid of some RC-quasigroup, again a result of [18] and [21].

Proposition 5.3. Assume that M is a finitely generated monoid of right-I-type.
(i) There exists a unique finite RC-quasigroup (S, ∗) such that M is the structure

monoid of (S, ∗): the set S is the atom set of M and ∗ is determined by s ∗ t = s\t
for s 6= t and {s ∗ s} = S \ {s\t | t 6= s}.

(ii) The right-I-structure on M is unique: it is defined from the operation ∗ of (i)
by ν(s1 ···sn) = Πn(s1, ... , sn).

Below we provide an argument that takes advantage of the RC-calculus formulas
and, although complete and hopefully more explicit for the fundamental equalities
of (5.7), could appear shorter than the exposition of [22, Chapter 8].

By the results of Section 3, the RC-quasigroup involved in Proposition 5.3 must
be bijective, and M must be a Garside monoid (hence in particular a Ore monoid).
Before establishing Proposition 5.3 itself, we begin with some auxiliary results.
As above, we shall use a, b, ... for the elements of the reference monoid N(S), and
g, h, ... for the elements of the monoid M . If ν is a right-I-structure based on S in
a monoid M and a belongs to N(S), we denote by ψ(a) the associated permutation
of S that satisfies (5.2). In terms of the Cayley graph, ψ(a) specifies, for every s
in S, to which direction the s-labeled edge starting from ν(a) points.

Lemma 5.4. Assume that ν is a right-I-structure based on S in a monoid M .
(i) There exists an additive length function on M and S is the atom set in M .
(ii) The map ν is compatible with left-division in the sense that, for all a, b

in N(S), we have a4 b in N(S) if and only if ν(a)4 ν(b) holds in M .
(iii) The monoid M admits right-lcms.
(iv) If, moreover, S is finite, then M is left-cancellative, and it admits the pre-

sentation 〈S | {s(s\t) = t(t\s) | s 6= t ∈ S}〉+.

Proof. (i) Defining λ(g) to be the length of ν−1(g) provides a function from M
to N that satisfies λ(1) = 0, λ(gh) = λ(g) + λ(h), and λ(s) = 1 for every s in S.
It immediately follows that M contains no nontrivial invertible element, that M is
Noetherian, and that S is the atom set of M .

(ii) Assume a 4 b in N(S). For an induction on length, we may assume b = as
with s in S. Now, by (5.2), we have ν(b) = ν(a)ψ(a)(s), whence ν(a)4 ν(b) in M .
Conversely, assume ν(a)4ν(b). Again, it is enough to consider the case ν(b) = ν(a)s
with s in S. Now, as ψ(a) is bijective, there exists a unique r in S satisfying
ψ(a)(r) = s, and, by (5.2), we have then ν(ar) = ν(a)ψ(a)(r) = ν(a)s = ν(b),
whence b = ar since ν is injective, and a4 b in N(S).

(iii) The monoid N(S) admits right-lcms, and (ii) enables us to easily transfer
the result to M . So, let g, h belong to M . Put a = ν−1(g) and b = ν−1(h). Let
ab′ be the right-lcm of a and b in N(S). By (ii), ν(ab′) is a common right-multiple
of g and h in M . Now, assume that f is a common right-multiple of g and h in M .
By (ii) again, we have a 4 ν−1(f) and b 4 ν−1(f) in N(S), whence ab′ 4 ν−1(f).
By (ii) once more, this implies ν(ab′)4 f in M . So ν(ab′) is a right-lcm of g and h
in M , and M admits right-lcms.

(iv) We assume now that S is finite. Fix g in M , and put a = ν−1(g). For
every b in N(S), we have g 4 gν(b) in M , whence, by (ii), a 4 ν−1(gν(b)) in N(S).
So, as N(S) is left-cancellative, there exists a well-defined map ψ from N(S) to itself
such that, for every b in N(S), we have ν−1(gν(b)) = aψ(b), that is, equivalently,
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gν(b) = ν(aψ(b)). Put N
(S)
(ℓ) = {b ∈ N(S) | ‖b‖ = ℓ}. The additivity of length

implies ‖ψ(b)‖ = ‖b‖, so, for every ℓ, the restriction ψℓ of ψ to N
(S)
(ℓ) maps N

(S)
(ℓ) to

itself. Then ψℓ is surjective. Indeed, let b′ belong to N
(S)
(ℓ) . Then we have a 4 ab′

in N(S), whence, by (ii), g 4 ν(ab′) in M . So some element ν(b) of M satisfies

gν(b) = ν(ab′), whence b′ = ψℓ(b) since b must be of length ℓ. As N
(S)
(ℓ) is finite,

ψℓ must be injective for every ℓ, and so is ψ. Now, assume gh = gh′ in M . Put
b = ν−1(h) and b′ = ν−1(h′). By definition of ψ, we have ν(aψ(b)) = ν(aψ(b′)),
whence aψ(b) = aψ(b′) in N(S) since ν is injective, then ψ(b) = ψ(b′) since N(S)

is left-cancellative, b = b′ since ψ is injective and, finally, h = h′. So M is left-
cancellative.

