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Abstract: We derive a sum rule which shows that the Froissart–Martin bound for the

asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the

Lukaszuk–Martin coefficient of the leading log2 s behaviour, cannot be an optimal bound in

QCD. We next compute the total cross sections for π+π−, π±π0 and π0π0 scattering within

the framework of the constituent chiral quark model (CχQM) in the limit of a large number

of colours Nc and discuss their asymptotic behaviours. The same ππ cross sections are also

discussed within the general framework of Large–Nc QCD and we show that it is possible

to make an Ansatz for the isospin I = 1 and I = 0 spectrum which satisfy the Froissart–

Martin bound with coefficients which, contrary to the Lukaszuk–Martin coefficient, are not

singular in the chiral limit and have the correct Large–Nc counting. We finally propose

a simple phenomenological model which matches the low energy behaviours of the σtotal
π±π0(s)

cross section predicted by the CχQM with the high energy behaviour predicted by the Large–

Nc Ansatz. The magnitude of these cross sections at very high energies is of the order of those

observed for the pp and pp̄ scattering total cross sections.
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I Introduction

The Froissart–Martin bound for the asymptotic behaviour of total cross sections has played

a major role in the history of strong interactions. Using the Mandelstam representation,

Froissart showed [1] that the total cross section σtotal
AB (s) for the scattering of two hadronic

particles A and B with center of mass energy
√
s cannot grow faster than

σtotal
AB (s) ≤

s→∞
C log2

s

s0
, (1.1)

with C and s0 unknown constants. The rigorous proof of this bound from axiomatic quantum

field theory was later shown by Martin [2] and, quite remarkably, an explicit form for the

coefficient C was first derived by Lukaszuk and Martin in ref. [3] with the result

C =
4π

t0
, (1.2)

where t0 denotes the lowest mass squared singularity in the t–channel of the scattering pro-

cess1. When applied to pion–pion scattering the Froissart–Martin–Lukaszuk bound (FML–

bound) states that

σtotππ (s) ≤
s→∞

π

m2
π

log2
s

s0
. (1.3)

1With some assumptions, the normalization s0 for averaged total cross sections has also been recently

derived in ref. [4].
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The presence of a factor 1/m2
π in the r.h.s. of eq. (1.3) has recently been questioned by

two of us [5]: what happens to the FML–bound in QCD in the chiral limit when the pions, the

Nambu–Goldstone states of the chiral–SU(2) flavour symmetry of QCD, become massless?

Does the FML–bound become irrelevant in this limit as eq. (1.3) seems to indicate? As

pointed out in ref. [5], the usual derivation of the FML–bound from the rigorous principles

of axiomatic quantum field theory does not take into account the fact that the underlying

dynamics of the strong interactions has the property of spontaneous chiral symmetry breaking.

In fact, it implicitly assumes a realization of the hadronic spectrum à la Wigner–Weyl without

Nambu–Goldstone particles, in which case, the coefficient of the log2 s in eq. (1.3) is perhaps

not so surprising; but what is then the correct coefficient in QCD? In the next section we

derive a sum rule which clearly shows that the FML–bound cannot be the optimal bound in

QCD.

Another question which was also raised in ref. [5] is: what becomes of the FML–bound in

the QCD Large–Nc limit? The Large–Nc counting rules fix σtotππ (s) to be of O (1/Nc), while

the r.h.s. of eq. (1.3) appears to be of O(1). We propose here, as a very modest step towards

an answer to these fundamental questions, to examine them first in the simple Constituent

Chiral Quark Model [6] (CχQM) and then within the more general framework of Large–Nc

QCD properties.

We have organized this paper in the following way. In the next section we reproduce

basic properties of the elastic pion–pion scattering amplitudes which are necessary to derive

the sum rule which we have mentioned above. The effective Lagrangian of the CχQM is

described in section III as well as the results of the calculation of the total ππ annihilation

cross sections in this model. We also show that the results obtained for these cross sections

satisfy the sum rules which, within the model, fix some of the O(p4) low–energy constants

of the chiral Lagrangian. Section IV is then dedicated to the pion–pion total cross sections

in the QCD Large–Nc limit where we reconsider in more detail some of the issues discussed

in ref. [5] and where we propose a model which matches the low energy behaviours of the

σtotal
ππ (s) cross sections predicted by the CχQM with the high energy behaviours predicted by

a simple Large–Nc Ansatz. Phenomenological comments and conclusions are summarized in

Section V.

II Pion-Pion Amplitudes and Sum Rules

In full generality, elastic ππ scattering in the isospin symmetry limit is described by a single

invariant Lorentz amplitude A(s, t, u) 2.

〈πd(p4)π
c(p3) out|πa(p1)π

b(p2) in〉 =
1+ i(2π)4δ4(p3 + p4 − p1 − p2)

{

δabδcdA(s, t, u) + δacδbdA(t, u, s) + δadδbcA(u, s, t)
}

, (2.1)

2For a modern review see ref. [7].
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where a, b, c, d denote the 1,2,3 components of the adjoint representation of the pion fields

in SU(2) and s, t and u the usual Mandelstam variables constrained by

s+ t+ u = 4m2
π . (2.2)

It is convenient to work with the three s–channel isospin components T = (T 0, T 1, T 2) of the

amplitudes in eq. (2.1):

T 0(s, t) = 3A(s, t, u) +A(t, u, s) +A(u, s, t) ,

T 1(s, t) = A(t, u, s)−A(u, s, t) ,

T 2(s, t) = A(t, u, s) +A(u, s, t) . (2.3)

