Eric Edo 
email: eric.edo@univ-nc.nc
  
Pierre-Marie Poloni 
email: pierre-marie.poloni@unibas.ch
  
Éric Edo 
  
On the closure of the tame automorphism group of affine three-space

Keywords: 2010 Mathematics Subject Classification. 14R10 polynomial automorphisms, tame and wild automorphisms, ind-varieties

We provide explicit families of tame automorphisms of the complex affine three-space which degenerate to wild automorphisms. This shows that the tame subgroup of the group of polynomial automorphisms of C 3 is not closed, when the latter is seen as an infinite dimensional algebraic group.

Introduction

In 1965 [START_REF] Shafarevich | On some infinite-dimensional groups[END_REF], Shafarevich introduced the notions of infinite-dimensional varieties and infinite-dimensional algebraic groups, now usually called indvarieties and ind-groups. His main motivation was to study the group GA n (C) of polynomial automorphisms of complex affine n-spaces A n C = C n , which he endowed with an ind-group structure. This new approach was fruitful, since it allows him to state many nice (and tempting) results in [START_REF] Shafarevich | On some infinite-dimensional groups[END_REF][START_REF]On some infinite-dimensional groups. II[END_REF][START_REF]On some infinite-dimensional groups[END_REF]. In the present paper, we are interested in one that claims that the tame automorphisms form a dense subgroup TA n (C) of GA n (C). Unfortunately, Shafarevich's proof is based on another resultnamely that a closed subgroup H of a connected ind-group G with the same Lie algebra as G is equal to G -, which turns out to be false, since Furter and Kraft constructed recently a counterexample to that statement in [START_REF] Furter | On the geometry of the automorphism group of affine n-space[END_REF]. Therefore, we must reconsider the question of the density of the tame subgroup and ask it again.

Question. Is TA n (C) dense in GA n (C) in the topology of ind-varieties (for n ≥ 3)? Moreover, Furter and Kraft also establish the following surprising result: the subgroup TA 2 (C[z]) of tame automorphisms of C 3 that fix the last coordinate is a closed subgroup of the group GA 2 (C[z]) of polynomial automorphisms of C 3 that fix the last coordinate. In light of this, and since there were no known examples of non-tame automorphism that belong to the closure of the tame subgroup, we may even ask if the tame subgroup is closed in GA n (C).

Question. Is TA n (C) closed in GA n (C) in the topology of ind-varieties (for n ≥ 3)?

We will show that it is not the case, when n = 3 of course, since it is the only case where the existence of non-tame automorphisms is proved. We indeed construct families of tame automorphisms of C 3 of bounded degrees which degenerate to wild (i.e. non-tame) automorphisms. In particular, we will prove that the automorphism ϕ of C 3 defined by

ϕ = x + 3 4 z 2 y( 3 2 y 2 -4xz) + 3 8 z 5 ( 3 2 y 2 -4xz) 2 , y + z 3 ( 3 2 y 2 -4xz), z
is not tame but is in the closure of the tame subgroup of C 3 . More precisely, ϕ is the limit, when t → 0, of the tame automorphism σ t of A 3 C(t) , which is given by

σ t = (x- 3yz 2t + z 3 2t 2 , y - z 2 t , z)•(x, y, z +t 3 x 2 -t 2 y 3 )•(x+ 3yz 2t + z 3 t 2 , y + z 2 t , z)
and which has all its coefficient in C[t]. This example illustrates a new phenomenon concerning the length of tame automorphisms. Recall that the length of a (tame) automorphism σ of C n is the minimum number of triangular automorphisms that occur in a writing of σ as composition of affine and triangular automorphisms. Recall also that Furter proved in [START_REF]On the length of polynomial automorphisms of the affine plane[END_REF] that the length of automorphisms of the affine plane is lower semicontinuous. That means that an automorphism of C 2 of length l can not be obtained as the limit of automorphisms of length < l. In contrast, in the above example, ϕ is an automorphism of C 3 of infinite length (because it is non-tame), which is the limit of the family σ t of automorphisms of length 3.

The article is organized as follow. We fix some notations and recall the definition of tame automorphisms in Section 2. In Section 3, we recall why the group GA n (C) of polynomial automorphisms of C n has the structure of an infinite-dimensional affine algebraic variety and study the subset of GA 3 (C) which consists of all "limits" of tame automorphisms. In particular, we show that the set of tame automorphisms of C 3 of degree at most d is a constructible set in GA 3 (C) for all d ≥ 1. Finally, we give concrete examples of non-tame automorphisms which belong to the closure of the tame subgroup in Section 4.