Finally, as M is Noetherian, left-cancellative, and admits right-lcms, and as S is
the atom set of M , it follows from [7, Proposition 4.1] that the list of all relations
s(s\t) = t(t\s) with s 6= t ∈ S make a presentation of M . �

Proof of Proposition 5.3. (i) Assume that ν is a right-I-structure on M , based on
a set S. By Lemma 5.4(i), S must be the atom set of M , and the assumption that
M is finitely generated implies that S is finite. Now, define a binary operation ∗
on S by s ∗ t = ψ(s)(t). By definition, ψ(s) belongs to SS , so the left-translations
of ∗ are one-to-one. By Lemma 5.4(iv), for s 6= t in S, the right-lcm of s and t
in M is the element ν(st), which, with the current notation, is both s(s ∗ t) and
t(t ∗ s). So, for s 6= t, we must have s ∗ t = s\t, and ∗ admits the definition of the
statement—so, in particular, S and ∗ only depend on M , and not on the particular
I-structure ν. Then Lemma 5.4(iv) implies that M admits the presentation

〈S | {s(s ∗ t) = t(t ∗ s) | s 6= t ∈ S}〉+,

that is, M is the structure monoid of (S, ∗).
It remains to prove that the operation ∗ obeys the RC-law. Let a belong to N(S)

and s, t belong to S. Using (5.2), we find

ν(ast) = ν(as) · ψ(as)(t) = ν(a) · ψ(a)(s) · ψ(as)(t),

and, similarly, ν(ats) = ν(a) · ψ(a)(t) · ψ(at)(s). Now, in N(S), we have ast = ats,
whence ν(ast) = ν(ats), so, merging the above expressions and left-cancelling ν(a),
we find the equality

(5.3) ψ(a)(s) · ψ(as)(t) = ψ(a)(t) · ψ(at)(s).

For t 6= s, we have ψ(a)(s) 6= ψ(a)(t), so (5.3), which must be a right-lcm relation,
implies ψ(as)(t) = (ψ(a)(s)) \ (ψ(a)(t)) and, therefore,

(5.4) ψ(as)(t) = (ψ(a)(s)) ∗ (ψ(a)(t)).

When t ranges over S \ {s}, the element ψ(a)(t) ranges over S \ {ψ(a)(s)}, and
(ψ(a)(s)) ∗ (ψ(a)(t)) ranges over S\{(ψ(a)(s)) ∗ (ψ(a)(s))}. As ψ(as) is a bijection
of S, the only possibility is therefore ψ(as)(s) = (ψ(a)(s)) ∗ (ψ(a)(s)). In other
words, (5.4) is valid in S for all a, s, and t.

Now, assume that r lies in S. Making a = r in (5.4) and applying the definition
of r ∗x, we obtain ψ(rs)(t) = (r ∗s)∗ (r ∗ t). Now, in N(S), we have rs = sr, whence
ψ(rs)(t) = ψ(sr)(t), which gives (r ∗ s) ∗ (r ∗ t) = (s ∗ r) ∗ (s ∗ t), the RC-law. So
the proof of (i) is complete.
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(ii) Using induction on n > 2, we first show, for all s1, ... , sn in S, the equality

(5.5) ψ(s1 ···sn−1)(sn) = Ωn(s1, ... , sn),

where Ωn is as in Definition 2.1. For n = 2, we have ψ(s1)(s2) = s1∗s2 = Ω2(s1, s2).
Assume n > 3. Using (5.4), the induction hypothesis, and the inductive definition
of the monomials Ωn, we find

ψ(s1 ···sn−1)(sn) = ψ(s1 ···sn−2)(sn−1) ∗ ψ(s1 ···sn−2)(sn)

= Ωn−1(s1, ... , sn−1) ∗ Ωn−1(s1, ... , sn−2, sn) = Ωn(s1, ... , sn),

which is (5.5). We now deduce the value

(5.6) ν(s1 ···sn) = Πn(s1, ... , sn)

using (5.2) and the straightforward induction

ν(s1 ···sn) = ν(s1 ···sn−1) · ψ(s1 ···sn−1)(sn)

= Πn−1(s1, ... , sn−1) · Ωn(s1, ... , sn) = Πn(s1, ... , sn).

We established above that S and ∗ are uniquely determined by the monoid M ,
hence so are the functions Πn. Hence (5.6) shows that the right-I-structure on M
is unique. �

To complete our description, we shall use the following explicit formulas for the
values of the I-structure and the associated permutation on a product.