These isospin amplitudes obey fixed-t dispersion relations. They are the so–called Roy equa-

tions [8] which we shall consider at t = 0 and in the chiral limit where mπ → 0. The

linear combination of the isospin amplitudes which diagonalize the crossing matrix in the

Roy equations are then:

F1(s, 0) = −1

6
T 0(s, 0)− 1

4
T 1(s, 0) +

5

12
T 2(s, 0) ,

F2(s, 0) = +
1

6
T 0(s, 0) +

1

4
T 1(s, 0) +

7

12
T 2(s, 0) ,

F3(s, 0) = −1

6
T 0(s, 0) +

3

4
T 1(s, 0) +

5

12
T 2(s, 0) . (2.4)

The amplitudes F2 and F3 obey the same dispersion relation:

Re F2,3(s, 0) = s2
∫ ∞

0

ds′2

s′2
1

s′2 − s2
1

π
Im F2,3(s

′, 0) , (2.5)

and Re F2,3(s, 0) are even under s ↔ −s, while the amplitude F1(s, 0) obeys the dispersion

relation:

Re F1(s, 0) = − s

f2
π

+ 2s3
∫ ∞

0

ds′

s′2
1

s′2 − s2
1

π
Im F1(s

′, 0) , (2.6)

and Re F1(s, 0) is odd under s ↔ −s. Indeed, one can check that there is no contribution

of O(s2) to Re F1(s, 0) in Chiral Perturbation Theory (χPT), while the contributions of that

order from χPT to the F2(s, 0) and F3(s, 0) amplitudes are [9]:

Re F2(s, 0) =
s→0

s2

f4
π

[

2lr1(µ) + 3lr2(µ) +
1

12π2

(

log
µ2

s
+

25

24

)]

+O(s4) , (2.7)

Re F3(s, 0) =
s→0

s2

f4
π

[

−2lr1(µ) + lr2(µ) +
1

96π2

]

+O(s4) . (2.8)
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These χPT one–loop results are renormalization µ–scale independent and well defined in the

chiral limit. The µ–scale dependence of the chiral log cancels with the µ–dependence in the

renormalized constants and the combination −2lr1(µ) + lr2(µ) is µ–scale independent. The

relation between the chiral SU(2) lri constants and the more conventional Lr
i constants of the

chiral SU(3) Lagrangian is as follows [10]:

lr1(µ) = 4Lr
1(µ) + 2L3 −

1

96π2

1

8

(

log
M2

K

µ2
+ 1

)

, (2.9)

lr2(µ) = 4Lr
2(µ)−

1

96π2

1

4

(

log
M2

K

µ2
+ 1

)

, (2.10)

where here, kaon particles have been treated as massive and integrated out, hence the depen-

dence on their mass MK .

The optical theorem relates the amplitudes Im Fi(s, 0) to the total ππ cross sections as

follows (massless pions):

Im F1(s, 0) =
1

2

[
s σtot

π+π+ − s σtot
π+π−

]
,

Im F2(s, 0) =
1

2

[
s σtot

π+π+ + s σtot
π+π−

]
=

1

2

[
s σtot

π±π0 + s σtot
π0π0

]
,

Im F3(s, 0) =
1

2

[
3s σtot

π±π0 − s σtot
π0π0

]
. (2.11)

II.1 The Lukaszuk–Martin Bound

We are now in the position to explain what is the problem with the Lukaszuk–Martin coeffi-

cient [3] of the FML–bound in eq. (1.3) as well as with the recent averaged bound derived in

ref. [4]. For that, let us consider the sum of eqs. (2.5) at small s, say s = m2
π to be precise,

which we rewrite in the form of a convenient sum rule:

π

f4
π

[

lr2(µ) +
1

48π2

(

log
µ2

m2
π

+
7

6

)]

+O
(
m4

π

)
=

∫ ∞

4m2
π

ds′

s′2 −m4
π

σtotπ±π0(s
′) , (2.12)

where on the l.h.s. we have used eqs. (2.7), (2.8) and on the r.h.s. the fact that

Im F2(s
′, 0) + Im F3(s

′, 0) = 2s′ σtotπ±π0(s
′) . (2.13)

We recall that the l.h.s. does not depend on the choice of the renormalization scale µ. Using

the FML–bound we can write the integral in the r.h.s. as follows:

– 4 –



∫ ∞

4m2
π

ds′

s′2 −m4
π

σtotπ±π0(s
′) ≤

∫ s0

4m2
π

ds′

s′2 −m4
π

σtotπ±π0(s
′)

+
π

m2
π

2

s0

[

1 +
1

27

m4
π

s20
+O

(
m4

π

s20

)2
]

, (2.14)

where s0 is the finite threshold where the asymptotic behaviour sets in, the same s0 which

appears as the normalization of the log2 s in the FML bound in Eq. (1.3). Both terms in

the r.h.s. of this inequality are obviously positive. Inserting this inequality in the r.h.s. of

the sum rule in eq. (2.12) shows that the l.h.s., which goes as logm2
π in the chiral limit, is

bounded by a quantity which diverges as 1/m2
π in the same limit. We therefore conclude that,

if the Froissart bound applies to ππ scattering in QCD, the Lukaszuk–Martin coefficient of

the leading log2 s term cannot be the optimal one.

We wish to emphasize that the derivation of this result follows from very general proper-

ties of ππ amplitudes in QCD and, so far, we have not consider the Large–Nc approximation.

III The Constituent Chiral Quark Model (CχQM)

Historically, the model in question emerged as an attempt to reconcile the successes of phe-

nomenological quark models, like e.g. the De Rújula-Georgi-Glashow model [11], with QCD.