Tame automorphisms

Let n ≥ 1 be an integer and R be a commutative algebra over a field k. We denote by R [n] the polynomial algebra in n variables over R. A polynomial map of

A n R = A n k × Spec(k) Spec(R) is a map f from A n R to itself of the form f : (x 1 , . . . , x n ) → (f 1 (x 1 , . . . , x n ), . . . , f n (x 1 , . . . , x n ))
where the f i 's belong to the polynomial ring R[x 1 , . . . , x n ]. We will denote by f = (f 1 , . . . , f n ) such a map and we define its degree by

deg(f ) = max{deg(f i ) | i = 1, . . . , n}.
We will also denote by f * the corresponding R-algebra endomorphism of R[x 1 , . . . , x n ], which is given by f * (P (x 1 . . . , x n )) = P (f 1 , . . . , f n ) for every element P ∈ R[x 1 , . . . , x n ]. Notice in particular that f * (x i ) = f i for all i.

The composition of two polynomial maps f and g is simply defined by g • f = (g 1 (f 1 , . . . , f n ), . . . , g n (f 1 , . . . , f n )). We denote by GA n (R) the group of (algebraic) automorphisms of A n R over Spec(R). An element f ∈ GA n (R) is simply an invertible polynomial map from A n R to A n R whose inverse f -1 is also a polynomial map. We denote by

Aff n (R) = {f ∈ GA n (R) | deg(f ) = 1}
the affine subgroup of GA n (R) and by

BA n (R) = {(f 1 , . . . , f n ) ∈ GA n (R) | f i ∈ R[x i , . . . , x n ] for all i = 1 . . . n}
the subgroup of triangular automorphisms.

The subgroup of tame automorphisms of A n R is denoted by TA n (R). It is the subgroup of GA n (R) generated by Aff n (R) and BA n (R). An element of GA n (R) TA n (R) is called wild. The Tame Generators Problem asks for the existence of such automorphisms in the case where R = k is a field. Question 2.1 (Tame Generators Problem). Does it hold that GA n (k) = TA n (k)?

When n = 1, the answer is trivially yes. When n = 2, the answer is also positive by the famous Jung-van der Kulk's theorem (cf. [START_REF] Heinrich | Über ganze birationale Transformationen der Ebene[END_REF][START_REF] Van Der Kulk | On polynomial rings in two variables[END_REF]), which asserts moreover that, for any field k, the group GA 2 (k) = TA 2 (k) is the amalgamated free product of Aff 2 (k) and BA 2 (k) along their intersection.

Note that we can consider GA 2 (k[z]) as a subgroup of GA 3 (k) via the map sending an element (f 1 , f 2 ) ∈ GA 2 (k[z]) onto the corresponding automorphism (f 1 , f 2 , z) in GA 3 (k), which fixes the last coordinate. Then, Shestakov and Umirbaev [START_REF] Shestakov | Poisson brackets and two-generated subalgebras of rings of polynomials[END_REF][START_REF]The tame and the wild automorphisms of polynomial rings in three variables[END_REF] proved the following impressive result.

Theorem 2.2 [START_REF] Shestakov | Poisson brackets and two-generated subalgebras of rings of polynomials[END_REF]. Let k be a field of characteristic zero.

Viewing GA 2 (k[z]) and TA 2 (k[z]) as subgroups of GA 3 (k), we have GA 2 (k[z]) ∩ TA 3 (k) = TA 2 (k[z]).
This answers negatively the Tame Generators Problem in dimension 3 in characteristic zero. For example, the famous Nagata automorphism (x -2y(y 2 + zx) -z(y 2 + zx) 2 , y + z(y 2 + zx), z) is a wild automorphism of C 3 . Indeed, the amalgamated free product structure on GA 2 (C(z)) gives an algorithm to check if a given element in

GA 2 (C[z]) is in TA 2 (C[z]
) or not (see [START_REF] Furter | On the variety of automorphisms of the affine plane[END_REF]), and it turns out that the first two components of Nagata's automorphism correspond to an automorphism in GA

2 (C[z]) TA 2 (C[z]). When n ≥ 4, Question 2.1 is still open.