Lemma 5.5. Assume that ν is a right-I-structure based on a finite set S in a
monoid M . Then, for all a, b in N(S), we have

(5.7) ν(ab) = ν(a)ν(ψ(a)[b]) and ψ(ab) = ψ(ψ(a)[b]) ◦ ψ(a)

where ψ(a)[b] is the result of applying ψ(a) to b componentwise.

Proof. The definition of Ωn implies, for p, q > 1, the formal equality

Ωp+q(~x, y1, ... , yq) = Ωq(Ωp+1(~x, y1), ... ,Ωp+1(~x, yq)),

where ~x stands for x1, ... , xp; this is a formal identity, not using the RC-law or any
specific relation; for instance, it says that Ω3(x, y1, y2), that is, (x ∗ y1) ∗ (x ∗ y2), is
also Ω2(Ω2(x, y1),Ω2(x, y2)). With the same convention, one immediately deduces

(5.8) Πp+q(~x, y1, ... , yq) = Πp(~x) · Πq(Ωp+1(~x, y1), ... ,Ωp+1(~x, yq)).

Now, assume that a, b lie in N(S). Write a = s1 ···sp and b = t1 ···tq with s1, ... , tq
in S. By Proposition 5.3, we have ν(ab) = Πp+q(s1, ... , sp, t1, ... , tq). On the other
hand, we have ν(a) = Πp(s1, ... , sp) and, by (5.5), ψ(a)(t) = Ωp+1(s1, ... , sp, t) for
every t, whence in particular

ν(ψ(a)(t)) = Πq(Ωp+1(s1, ... , sp, t1), ... ,Ωp+1(s1, ... , sp, tq)).

Merging with (5.8), we directly obtain the left formula in (5.7).
Finally, assume s ∈ S. On the one hand, (5.2) gives ν(abs) = ν(ab)ψ(ab)(s). On

the other hand, the left formula in (5.7) gives

ν(abs) = ν(a) · ν(ψ(a)[bs]) = ν(a) · ν(ψ(a)[b] · ψ(a)(s))

= ν(a) · ν(ψ(a)[b]) · ψ(ψ(a)[b])(ψ(a)(s)) = ν(ab) · ψ(ψ(a)[b])(ψ(a)(s)).

Merging the two expressions gives ψ(ab)(s) = ψ(ψ(a)[b])(ψ(a)(s)), which is the
right equality in (5.7). �
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Relation (5.2) is directly reminiscent of a semi-direct product. We recall from [21]
and [3] that, once the equlities (5.7) are established, one easily deduces the following
connection:

Proposition 5.6. Assume that M is a monoid, S is a finite subset of M , and ν
is a map from N(X) to M . Then the following are equivalent:

(i) The map ν is a right-I-structure on M ;
(ii) There exists a map π : NS → SS such that g 7→ (ν−1(g), ψ(ν−1(g))−1)

defines an injective homomorphism of M to the wreath product N ≀SS whose first
component is a bijection.

6. Coxeter-like groups

In this final section, we use the RC-calculus of Section 2 and the I-structure of
Section 5 and to solve what can be called the quest of a Coxeter group, namely
constructing for every group associated with a finite RC-quasigroup a finite quotient
that exactly plays the role played by Coxeter groups in the case of spherical Artin–
Tits groups.

In the case of Artin’s braid group Bn, the seminal example of a Garside group,
the Garside structure (B+

n ,∆n) is directly connected with the symmetric group Sn.
Precisely, the group Bn and the monoid B+

n admit the (Artin) presentation

(6.1)

〈
σ1, ..., σn−1

∣∣∣∣
σiσj = σjσi for |i− j| > 2

σiσjσi = σjσiσj for |i− j| = 1

〉
,

and Sn is the quotient of Bn obtained by adding to (6.1) the relations σ2
i = 1.

Then there exists a map σ from Sn to Bn that is a set-theoretic section for the
projection of Bn to Sn, the image of σ is the family Div(∆n) of all divisors of ∆n

in the monoid B+

n , and a presentation both of the group Bn and the monoid B+

n

in terms of the image of σ consists of all relations σ(f)σ(g) = σ(h) with f, g, h
in Sn satisfying ‖f‖+ ‖g‖= ‖h‖, where ‖f‖ is the length of f , that is, the minimal
number of adjacent transpositions in a decomposition of f . Thus the (infinite)
group Bn appears as a sort of unfolded version of the group Sn where the length
of permutations is used to get rid of torsion.

This is the situation we wish to extend. To make things precise, we first put a
formal definition. If a set S positively generates a group G (that is, every element
of G can be expressed as a product of elements of S), we denote by ‖g‖

S
the length

of a shortest S-decomposition of g.