The Lagrangian proposed by Manohar and Georgi (MG) is an effective field theory which

incorporates the interactions of the low–lying pseudoscalar particles of the hadronic spec-

trum i.e., the Nambu-Goldstone modes of the spontaneously broken chiral symmetry [12],

with chirally rotated quark fields Q = (U,D, S). These quarks have become massive due

to the phenomenon of spontaneous chiral symmetry breaking (SχSB). Their mass, however,

(MQ ∼ 1
3Mnucleon) has nothing to do with the masses of the u, d, s quark fields in the QCD

Lagrangian which explicitly break chiral symmetry and are known to be much smaller (see

e.g. the recent review article in ref. [13]). The constituent quark fields may also have gluonic

interactions but, since the Goldstone modes are already in the Lagrangian, the color–SU(3)

coupling constant is then supposed to be no longer running and relatively small. The hope is

that such an effective Lagrangian encodes the essential degrees of freedom to describe Hadron

Physics at energies below the chiral symmetry breaking scale but still above the confinement

regime.

It is fair to say, however, that in spite of some efforts (see e.g. refs. [14–16] and references

therein), it has not been possible to establish the approximations at which the MG–Lagrangian

could be derived from the underlying QCD theory. It can be shown to be a particular case of

the Extended Nambu Jona-Lasinio (ENJL) Model [17, 18], but this only transfers the problem
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of its derivation from first principles to another level where, in any case, the basic question

remains so far unanswered.

An interesting observation made by Weinberg [15] is the fact that in the limit of a large

number of colors Nc the CχQM becomes a renormalizable theory. A subsequent observation

along the same line was made in ref. [19] where it is shown that the number of counterterms

which in the Large–Nc limit have to be added to the primitive Manohar–Georgi Lagrangian, is

minimized for the choice gA = 1. In that respect, it has also been shown [19, 20] that there is a

class of observables governed by integrals of specific QCD Green’s functions which, for gA = 1,

have rather good matching to their short–distance behaviour. Interesting examples are the

Hadronic Vacuum Polarization, the Hadronic Light–by–Light Scattering and the Hadronic

Electroweak contributions to the anomalous magnetic moment of the muon, which have been

recently discussed within the framework of the CχQM in ref. [20].

The effective Lagrangian in question is the following:

LCχQM(x)=iQ̄γµ (∂µ + Γµ + iGµ)Q+
i

2
gA Q̄γµγ5ξµQ−MQQ̄Q

︸ ︷︷ ︸

M−G

−1

2
Q̄ (Σ− γ5∆ )Q

+
1

4
fπ

2tr
[

DµUDµU †

︸ ︷︷ ︸

M−G

+ U †χ+ χ†U
]

− 1

4

8∑

a=1

G(a)
µν G

(a)µν

︸ ︷︷ ︸

M−G

+e2C tr(QRUQLU
†)

+L5 trDµU
†DµU(χ†U + U †χ) + L8 tr(Uχ†Uχ†+ U †χU †χ) . (3.1)

The underbraced terms are those of the MG–Lagrangian, but in the presence of external SU(3)

vector vµ(x) and axial-vector aµ(x) sources. The field matrix U(x) denotes the 3×3 unitary

matrix in the flavour space which collects the Nambu-Goldstone fields and which under chiral

rotations transforms as U → VRUV †
L . The vector field matrix DµU is the covariant derivative

of U :

DµU = ∂µU − irµU + iUlµ , lµ = vµ − aµ , rµ = vµ + aµ , (3.2)

and, with U = ξξ,

Γµ =
1

2

[

ξ†(∂µ − irµ)ξ + ξ(∂µ − ilµ)ξ
†
]

, ξµ = i
[

ξ†(∂µ − irµ)ξ − ξ(∂µ − ilµ)ξ
†
]

. (3.3)

The gluon field matrix in the fundamental representation of color SU(3) is Gµ(x) and G
(a)
µν (x)

its corresponding gluon field strength tensor. The presence of external scalar s(x) and pseu-

doscalar p(x) sources induces the extra terms proportional to

χ = 2B[s(x) + ip(x)] , (3.4)

where B, like fπ, are order parameters not fixed by the model. When the s(x) and p(x)

sources are frozen to the up, down, and strange light quark masses of the QCD Lagrangian,

χ = 2BM , with M = diag(mu ,md ,ms) , (3.5)
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and then

Σ = ξ†Mξ† + ξM†ξ , ∆ = ξ†Mξ† − ξM†ξ . (3.6)

With the axial coupling fixed to gA = 1, the extra couplings L5 and L8 are the only

terms which are needed to absorb the ultraviolet (UV) divergences when the constituent

quark fields Q(x) are integrated out3. If one wants to consider the case where photons are

also integrated out then, to leading order in the chiral expansion and in the electric charge

coupling e, the last term in the second line is also required to absorb further UV–divergences.

Loops involving pion fields are subleading in the 1/Nc–expansion and hence, following the

observation of Weinberg in ref. [15], the Lagrangian in eq. (3.1), when considered within the

framework of the large–Nc limit, is a renormalizable Lagrangian.