Limits of tame automorphisms

We will now recall how one can see GA n (C) as an ind-variety (i.e. infinite dimensional algebraic variety) and which topology we consider on it. To this purpose, it is convenient to work with a fixed integer n ≥ 2 (for us, it will be n = 3) and to let G = GA n (C). Then, we consider the filtration on G given by the degree and we define for every d ≥ 1 the subset

G ≤d = {f ∈ G = GA n (C) | deg(f ) ≤ d}
of polynomial automorphisms of degree at most d. More generally, a subset S ⊂ G be given, we let

S ≤d := S ∩ G ≤d = {f ∈ S | deg(f ) ≤ d}.
One can show (see e.g. [START_REF]Plane polynomial automorphisms of fixed multidegree[END_REF]) that each G ≤d has the structure of an affine algebraic variety and is closed in G ≤d+1 in the Zariski topology. Therefore, GA n (C) = G = d≥1 G ≤d is an ind-variety in the sense of Shafarevich. As usual, we endow it with the ind-topology in which a subset S ⊂ G is closed if and only if every subset S ≤d is closed in G ≤d in the Zariski topology.

In the present paper, we focus our attention on the subset of tame automorphisms of affine three-space, which we will denote by T in the sequel. We would like to investigate which automorphisms of C 3 can be obtain as limits of such tame automorphisms in the following sense. Definition 3.1. Let S ⊂ G be a subset and let f ∈ G. We say that f is limit of elements of S if there exist a positive integer d ≥ 1 and a subset U ⊂ S ≤d which is locally closed in G ≤d such that f ∈ U .

Following [START_REF] Furter | On the geometry of the automorphism group of affine n-space[END_REF], we say that a subset S ⊂ G is weakly closed if S contains all limits of elements of S.

Together with a valuative criterion due to Furter [START_REF]Plane polynomial automorphisms of fixed multidegree[END_REF], Theorem 3.2 allows us to make this definition of limit more concrete in the case of tame automorphisms of C 3 (see Corollary 3.4 below). This result follows from the theory of Shestakov and Umirbaev, which provides an algorithm to decompose every tame automorphism of C 3 as a product of affine and triangular maps.

Theorem 3.2. For each d ≥ 1, there exist positive integers m = m(d) and k = k(d), depending only on d, such that every tame automorphism f ∈ T ≤d of C 3 of degree at most d can be written as a composition f = f 1 • . . . • f m , where each f i is either affine, or a triangular automorphism of C 3 of degree at most k.

Proof. The proof is based on Shestakov-Umirbaev theory of reduction of tame automorphisms of C 3 . These reductions involve affine and elementary automorphisms. Let us recall that an automorphism f of C n is called elementary automorphism if it is of the form f = (x 1 , . . . , x i-1 , x i + P, x i+1 , . . . , x n ) for some 1 ≤ i ≤ n and some polynomial P ∈ C[x 1 , . . . , x i , . . . , x n ] which does not depend on the variable x i . We denote by E the set of elementary automorphisms of C 3 and by E ≤d the subset of those which are of degree at most d. Remark that a triangular automorphism of C 3 of degree d is equal to the composition of one affine automorphism and two elements of E ≤d .

In [START_REF]The tame and the wild automorphisms of polynomial rings in three variables[END_REF] Shestakov and Umirbaev did not consider the usual degree for a polynomial automorphism f , but the one that is given by the sum of the degrees of the components of f . Let us denote it by sdeg(f ). So, we let sdeg((

f 1 , f 2 , f 3 )) = deg(f 1 ) + deg(f 2 ) + deg(f 3 ) for all automorphism f = (f 1 , f 2 , f 3 ) of C 3 .
According to the theory developed in [START_REF]The tame and the wild automorphisms of polynomial rings in three variables[END_REF], for every non-affine tame automorphism f of C 3 , one of the following properties holds:

(1) f admits an elementary reduction, i.e. there exists an elementary automorphism e ∈ E such that sdeg(e • f ) < sdeg(f ). (2) f admits a reduction of Type I or II and then, there exist an elementary automorphism e ∈ E and an affine one a ∈ G ≤1 such that sdeg(e • a • f ) < sdeg(f ). (3) f admits a reduction of Type III and then, there exist an elementary automorphism e ∈ E, an elementary automorphism e 2 ∈ E ≤2 of degree 2 and an affine automorphism a ∈ G ≤1 such that sdeg(e

• e 2 • a • f ) < sdeg(f ).
Actually, Shestakov and Umirbaev also considered another kind of reduction, called of Type IV. But Kuroda proved that this one never occurs (see [START_REF] Kuroda | Shestakov-Umirbaev reductions and Nagata's conjecture on a polynomial automorphism[END_REF]). Thus, any tame automorphism f ∈ T ≤d can be reduced to an affine automorphism by using at most 3d -3 reductions as above. So, to conclude the proof, it only remains to show that all elementary maps that appear in a decomposition of an element of T ≤d can be taken with degrees bounded by a number k = k(d) which depends only on d.