Definition 6.1. Assume that M is a Garside monoid with Garside element ∆ and
G is its group of fractions. We say that a surjective homomorphism π : G → G
provides a Garside germ for (G,M,∆) if there exists a map σ : G→ M such that
π ◦ σ is the identity, the image of σ is the family of all divisors of ∆ in M , and M
admits the presentation

(6.2) 〈 σ(G) | {σ(f)σ(g) = σ(fg) | f, g ∈ G and ‖f‖
S
+ ‖g‖

S
= ‖fg‖

S
} 〉,

where S is the image under π of the set of atoms of M .

In the context of Definition 6.1, the assumption that ∆ is a Garside element inM
implies that every element of G can be written as ∆pg for some p in Z and some g
in M , implying that S positively generates G and making ‖g‖

S
meaningful. The

term germ stems from [13] and [12] where the structure consisting of G equipped
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with the partial binary operation • such that f • g = h holds if and only if we
have fg = h and ‖f‖

S
+ ‖g‖

S
= ‖h‖

S
is called the germ derived from (G,S). The

monoid and the group defined by (6.2) are then naturally said to be generated by the
germ (G, •). So the situation described in Definition 6.1 corresponds to (G, •) being
a germ generating G, which makes the terminology coherent. When it is so, the
maps π and σ induce mutually inverse isomorphisms between the finite lattice made
by the divisors of ∆ in M and (G,6) where f 6 g means ‖f‖

S
+ ‖f−1g‖

S
= ‖g‖

S
,

and the Hasse diagram of these partial orders coincides with the Cayley graph of
the germ (G, •) with respect to the generating set S.

Thus, the above mentioned results for the braid group Bn and the symmetric
group Sn can be summarized into the statement that collapsing σ2

i to 1 for every i
provides a Garside germ for (Bn, B

+

n ,∆n), with associated quotient Sn.
More generally, it is known—see [1] or [11, Chapter IX]—that similar results hold

for every Artin–Tits group of spherical type: if (W,S) is a spherical Coxeter system
(that is, W and S are finite), and G and M are the associated Artin–Tits group
and monoid, and ∆ is the smallest Garside element in M , then collapsing s2 to 1
for every s in S provides a Garside germ for (G,M,∆), with associated quotientW .

All the above groups are Garside groups, and it is then natural to ask whether
similar results hold for every Garside group, namely whether some finite quotient
provides a Garside germ, that is, whether there exists an associated Coxeter-like
group enjoying all the nice properties known for spherical Artin–Tits groups. No
answer is known so far in general, but we shall now establish a complete answer in
the case of groups associated with finite RC-quasigroups. Indeed, we shall attach
with every finite RC-quasigroup a parameter called its class and prove:

Proposition 6.2. Assume that (S, ∗) is an RC-quasigroup of cardinal n and class d.
Let G,M be the associated group and monoid, and ∆ be the right-lcm of S in M .
Then collapsing s[d] to 1 for every s in S, where s[d] stands for Πd(s, ..., s), provides
a Garside germ for (G,M,∆d−1). The quotient-group has dn elements and the
kernel of the projection is (isomorphic to) Zn.

The proof, which is not difficult, consists in using the I-structure to carry the
results from the (trivial) case of Zn to the case of an arbitrary group of I-type. It
will be decomposed into several easy steps. First we define the class.

Definition 6.3. An RC-quasigroup (S, ∗) satisfying

(Cd) ∀s, t ∈ S ( Ωd+1(s, ..., s, t) = t )

but satisfying (Cd′) for no d
′ < d is said to be of class d.

So an RC-quasigroup is of class 1 if s ∗ t = t holds for all s, t, and it is of class 2
if (s ∗ s) ∗ (s ∗ t) = t holds for all s, t and s ∗ t 6= t holds for at least one pair (s, t).

Lemma 6.4. Every RC-quasigroup of cardinal n is of class d for some d < (n2)!.

Proof. Let (S, ∗) be a finite RC-quasigroup with cardinal n. By Corollary 4.2,
(S, ∗) must be bijective, that is, the map Ψ : (s, t) 7→ (s ∗ t, t ∗ s) is bijective
on S × S. Consider the map Φ : (s, t) 7→ (s ∗ s, s ∗ t) on S2. Assume (s, t) 6= (s′, t′).
If s and s′ are distinct, we have Ψ(s, s) 6= Ψ(s′, s′), hence s ∗ s 6= s′ ∗ s′, and
Φ(s, t) 6= Φ(s′, t′). If s and s′ coincide, we must have t 6= t′, whence s ∗ t 6= s ∗ t′

and, again, Φ(s, t) 6= Φ(s′, t′) since left-translations of ∗ are injective. So Φ is
injective, hence bijective on the finite set S × S. As S × S has cardinal n2, then
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order of Φ in SS×S is at most (n2)!. So there exists d < (n2)! such that Φd+1 is the
identity. Now, an easy induction gives Φm(s, t) = (Ωm(s, ..., s, s),Ωm(s, ..., s, t)) for
every m. So Φd+1 = id implies Ωd+1(s, ..., s, t) = t for all s, t in S, meaning that
(S, ∗) is of class at most d. �

There exist RC-quasigroups of arbitrary high class. Indeed, let S = {a1, ... , ad},
and define s∗ t = f(t) where f is the cyclic permutation that maps ai to ai+1(mod d)

for every i. Then, for all n, i and s1, ... , sn in S, we have Ωn+1(s1, ... , sn, ai) =
ai+n(mod d). Hence (S, ∗) satisfies (Cn) if and only if n is a multiple of d, and it is
of class d.