The ππ total cross sections in the CχQM are then simply given by the corresponding

ππ → QQ̄ cross sections4. When restricted to chiral SU(2) and in the chiral limit where

mu = md = 0, but still keeping the value of gA free, the terms of the interaction Lagrangian

which are needed for the evaluation of these cross sections are [Q = (U,D)] :

Lint(x)
.
= −i

gA√
2fπ

[

Ūγµγ5D ∂µπ
+ + D̄γµγ5U ∂µπ

− +
1√
2

(
Ūγµγ5U − D̄γµγ5D

)
∂µπ

0

]

+i
1

4f2
π

{
ŪγµU

(
π+∂µπ

− − π−∂µπ
+
)
+ D̄γµD

(
π−∂µπ

+ − π+∂µπ
−)}

+i

√
2

4f2
π

{
ŪγµD (π0∂µπ

+ − π+∂µπ
0)− D̄γµU (π0∂µπ

− − π−∂µπ
0)
}

−MQ

∑

Q=U,D

Q̄Q . (3.7)

III.1 Calculation of the Pion-Pion Total Cross Sections

We fix the kinematics as follows:

π(k) + π(k′) → Q(p) + Q̄(p′) . (3.8)

In the center of mass system:

k :
(√

s
2 ,+

√
s
2 , 0 , 0

)

, p :





√
s

2
,+

√

s− 4M2
Q

2
cos θ ,+

√

s− 4M2
Q

2
sin θ , 0



 ;

k′ :
(√

s
2 ,−

√
s
2 , 0 , 0

)

, p′ :





√
s

2
,−

√

s− 4M2
Q

2
cos θ ,−

√

s− 4M2
Q

2
sin θ , 0



 . (3.9)

3We disregard couplings involving external fields alone to lowest order in the chiral expansion.
4For the sake of simplicity we omit in this first analysis the contribution of gluon interactions in the CχQM.
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The total cross sections for massless pions are then given by

σtotππ (s) =
1

32πs

√

1−
4M2

Q

s

∫ +1

−1
d(cos θ)

∣
∣T (ππ → QQ̄)

∣
∣2 (s, cos θ) , (3.10)

with
∣
∣T (ππ → QQ̄)

∣
∣2 (s, cos θ) receiving contributions from the relevant terms shown in the

interaction Lagrangian in eq. (3.7).

III.1.1 The π+π− Total Cross Section

The various contributions to this cross section come from the following sources:

• Terms proportional to
g4A
f4
π
Ncnf .

They come from the squared amplitudes π+π− → UŪ and π+π− → DD̄ generated by

the terms in the first line in eq. (3.7). They give a contribution

g4A
f4
π

Ncnf ⇒ Ncnf

192π

g4A
f4
π

√

1−
4M2

Q

s

(
s+ 2M2

Q

)
. (3.11)

• Terms proportional to 1
f4
π
Ncnf .

They come from the squared amplitudes π+π− → UŪ and π+π− → DD̄ generated by

the terms in the second line of eq. (3.7). They give a contribution

1

f4
π

Ncnf ⇒ Ncnf

192π

1

f4
π

√

1−
4M2

Q

s

(
s+ 2M2

Q

)
. (3.12)

• Terms proportional to
g2A
f4
π
Ncnf

They come from the the interference of the amplitudes π+π− → UŪ and π+π− → DD̄

in the first and second lines of eq. (3.7). They give a contribution

g2A
f4
π

Ncnf ⇒ −Ncnf

192π

g2A
f4
π

√

1−
4M2

Q

s
2
(
s− 10M2

Q

)
. (3.13)

The overall contribution to the π+π− total cross section is then

σtotπ+π−(s) =
Ncnf

192π

M2
Q

f4
π

√

1−
4M2

Q

s

[

(1− g2A)
2 s

M2
Q

+ 2(1 + 10g2A + g4A)

]

. (3.14)

We therefore find that there is a leading contribution of O(s) to this cross section which,

however, vanishes for gA = 1. In other words, the π+π− scattering total cross section in the

CχQM violates the Froissart bound unless gA = 1.
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Equation (3.14), for gA = 1, reduces to

σtotπ+π−(s) =
Ncnf

32π

4M2
Q

f4
π

√

1−
4M2

Q

s
, (3.15)

and, therefore, for large–s:

σtotπ+π−(s) ∼

s→∞

Ncnf

32π

4M2
Q

f4
π

. (3.16)

We then conclude that the leading contribution to the π+π− scattering total cross section

for large s, in the CχQM and provided gA = 1 with neglect of gluon corrections, goes to a

constant. There is no factor 1/m2
π in this bound and it satisfies the Large–Nc counting rules;

but it does not saturate the FM–bound.

III.1.2 The π±π0 Total Cross Sections

The various contributions to σtot
π±π0(s) come from the following sources:

• Terms proportional to
g4A
f4
π
Ncnf .

They come from the squared amplitudes generated by the terms in the first line in

eq. (3.7). They give a contribution

g4A
f4
π

Ncnf ⇒ Ncnf

192π

g4A
f4
π







√

1−
4M2

Q

s

(
s− 11M2

Q

)
+ 48

M4
Q

s
log

1 +

√

1− 4M2
Q

s

1−
√

1− 4M2
Q

s






. (3.17)

• Terms proportional to 1
f4
π
Ncnf .