Let us first consider elementary reductions. Let f = (f 1 , f 2 , f 3 ) ∈ T ≤d and suppose that there exists a polynomial

P ∈ C[x, y] such that deg(f 3 - P (f 1 , f 2 )) < deg(f 3 ). We denote by a the homogeneous part of highest degree of a polynomial a ∈ C[x 1 , x 2 , x 3 ].
If f 1 and f 2 are algebraically independent, then the equality

f 3 = P (f 1 , f 2 ) = P (f 1 , f 2 ) easily implies that deg(P ) ≤ deg(f 3 ) ≤ d. So, let us assume that f 1 and f 2 are algebraically dependent. Now, if f 1 ∈ C[f 2 ], then f 1 = λf 2 α
for some λ ∈ C * and 1 ≤ α ≤ d. In this case, instead of the elementary reduction e • f of f given by e = (x 1 , x 2 , x 3 -P (x 1 , x 2 )), we can perform another elementary reduction, namely the one given e = (x 1 -λx α 2 , x 2 , x 3 ).

Therefore, we can suppose that f 1 and f 2 are algebraically dependent and that [START_REF] Shestakov | Poisson brackets and two-generated subalgebras of rings of polynomials[END_REF][START_REF]The tame and the wild automorphisms of polynomial rings in three variables[END_REF]. Without loss of generality, we can assume that

f 1 / ∈ C[f 2 ] and f 2 / ∈ C[f 1 ]. A pair (f 1 , f 2 ) of such polynomials is called * -reduced in
d 1 = deg(f 1 ) < d 2 = deg(f 2 ) ≤ d. Following [SU04a], we also let p = d 1 gcd(d 1 , d 2 ) -1 , s = d 2 gcd(d 1 , d 2 ) -1 , deg x 2 (P (x 1 , x 2 )) = pq + r and deg x 1 (P (x 1 , x 2 )) = sq 1 + r 1 ,
where 0 ≤ r < p and 0 ≤ r 1 < s. Then, Theorem 3 in [START_REF] Shestakov | Poisson brackets and two-generated subalgebras of rings of polynomials[END_REF] gives the following inequalities.

deg(P (f 1 , f 2 )) ≥ qN + d 2 r ≥ q and deg(P (f 1 , f 2 )) ≥ q 1 N + d 1 r 1 ≥ q 1 ,
where

N := d 1 d 2 gcd(d 1 , d 2 ) -1 -d 1 -d 2 +deg[f 1 , f 2 ] ≥ 2. Since deg(P (f 1 , f 2 )) = deg(f 3 ) ≤ d, we obtain deg x 2 (P (x 1 , x 2 )) = pq + r ≤ d 1 d + d 1 ≤ d(d + 1) and deg x 1 (P (x 1 , x 2 )) = sq 1 + r 1 ≤ d 2 d + d 2 ≤ d(d + 1
). Thus, deg(P ) ≤ 2d(d + 1) is bounded by a constant depending only on d, as desired.

Finally, it remains to consider the case where f admits a reduction of Type I, II or III. Let us write f = (g 1 , g 2 , f 3 ) := a • f if f admits a reduction of Type I or II and f = (g 1 , g 2 , f 3 ) := e 2 • a • f if f admits a reduction of Type III. Furthermore, it follows from the precise definitions in [START_REF]The tame and the wild automorphisms of polynomial rings in three variables[END_REF] that (g 1 , g 2 ) is a * -reduced pair and that f admits an elementary reduction e • f such that sdeg(e • f ) < sdeg(f ). By the previous discussion, we can conclude that deg(e) ≤ 4d(2d + 1). This proves the theorem. Theorem 3.2 implies the following fact.

Proposition 3.3. The set T ≤d of tame automorphisms of C 3 of degree at most d is a constructible subset (i.e. a finite union of locally closed subsets) of G for every d ≥ 1.

Proof. Let d ≥ 1 be fixed, and let m and k be the corresponding integers given by Theorem 3.2. Denote by B ≤k the set of triangular automorphisms of C 3 of degree at most k. Remark that this set is closed in G ≤k and thus in G. Consequently, the set S := Aff 3 (C) ∪ B ≤k is closed in G. The proposition follows then by Chevalley's theorem. Indeed, the composition-map

γ m : (G ≤k ) m → G ≤k m defined by γ m (f 1 , f 2 , . . . , f m ) = f 1 • f 2 • • • • • f m is a morphism of algebraic varieties. Therefore, γ m (S m ) is a constructible set in G ≤k m . Hence, T ≤d = γ m (S m ) ∩ G ≤d is constructible too.
As a corollary, we obtain the following description of the set L of all limits of tame automorphisms of C 3 . Corollary 3.4. The set L := d≥1 T ≤d is weakly closed.