As said above, we shall establish Proposition 6.2 using the I-structure on the
groupG and the monoidM . As in Subsection 5, the I-structure (bijection fromN(S)

to the monoid M) will be denoted by ν, and the associated map from N(S) to SS

as defined in (5.2) is denoted by ψ.

Lemma 6.5. Assume that (S, ∗) is an RC-quasigroup of class d and M is the
associated monoid. For s in S and q > 0, let s[q] = Πq(s, ..., s). Then

(6.3) ν(sda) = s[d]ν(a)

holds for all s in S and a in N(S). The permutation ψ(sd) is the identity and, for
all s, t in S, the elements s[d] and t[d] commute in M .

Proof. Let t1 ···tq be a decomposition of a in terms of elements of S. By Proposi-
tion 5.2, we have

ν(sda) = Πd+q(s, ..., s, t1, ... , tq)

= Πd(s, ..., s)Πq(Ωd+1(s, ..., s, t1), ... ,Ωd+1(s, , ... , s, tq))

= Πd(s, ..., s)Πq(t1, ... , tq) = ν(sd)ν(t1 ···tq) = s[d]ν(a),

in which the second equality comes from expanding the terms and the third one
from the assumption that M is of class d. Applying with a = t in S and merging
with ν(sdt) = ν(sd)ψ(sd)(t), we deduce that ψ(sd) is the identity. On the other
hand, applying with a = t[d], we find s[d]t[d] = ν(sdtd) = ν(tdsd) = t[d]s[d]. �

Lemma 6.6. (i) Assume that (S, ∗) is a finite RC-quasigroup and M is the asso-
ciated monoid and d > 2 holds. Let δ =

∏
s∈S s and ∆d = ν(δd−1). Then we have

∆d = ∆d−1 where ∆ is the right-lcm of S, and ∆d is a Garside element in M .
(ii) If, moreover, (S, ∗) is of class d, then ∆d and (∆d)

d lie in the centre of M .

Proof. (i) By Lemma 3.5, we have ∆ = Πn(s1, ... , sn) = ν(δ), where (s1, ... , sn) is
any enumeration of S. In other words, we have ∆ = ∆2. Now, we observe that
f [δ] = δ holds in N(S) for every f in SS since every element of S occurs once in
the definition of δ. By (5.7), we deduce

(6.4) ν(aδ) = ν(a)ν(ψ(a)[δ]) = ν(a)ν(δ),

whence ν(δk) = ν(δ)k for every k and, in particular, ∆d = ν(δ)d−1 = ∆d−1. By
Lemma 3.7, ∆ is a Garside element in M . It is standard that this implies that
every power of ∆ is also a Garside element, hence, in particular, so is ∆d.

(ii) Assume now that (S, ∗) is of class d. Let t belong to S. Then, by (6.4), we
obtain ν(tδd) = ν(t)ν(δd) = t∆d. On the other hand, (6.4) and (6.3) give

(6.5) ∆d = ν(δd) =
∏

s∈S

s[d] and ν(δdt) =
∏

s∈S

s[d]t = ∆dt.
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Merging the values of ν(tδd) and ν(δdt), we obtain t∆d = ∆dt, so that ∆d, hence
its power (∆d)

d as well, lies in the centre of M . �

(In the context of Lemma 6.6, independently of whether S is finite or not, one
can show that the image of {0, 1, ... , d−1}(S) under ν is a Garside family in M , but
we shall not use this result here.)

We are now ready to introduce the equivalence relation on Z(S) that, when
carried to G, will induce the expected quotient of G (and M).

Definition 6.7. For a, a′ in the free Abelian group Z(S) and s in S, we write a ≡d a
′

if #s(a) = #s(a
′) (mod d) holds for every s in S, where #s(a) is the (well-defined)

algebraic number of s in any S-decomposition of a.

Lemma 6.8. Assume that (S, ∗) is an RC-quasigroup of class d and M and G are
the associated monoid and group.

(i) For g, g′ in M , declare g ≡ g′ for ν−1(g) ≡d ν
−1(g′). Then ≡ is an equiva-

lence relation on M that is compatible with left- and right-multiplication. The class
of 1 is the Abelian submonoid M1 of M generated by the elements s[d] with s in S.