They come from the squared amplitudes generated by the terms in the second line of

eq. (3.7). They give a contribution

1

f4
π

Ncnf ⇒ Ncnf

192π

1

f4
π

√

1−
4M2

Q

s

(
s− 2M2

Q

)
. (3.18)

• Terms proportional to
g2A
f4
π
Ncnf

They come from the the interference of amplitudes in the first and second lines of

eq. (3.7). They give a contribution

g2A
f4
π

Ncnf ⇒ −Ncnf

192π

g2A
f4
π

√

1−
4M2

Q

s

(
2s− 11M2

Q

)
. (3.19)

The overall contribution is then
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σtotπ±π0(s) =
Ncnf

192π

M2
Q

f4
π







√

1−
4M2

Q

s

[

s

M2
Q

(1− g2A)
[
(1 − g2A)− 2(1 + 11g2A)

]

]

+ 12g4A
4M2

Q

s
log

1 +

√

1− 4M2
Q

s

1−
√

1− 4M2
Q

s






. (3.20)

We also find that there is a leading contributions of O(s) to the total cross section which, like

in the π+π− case, vanishes for gA = 1. Therefore, the π±π0 scattering total cross section in

the CχQM also violates the Froissart bound unless gA = 1.

Equation (3.20), for gA = 1, reduces to

σtotπ±π0(s) =
Ncnf

16π

4M2
Q

f4
π

M2
Q

s
log

1 +

√

1− 4M2
Q

s

1−
√

1− 4M2
Q

s

, (3.21)

which asymptotically, for large–s, goes as:

σtotπ±π0(s) ∼

s→∞

Ncnf

16π

4M2
Q

f4
π

M2
Q

s
log

s

M2
Q

, (3.22)

and is subleading when compared to the corresponding asymptotic behaviour of π+π− in

eq. (3.16).

III.1.3 The π0π0 Total Cross Section

The only term in the interaction Lagrangian in eq. (3.7) which contributes to this process is

the one in the last term of the first line. Therefore, the contribution to σtot
π0π0(s) only comes

from:

• Terms proportional to
g4A
f4
π
Ncnf .

The overall contribution is then

σtotπ0π0(s) =
Ncnf

32π

4M2
Q

f4
π

g4A







√

1−
4M2

Q

s
− 2

M2
Q

s
log

1 +

√

1− 4M2
Q

s

1−
√

1− 4M2
Q

s






. (3.23)

and contrary to the previous σtot
π+π−(s) and σtot

π±π0(s) cases one does not need to fix gA = 1 to

respect the Froissart bound.

Asymptotically, for large–s and with gA = 1, it goes as:

σtotπ0π0(s) ∼

s→∞

Ncnf

32π

4M2
Q

f4
π

[

1− 2
M2

Q

s
log

s

M2
Q

]

, (3.24)
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i.e. as a constant.

The total ππ cross sections calculated above, with gA = 1, are plotted in figure 1 below.

The higher curve corresponds to σtotal
π+π−(s), the middle curve to σtotal

π0π0(s) and the low curve to

σtotal
π±π0(s). The cross sections are given in millibarn units and they are plotted versus s, the

total center of mass squared energy, in GeV2. The constituent quark mass which we have

used is the center value MQ = 240 MeV of the result MQ = (240 ± 10) MeV obtained in

ref. [5]. Asymptotically, σtot
π+π−(s) and σtot

π0π0(s) have the same constant behaviour:

σtotππ (s) ∼

s→∞

Ncnf

32π

4M2
Q

f4
π

, for π+π− and π0π0 , (3.25)

while σtot
π±π0(s) falls as the difference between σtot

π+π−(s) and σtot
π0π0(s) (see eq. (3.22)) and it

is subleading. We therefore find that the σtotππ (s) cross sections in the CχQM satisfy the

Froissart–Martin bound, but they do not saturate it. Very likely this is a drawback of the

model, which ceases to be reliable at center of mass energy values of the order
√
s ∼ 2 GeV.

It seems plausible that the rescattering of the constituent quarks in the presence of a gluonic

background may be at the origin of an asymptotic black disc like behaviour, similar to the

one observed in pp and pp̄ scattering [21–23], which provides the Froissart–Martin log2 s

enhancement.

For a discussion of the present experimental situation, phenomenological models and

future prospects concerning σtotππ (s) cross sections at high energies see e.g. refs. [24, 25].

σtotal
π+π−

σtotal
π0π0

σtotal
π±π0

s
[
GeV2

]

σ
to
ta
l

π
π

[m
b
]

1086420

90

80

70

60

50

40

30

20

10

0

Figure 1. Total ππ cross sections in millibarns versus s in GeV2.
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III.2 Sum Rules in the CχQM

In the CχQM the total π+π+ cross section vanishes and therefore Im T 2(s, 0) = 0, which

implies:

Im F1(s, 0) = −Im F2(s, 0) , (3.26)

and also the relations (with gA = 1):

Im F2(s, 0) =
s

2

[
σtot
π±π0 + σtot

π0π0

]
(s) =

s

2
σtot
π+π−(s) (3.27)

=
s

2

Ncnf

32π

4M2
Q

f4
π

√

1−
4M2

Q

s
, (3.28)

and

Im F3(s, 0) =
s

2

[
3σtot

π±π0 − σtot
π0π0

]
(s) (3.29)

=
s

2

Ncnf

32π

4M2
Q

f4
π






−

√

1−
4M2

Q

s
+ 8

M2
Q

s
log

1 +

√

1− 4M2
Q

s

1−
√

1− 4M2
Q

s






. (3.30)

Inserting these expressions in the r.h.s. of the dispersion relations in eq. (2.5) results in the

sum rules:
2

π

∫ ∞

4M2
Q

ds′

s′3
Im F2,3(s

′, 0) =
1

f4
π

1

3

Ncnf

16π2
, (3.31)

which for nf = 2 reproduce the CχQM results for Re F2,3(s, 0) in eqs. (2.7) and (2.8), with

gA = 1, and where [14]:

2l1 + 3l2 = −2l1 + l2 =
2

3

Nc

16π2
. (3.32)