(ii) For g, g′ in G, declare that g ≡ g′ holds if there exist h, h′ in M and r, r′

in Z satisfying g = ∆drh, g′ = ∆dr′h′, and h ≡ h′. Then ≡ is a congruence on G,
and the kernel of the projection of G to G/≡ is the group of fractions of M1.

Proof. (i) As ν is bijective, carrying the equivalence relation ≡d of N
(S) toM yields

an equivalence relation on M . Assume g ≡ g′. Let a = ν−1(g) and a′ = ν−1(g′).
Without loss of generality, we may assume a′ = asd = sda for some s in S. Ap-
plying (5.7) and Lemma 6.5, we obtain ψ(a′) = ψ(ψ(sd)[a] ◦ ψ(sd) = ψ(a). Let t
belong to S. Using (5.7) again, we deduce

g · ψ(a)(t) = ν(a) · ψ(a)(t) = ν(at)

≡ ν(a′t) = ν(a′) · ψ(a′)(t) = ν(a′) · ψ(a)(t) = g′ · ψ(a)(t).

As ψ(a)(t) takes every value in S when t ranges over S, we deduce that ≡ is com-
patible with right-multiplication. On the other hand, a ≡d a

′ implies f [a] ≡d f [a
′]

for every permutation f of S. Let t belong to S. Always by (5.7), we obtain

t · g = t · ν(a) = ν(t · ψ(t)−1[a]) ≡ ν(t · ψ(t)−1[a′]) = t · ν(a′) = t · g′,

and ≡ is compatible with left-multiplication by S.
The ≡d-class of 1 in N(S) is the free Abelian submonoid generated by the el-

ements sd with s in S. The ≡-class of 1 in M consists of the image under ν of
the products of such elements sd. By Lemma 6.5, the latter are the products of
elements s[d].

(ii) First, ≡ is well-defined. As ∆d is a Garside element inM , every element of G
admits an expression ∆drh with r in Z and h in M . This expression is not unique,
but, if we have g = ∆drh = ∆dr1h1 with, say, r1 < r, then, asM is left-cancellative,
we must have h1 = ∆d(r−r1)h, whence h1 ≡ h by (6.5). So, for every h′ in M , the
relations h ≡ h′ and h1 ≡ h′ are equivalent.

Then the fact that ≡ is a equivalence relation on G is easy, and its compatibility
with multiplication on G follows from the compatibility on M and the fact that ∆d

lies in the centre of G.
Finally, the ≡-class of 1 in G consists of all elements ∆drh with h in M1. As

∆d belongs to M1, this is the group of fractions of M1 in G, hence the free Abelian
subgroup of G generated by the elements s[d] with s in S. �
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We can now conclude.

Proof of Proposition 6.2. Let G be the quotient-group G/≡. By Lemma 6.8, the
kernel of the projection of G onto G is a free Abelian group of rank n, hence it is
isomorphic to Zn. The cardinality of G is the number of ≡-classes in G. As every
element of G is ≡-equivalent to an element of M , this number is also the number
of ≡-classes in M , hence the number of ≡d-classes in N(S), which is dn.

By definition, s[d] ≡ 1 holds for every s in S. Conversely, the congruence ≡d
on Zn is generated by the pairs (sd, 1) with s in Σ, hence the congruence ≡ on G is
generated by the pairs (s[d], 1) with s in S. Hence a presentation of G is obtained
by adding to the presentation (3.2) of G the n relations s[d] = 1 with s in S.

By construction, the bijection ν is compatible with the congruences ≡d on Z(S)

and ≡ on G, so it induces a bijection ν of Z(S)/≡d, which is (Z/dZ)n, onto G/≡,
which is G, providing a commutative diagram

Z(S) G

(Z/dZ)n Gν

π0 π

ν .

Now, let σ0 be the section of π0 from (Z/dZ)n to Nn that maps every ≡0-class to
the unique n-tuple of {0, ... , d− 1}n that lies in that class, and let σ : G → M be
defined by σ(g) = ν(σ0(ν

−1(g)). Then, for every g in G, we obtain

π(σ(g)) = π(ν(σ0(ν
−1(g)) = ν(π0(σ0(ν

−1(g)) = g

since σ0 is a section of π0. Hence σ is a section of π. Next, by construction, the
image of G under σ is the image under ν of {0, ... , d−1}n, hence the image under ν
of the family of all left-divisors of δd−1 in N(S), hence the family of all left-divisors
of ∆d−1, that is, of ∆d, in M .

Finally, the relation σ(f)σ(g) = σ(fg) holds in M if and only if the relation
σ0(ν(f))σ0(ν(g)) = σ0(ν(fg)) holds in N(S), hence if and only if, for every i, the
sum of the ith coordinates of ν(f) and ν(g) does not exceed d − 1. This happens
precisely if and only if ‖ν(f)‖

S
+‖ν(g)‖

S
= ‖ν(fg)‖

S
holds in (Z/dZ)n, hence if and

only if ‖f‖
S
+ ‖g‖

S
= ‖fg‖

S
holds in G. By construction, the family S is included

in the image of σ, and all length two relations of (3.2) belong to the previous list of
relations, hence the latter make a presentation ofM . This completes the proof. �

Example 6.9. For an RC-quasigroup of class 1, that is, satisfying x ∗ y = y for
all x, y, the group G is a free Abelian group, the group G is trivial, and Proposi-
tion 6.2 here reduces to the isomorphism Zn ∼= G.

For class 2, that is, when (s ∗ s) ∗ (s ∗ t) = t holds for all s, t, the element ∆d

is the right-lcm of S, it has 2n divisors which are the right-lcms of subsets of S,
and the group G is the order 2n quotient of G obtained by adding the relations
s(s ∗ s) = 1. For instance, in the case of {a, b} with s ∗ t = f(t), f : a 7→ b 7→ a,
the group G has the presentation 〈a, b | a2 = b

2〉, the relations a[2] = b
[2] = 1 both

amount to ab = 1, and the quotient-group G is a cyclic group of order 4.
For class 3, let us consider as in Example 3.8 the RC-quasigroup {a, b, c} with

s ∗ t = f(t) and f : a 7→b 7→c 7→a. The presentation of the associated group G
is 〈a, b, c | ac = b

2, ba = c
2, cb = a

2〉. With the same notation as above, the
smallest Garside element ∆ is a

3. As the class of (X, ∗) is 3, we consider here
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∆3 = ∆2 = a
6. The lattice Div(∆3) has 27 elements, its Hasse diagram is the

cube shown in Figure 3. The latter is also the Cayley graph of the germ derived
from (G, {a, b, c}), that is, the restriction of the Cayley graph of G to the partial
product of the germ. Adding to the above presentation the relations s[3] = 1, that
is, s(s ∗ s)((s ∗ s) ∗ (s ∗ s)) = 1, namely abc = bca = cab = 1, here reducing to
abc = 1, yields for G the presentation 〈a, b, c | ac = b

2, ba = c
2, cb = a

2, abc = 1〉.
One can check that other presentations of G are 〈a, b | a = b

2
ab, b = aba

2〉 and
〈a, b | a = b

2
ab, a3 = b

3〉.

1

a b c

ab b
2 bc a

2
c
2 ca

ac
2

b
2
a ab

2
a
3

ba
2

a
2
b ca

2

b
2
a
2

a
4

b
4

a
2
c
2

c
4

c
2
b
2

b
5

a
5

c
5

∆

Figure 3. A finite quotient providing a Garside germ for the group asso-
ciated with the RC-quasigroup of Example 3.8; the 27-vertex cube shown
above is the lattice of divisors of a6 in the associated monoid M , the Hasse
diagram of the weak order on the finite group G with respect to the gener-
ators a, b, c, and the Cayley graph of the germ derived from G with respect
to the previous generators.

Remark 6.10. Applying general results of Gromov, one can show that every
finitely generated group G whose Cayley graph is (quasi)-isometric to that of Zn

must be virtually Zn, that is, there exists an exact sequence 1 → Zn → G→ G→ 1
with G finite, see [2]. By definition, an I-structure is an isometry as above, and,
therefore, the existence of a finite quotient G as in Proposition 6.2 can be seen as
a concrete instance of the above (abstract) result.

We now show that the groups G and G associated with finite RC-quasigroups are
linear groups. Here again, the property follows from the easy case of a free Abelian
group using the I-structure to carry the results to the group of an arbitrary RC-
quasigroup.

Proposition 6.11. Assume that (S, ∗) is an RC-quasigroup of cardinal n and
class d and G is the associated group. For s the ith element of S (in some fixed
enumeration), define

(6.6) Θ(s) = Θ0(s)Pψ(s),

where Θ0(s) is the diagonal n× n-matrix with diagonal entries (1, ... , 1, q, 1, ... , 1),
q at position i and Pf is the permutation matrix associated with a permutation f
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of {1, ... , n}. Then Θ provides a faithful representation of G into GL(n,Q[q, q−1]);
specializing at q = exp(2iπ/d) gives a faithful representation of the group G of
Proposition 6.2.