In fact, the chiral expansions of the Re F1,2,3(s, 0) amplitudes in the CχQM, evaluated

with the dispersion relations in eqs. (2.5) and (2.6) are:

Re F1(s, 0) =
s→0

− s

f2
π

(

1 +
Ncnf

240π2

s2

f2
πM

2
Q

+O(s4/M8
Q)

)

, (3.33)

Re F2(s, 0) =
s→0

s2

f4
π

Ncnf

48π2

(

1 +
1

70

s2

M4
Q

+O(s4/M8
Q)

)

, (3.34)

Re F3(s, 0) =
s→0

s2

f4
π

Ncnf

48π2

(

1 +
1

35

s2

M4
Q

+O(s4/M8
Q)

)

. (3.35)
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IV Pion-Pion Cross Sections in Large-NcQCD

Let us now consider the pion–pion amplitudes within the framework of Large–Nc QCD. In

this limit the Im T I(s, 0) isospin amplitudes are composed of an infinite set of narrow states:

1

π
Im T I(s, 0) =

∞∑

n=0

|FI,n|2 δ
(
s−M2

I,n

)
, I = 0, 1 . (4.1)

The spacing of the narrow states, explored in Lattice Large–Nc QCD simulations [26], is

compatible with the Regge growth of the leading trajectories5 (n = 0, 1, 2, 3, . . . ):

M2
I=1,n =

1

α1
(2n+ 1− α0) and M2

I=0,n =
1

α1
(2n+ 2− α0) , (4.2)

and, to a good approximation, with α1 and α0 as given by the Veneziano model [28]:

α1 ≃
1

2M2
ρ

and α0 ≃ 1/2 . (4.3)

With Mρ = 770 MeV, this choice corresponds to:

Mσ = 1334 MeV ∼ f2(1270) and Λρ = Λσ = 2Mρ . (4.4)

In the absence of exotic trajectories and hence no poles with I = 2, the optical theorem

relates the imaginary parts of the forward isospin amplitudes to the total ππ cross sections

as follows:

Im T 1(s, 0) =
s

2

[

σtotal
π+π−(s) + 3σtotal

π±π0(s)− σtotal
π0π0(s)

]

=
s

2
4 σtotal

π±π0(s) . (4.5)

Im T 0(s, 0) =
s

2
6 σtotal

π0π0(s) . (4.6)

Unfortunately, there is no information on the values of the residues |FI,n|. As shown in

ref. [5], demanding that the cross sections which define Im T I=1(s, 0) and Im T I=0(s, 0) in

eqs. (4.5) and (4.6) grow asymptotically as the Froissart bound, requires the couplings |FI,n|2
to grow like n log2 n as n → ∞. This suggests as a possible set of Large–Nc Im T I(s, 0)

amplitudes the simple Ansatz:

1

π
Im T I(s, 0) = CI

∞∑

n=0

(
M2

I + nΛ2
I

)
log2

(
M2

I

Λ2
I

+ n

)

δ(s −M2
I − nΛ2

I) , (4.7)

where:

ΛI=1 = Λρ ,MI=1 = Mρ and ΛI=0 = Λσ ,MI=0 = Mσ , (4.8)

5See e.g. ref. [27].
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and the CI are dimensionless constants. This is essentially the same Ansatz which was

considered in ref. [5]. There is, however, an important extrapolation which one is making in

assuming such an Ansatz, namely the fact that the n log2 n pattern of the residues |FI,n| is
valid not only at very high energies but also at low energies. Because of that extrapolation,

the corresponding values that one obtains for the coefficients of the log2 s behaviour of the

total σtotal
ππ cross sections are likely to be a gross overestimation. In what follows, we propose a

more elaborated Large–Nc Ansatz where the residues |FI,n| start growing like n, as suggested

by the Veneziano model, and only from a threshold s0 onwards, where asymptotics sets in,

are they modified by terms which grow as n log2 n. More precisely, we suggest the following

Large–Nc Ansatz:

1

π
Im T I(s, 0) =

∞∑

n=0

(
M2

I + nΛ2
I

)
[

CV
I +CF

I θ(n−N) log2
(
M2

I

Λ2
I

+ n

)]

δ(s −M2
I − nΛ2

I) ,

(4.9)

with N a sufficiently large integer so as to match the asymptotic threshold

s0 = M2
I +NΛ2

I , (4.10)

and the mass parameters ΛI=1 = Λρ ,MI=1 = Mρ and ΛI=0 = Λσ ,MI=0 = Mσ the same

as in eq. (4.8). Equation (4.9) can also be written in the more convenient form:

1

π
Im T I(s, 0) = CV

I

∞∑

n=0

(
M2

I + nΛ2
I

)
δ(s −M2

I − nΛ2
I)

+ CF
I

∞∑

n=0

(s0 + nΛ2
I) log

2

(
s0
Λ2
I

+ n

)

δ(s − s0 − nΛ2
I) . (4.11)

The Mellin transforms of infinite sums like the ones in eq. (4.11) have a close analytic

form:

ΣI(ξ) =

∫ ∞

0
d

(
s

Λ2
I

)(
s

Λ2
I

)ξ−1 1

π
Im T I(s, 0) (4.12)

= CV
I ζ

(

−ξ,
M2

I

Λ2
I

)

+CF
I

d2

dξ2
ζ

(

−ξ,
s20
Λ2
I

)

, (4.13)

where ζ
(

−ξ,
M2

I

Λ2
I

)

is the Hurwitz function, a generalization of the Riemann zeta function,

defined by the series:

ζ(ξ, v) =

∞∑

n=0

1

(n + v)ξ
, v 6= −1,−2,−3, . . . (4.14)
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and its analytic continuation. For v = 1 it reduces to the Riemann zeta function. The

asymptotic behaviour of 1
π
Im T I(s, 0) for s → ∞ is then governed by the inverse Mellin

transform

1

π
Im T I(s, 0) =

1

2πi

∫ cξ+i∞

cξ−i∞
dξ

(
s

Λ2
I

)−ξ [

CV
I ζ

(

−ξ,
M2

I

Λ2
I

)

+CF
I

d2

dξ2
ζ

(

−ξ,
s20
Λ2
I

)]

; (4.15)

and more precisely, by the residues of the triple pole of the CF
I term and the single pole of

the CV
I term of ΣI(ξ) at ξ = −1. This fixes the asymptotic behaviours of the total π±π0 and

π0π0 cross sections in the r.h.s. of eqs. (4.5) and (4.6) as follows:

σtotal
π±π0(s) ∼

s→∞
π

2Λ2
ρ

(

CF
1 log

2 s

s0
+CV

1

)

, (4.16)

σtotal
π0π0(s) ∼

s→∞
π

3Λ2
ρ

(

CF
0 log

2 s

s0
+CV

0

)

. (4.17)

In order to learn something about the constants CV,F
I one can use information from the

low energy behaviour of Re T I(s, 0) using a Mellin–Barnes representation of the dispersion

relations in eq. (2.5). This results in the expression [5] :

Re T I(s, 0) =
1

2πi

∫ cξ+i∞

cξ−i∞
dξ

(
s

Λ2
I

)2−ξ

Γ(ξ)Γ(1 − ξ)

[

1 +
π

Γ(12 + ξ)Γ(12 − ξ)

]

ΣI(ξ − 2) ,

(4.18)

where ΣI(ξ−2) is the same Mellin transform as the one defined in eq. (4.12). The leading low

energy behaviour of Re T I(s, 0) is then governed by the leading singularity of the integrand

in the r.h.s. of eq. (4.18) at the left of the fundamental strip cξ = Re ξ ∈ ]0, 1[, i.e. at ξ = 0,

with the result

Re T I(s, 0) ∼

s→0
2
s2

Λ4
I

[

CV
I ζ

(

2,
M2

I

Λ2
I

)

+CF
I ζ

′′
(

2,
s0
Λ2
I

)]

. (4.19)

This has to match the χPT expressions in eqs. (2.7) and (2.8) restricted to their Large–Nc

limit form i.e.,

Re T 1(s, 0) = Re F2(s, 0) + Re F3(s, 0) ∼

s→0

s2

f4
π

4l2(Mρ) , (4.20)

Re T 0(s, 0) =
3

2
[3Re F2(s, 0) − Re F3(s, 0)] ∼

s→0

s2

f4
π

12 [l1(Mρ) + l2(Mρ)] . (4.21)

This matching gives a linear constraint between CV
I , C

F
I and the low–energy constants l2 and

l1 + l2:
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32l2
M4

ρ

f4
π

=

[

CV
1 ζ

(

2,
M2

ρ

Λ2
ρ

)

+CF
1 ζ

′′
(

2,
s0
Λ2
ρ

)]

, (4.22)

96 (l1 + l2)
M4

ρ

f4
π

=

[

CV
0 ζ

(

2,
M2

σ

Λ2
σ

)

+CF
1 ζ

′′
(

2,
s0
Λ2
σ

)]

. (4.23)

The behaviour of σtotal
π±π0(s) and σtotal

π0π0(s) in eqs. (4.16) and (4.17) at the onset of the

asymptotic threshold s = s0 fixes the values of CV
1 and CV

0 . We propose to identify this onset

with the one of the asymptotic behaviours of σtotal
π±π0(s) and σtotal

π0π0(s) in the CχQM, evaluated

in eqs. (3.22) and (3.24). This results in the values:

CV
1 = 2Λ2

ρ

Ncnf

16π2f2
π

4M2
Q

f2
π

M2
Q

s0
log

s0
M2

Q

, (4.24)

CV
0 = 2Λ2

ρ

Ncnf

16π2f2
π

16M2
Q

f2
π

. (4.25)

Given input values for s0 and l2, l1 + l2 , the four coefficients CV
1 , CF

1 CV
0 , CF

0 are then

fixed. Obviously the onset s0 has to be larger than M2
ρ in the I = 1 channel and larger than

M2
σ in the I = 0. Provided one can find solutions to these constraints, the result is then a

phenomenological proposal which matches the low–energy behaviour of the the total cross

sections σtotal
π±π0(s) and σtotal

π0π0(s), as predicted by the CχQM, with their high–energy behaviour

predicted by the Large–Nc Ansatz which we have described above. Numerical solutions to

this proposal are discussed in the next section.

V Numerical Results and Conclusions

Several remarks concerning the issues discussed in the previous sections are in order.

• First, with regards to the χPT low energy constants l1 and l2.