Proof. First, Θ0 defines a faithful representation of ZS into GL(n,Q[q, q−1]) since
Θ0(

∏
s
ei
i ) is the diagonal matrix with diagonal (qe1 , ... , qen), and specializing at

q = exp(2iπ/d) gives a faithful representation of (Z/dZ)S .
In order to carry the results to G and G, we now show that (6.6) extends into

(6.7) Θ(ν(a)) = Θ0(a)Pψ(a)

for every a in ZS . As we are working with invertible matrices, it is enough to
consider multiplication by one element of S (division automatically follows) and,
therefore, the point for an induction is to go from a to as. Now we find

Θ(ν(as)) = Θ(ν(a)ψ(a)(s)) by (5.2)

= Θ(ν(a))Θ(ψ(a)(s)) by definition

= Θ0(a)Pψ(a) Θ0(ψ(a)(s))Pψ(ψ(a)(s))

by induction hypothesis and definition

= Θ0(a)Θ0(s)Pψ(a) Pψ(ψ(a)(s))

by conjugating a diagonal matrix by a permutation matrix

= Θ0(as)Pψ(ψ(a)(s))◦ψ(a) by definition

= Θ0(as)Pψ(as). by (5.7)

So (6.7) is established. It is then clear that Θ is well-defined on M , whence on G.
For faithfulness, Θ0(ν

−1(g)) is the unique diagonal matrix obtained from Θ(g) by
right-multiplication by a permutation matrix, so Θ(g) determines ν−1(g), hence g.

Finally, specializing at a dth root of unity induces a well-defined faithful rep-
resentation of the finite group G since, by definition, g and g′ represent the same
element of G if and only if ν−1(g) and ν−1(g′) are ≡d-equivalent, hence if and only
if Θ0(ν

−1(g))q=exp(2iπ/d) and Θ0(ν
−1(g′))q=exp(2iπ/d) are equal. �

Example 6.12. Coming back to the last case in Example 6.9 with the enumeration
(a, b, c), the permutations ψ(a), ψ(b), and ψ(c) all are the 3-cycle (1, 2, 3), and we
find the explicit representation

Θ(a) =



0 q 0
0 0 1
1 0 0


 , Θ(b) =



0 1 0
0 0 q
1 0 0


 , Θ(c) =



0 1 0
0 0 1
q 0 0


 .

Specializing at q = exp(2iπ/3) gives a faithful unitary representation of the associ-
ated 27-element group G. Using the latter, it is easy to check for instance that G
has exponent 9: a, b, c have order 9, and all elements have order 1, 3, or 9.

Corollary 6.13. Assume that (S, ∗) is an RC-quasigroup of cardinal n and class d
and G is the associated group. Then the finite quotient G of G provided by Propo-
sition 6.2 can be realized as a group of isometries in an n-dimensional Hermitian
space.

Proof. The matrices Θ0(s)q=exp(2iπ/d) correspond to order d complex reflections,
whereas permutation matrices are finite products of hyperplane symmetries. �

In a different direction, projecting Proposition 5.6 immediately yields:
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Proposition 6.14. Assume that (S, ∗) is an RC-quasigroup of cardinal n and
class d and G is the associated group. Then there exists an injective homomor-
phism of the group G provided by Proposition 6.2 into the wreath product Z/dZ ≀Sn

whose first component is a bijection.

Proof. We know that the I-structure ν induces a bijection ν of (Z/dZ)S to G and
a ≡0 a′ is equivalent to ν(a) ≡ ν(a′). Then mapping every element g of G to
(ν−1(g), ψ(ν−1((g))−1) provides the expected embedding. �

Example 6.15. For the group G of Example 6.9, owing to the fact that the per-
mutations of {1, 2, 3} associated with a, b, c all are the cycle f : 1 7→ 2 7→ 3 7→ 1,
one obtains a description as the family of the 27 tuples (p, q, r; fp+q+r) with p, q, r
in Z/3Z, the product of triples being twisted by the action of fp+q+r on positions.

We shall not go farther in the description of the finite groups G. As G entirely
characterizes the corresponding group G, and therefore the RC-quasigroup it comes
from, classifying all groups G that occur in this approach is a priori not easier than
classifying all involutive nondegenerate set-theoretic solutions of the Yang–Baxter
equation, hence presumably (very) difficult. On the other hand, the analogy with
Coxeter groups might suggest to look for possible geometric characterizations.

Let us conclude with another speculative idea. So far, Proposition 4.1 is the
only known global characterization of a relatively large family of Garside groups:
together with the results of Section 5, it identifies Garside groups that admit a
presentation of a certain form with those that admit an I-structure, hence resemble
a free Abelian group Zn in the sense that, up to relabeling the edges, their Cayley
graph is that of Zn. One might think of replacing free Abelian groups with other
groups Γ and consider those groups G that admit a “Γ-structure” in the sense that
their Cayley graph is that of Γ up to relabeling the edges. Then groups of I-type
would be those that admit a Zn-structure. Should the above approach make sense,
a natural problem would be to characterize those Garside groups that admit a Γ-
structure for various reference (Garside) groups Γ and, from there, maybe approach
a global classification of Garside groups which, so far, remains out of reach.
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