A recent phenomenological determination of the l1 and l2 constants, renormalized at

the ρ–mass scale, gives [29]:

lr1(Mρ) = (−5.2 ± 0.5) × 10−3 and lr2(Mρ) = (4.0 ± 1.5)× 10−3 . (5.1)

For comparison, the values predicted by the low resonance saturation of the l1 and l2
constants are [30, 31]:

l2 =
1

2

f2
π

M2
ρ

≃ 6.6× 10−3 , and l1 + l2 =
1

4

|cd|2
M2

f0

≃ 0.3× 10−3 . (5.2)
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These are the values where l2 is saturated by the ρ, with fπ ≃ 0.088 GeV i.e. the chiral

limit value [32], and l1 + l2 is saturated by the f0(983), with |cd| ≃ 3.2 × 10−2 GeV

and Mf0 = 0.983 GeV [30]. Within errors, these values compare rather well with the

phenomenological determinations above. It is, however, far from clear that the f0(983)

is a particle one should identify with a Large–Nc q̄q state [33]. We also recall that in

the CχQM (see eqs. (3.32) above) one finds:

l2 =
1

3

Nc

16π2
= 6.3× 10−3 and l1 + l2 =

1

6

Nc

16π2
= 3.2× 10−3 . (5.3)

The l2 values of the CχQM and the ρ saturation approximation compare very well.

Unfortunately, the combination of low energy constants l1 + l2 determined from experi-

ments has a large error: l1+ l2 = (−1.2±1.6)×10−3 , which makes it difficult to extract

useful information on the coefficients CV
0 and CF

0 using this phenomenological input.

• The size of ζ
(

2,
M2

I

Λ2
I

)

and ζ ′′
(

2,
s2
0

Λ2
I

)

in the r.h.s. of eq. (4.19).

Figure 2 below shows the shape of the factor ζ
(

2,
M2

I

Λ2
I

)

for the range 0.2 ≤ M2
I

Λ2
I

≤ 1.

The particular values we are interested in are (Λρ = Λσ = 2Mρ):

ζ

(

2,
M2

ρ

Λ2
ρ

=
1

4

)

= 17.2 and ζ

(

2,
M2

σ

Λ2
ρ

= 0.75

)

= 2.54 . (5.4)

Figure 3 shows the shape of the factor ζ ′′
(

2, s0
Λ2
ρ

)

for the range 1 ≤ s0
M2

ρ
≤ 25. The

particular values we shall be using below are:

ζ ′′
(

2,
(2.537Mρ)

2

4M2
ρ

= 1.61

)

= 2.01 and ζ ′′
(

2,
(3.27Mσ)

2

4M2
ρ

= 8.02

)

= 1.34 . (5.5)

• Fixing the constants CV
1 and CF

1 and σtotal
π±π0 .

As a numerical example concerning the I = 1 channel we show in figure 4 the total

cross section σtotal
π±π0 in millibarns versus

√
s in GeV when l2 is fixed to the center value

of the phenomenological determination in eq. (5.1) and the choice of s0 is tuned to√
s0 = 2.537Mρ so as to obtain a slope of the log2 s

s0
term in eq. (4.16) of the order of

what is experimentally observed in the asymptotic behaviour of the total pp total cross

section [21–23]. The fact that this relatively simple model of Large–Nc QCD we are

considering can accommodate for such a solution with a reasonable value for s0 which

matches the asymptotic behaviour of the CχQM is quite a remarkable fact.

• Fixing the constants CV
0 and CF

0 and σtotal
π±π0 .

As already mentioned, the phenomenological determination of l1+ l2 has, unfortunately,

a rather large error. On the other hand, the low resonance saturation value given in
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Figure 2. Shape of the factor ζ
(

2,
M

2

I

Λ2

I

)

in the r.h.s. of eqs. (4.19).

s0
Λ2
ρ

ζ
′′
(

2,
s
0

Λ
2 ρ

)

24222018161412108642
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Figure 3. Shape of the factor ζ′′
(

2, s0

Λ2
ρ

)

in the r.h.s. of eqs. (4.19).

eq. (5.2), because of the questionable input of the scalar mass, is not reliable. The best

option is to use the CχQM determination in eq. (5.3), keeping in mind that this is a

model–dependent input. Figure 5 shows the corresponding total cross section σtotal
π0π0 in
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millibarns versus
√
s in GeV for a choice of s0 tuned to

√
s0 = 3.27Mσ so as to obtain

a slope of the log2 s
s0

term in eq. (4.17) of the order of what is experimentally observed

in the asymptotic behaviour of the total pp total cross section [21–23]. In spite of the

fact that this is only an illustrative example of a possible Large–Nc Ansatz, it is quite

remarkable that we can find a solution which respects the constraints discussed above

with rather reasonable input values.

√
s [GeV]

σ
to
ta
l

π
±
π
0
[m

b
]

105104103100101

150

100

50

0

Figure 4. σtotal

π±π0 in millibarns versus
√
s in GeV.

The main conclusion of this paper is the observation which we have discussed in Section

II.1, namely the fact that -if the Froissart bound applies in QCD to ππ total cross sections-

then the Lukaszuk-Martin coefficient π/m2
π of the log2 s asymptotic behaviour cannot be the

optimal one. The Lukaszuk-Martin coefficient violates both the QCD chiral behaviour and

the QCD Large–Nc counting rules.

Assuming that a Froissart–like log2 s behaviour does apply to the total ππ scattering

cross sections in QCD, we have then shown that it is possible to construct Large–Nc Ansatz

which reproduces this behaviour with coefficients which are finite in the chiral limit and

have the correct O (1/Nc) counting in the Large–Nc limit. We have constructed total cross

sections for π±π0 and π0π0 scattering which match the low–energy behaviour predicted by

the CχQM discussed in Section III with the Large–Nc Ansatz discussed in section IV. They

are shown in Figs. 4 and 5 above. The order of magnitude of these cross sections at very high

energies are similar to the total pp and pp̄ scattering cross sections which are experimentally
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observed [21–23].
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