Furthermore, an automorphism f ∈ G belongs to L if and only if there exists a family

ϕ t = ((ϕ t ) 1 , (ϕ t ) 2 , (ϕ t ) 3 ) indexed by t ∈ C such that (1) (ϕ t ) i ∈ C[[t]][x 1 , x 2 , x 3 ] for all 1 ≤ i ≤ 3;
(2) ϕ t defines a tame automorphism of A 3 C((t)) ; (3) ϕ 0 = f . Proof. By Proposition 3.3, we can write every set T ≤k as a finite union T ≤k = n(k) i=1 U k,i of locally closed sets. In particular, the equality T ≤k = n(k) i=1 U k,i holds for every k ≥ 1. Now, let U ⊂ L ≤d be locally closed in G ≤d . Remark that

U = k≥1 T ≤k ∩ U = k≥1   n(k) i=1 U k,i ∩ U   = k≥1 S k
where all S k := n(k) i=1 U k,i ∩ U are constructible subsets of G ≤d . This implies (see e.g. Lemma 2.5.4 in [START_REF] Furter | On the geometry of the automorphism group of affine n-space[END_REF]) that there exists a k 0 ≥ 1 such that U = k 0 k=1 S k . Thus, U ⊂ T ≤k 0 and so U ⊂ T ≤k 0 ⊂ L. This proves that L is weakly closed.

The second assertion of the corollary is a direct application of a valuative criterion due to Furter [START_REF]Plane polynomial automorphisms of fixed multidegree[END_REF].

To sum up, we have the three following inclusions involving T , L and G.

T ⊂ L ⊂ T ⊂ G.

The next section is devoted to the proof that the first inclusion is a strict one, i.e. T L. Since we do not know whether the two others are strict or not, we would like to ask two natural questions. Note that these two questions are independent. Of course, L could be closed and not equal to the whole G. But, more surprisingly, even if T would be dense in G, there may be some automorphisms of C 3 which do not belong to L, i.e which we can not obtain as limits of tame automorphisms of bounded degree.

Finally, it is worth mentioning that L and T are subgroups of G. Indeed, let us recall that, as shown by Shafarevich in [START_REF]On some infinite-dimensional groups. II[END_REF], G is an infinitedimensional algebraic group (ind-group for short). That means that the multiplication map µ : G × G → G and the inverse map ι : G → G are morphisms of ind-varieties, where a map ϕ : X = d X ≤d → Y = d Y ≤d between two ind-varieties is called morphism, if for any n ≥ 1 there is an m ≥ 1 such that ϕ(X ≤n ) ⊂ Y ≤m and ϕ| X ≤n → Y ≤m is a morphism of algebraic varieties. With exactly the same arguments as for the classical case of algebraic groups (see e.g. Section 7.4 in [START_REF] Humphreys | Linear algebraic groups[END_REF]), one checks that the following result remains true in the context of ind-groups.

Lemma 3.7. Let G be a ind-group and let H ⊂ G be a subgroup. Then, the closure H of H is a subgroup of G.

Corollary 3.8. The sets L and T are subgroups of GA 3 (C).

Proof. By Lemma 3.7, T is a subgroup of G. On one hand, it follows from Corollary 3.4 that L is closed under composition. On the other hand, by a result due to Gabber (see Corollary 1.4 in [START_REF] Bass | The Jacobian conjecture: reduction of degree and formal expansion of the inverse[END_REF]), we have ι(T ≤d ) ⊂ T ≤d 2 for all d ≥ 1, where ι : G → G denotes the inversion map. Therefore, ι(T ≤d ) ⊂ T ≤d 2 for all d ≥ 1. This is a consequence of the fact that the inversion map is a morphism of ind-groups and of the following elementary topological argument: if f : X → Y is a continuous map between two topological spaces and if f (A) ⊂ B for some subsets A ⊂ X and B ⊂ Y , then f (A) ⊂ B. Hence, L is closed under inversion.

Examples of wild limits

Notation 4.1. Let n, m ≥ 1 be positive integers. We let ∆ ∈ C[x, y, z] be given by ∆ = zx + y m+1 and we consider the derivation δ of C[x, y, z] defined by

δ = ∆ z n ∂ ∂y -(m + 1)y m z n-1 ∂ ∂x .
Since ∆ is in the kernel of the triangular derivation

z n ∂ ∂y -(m+1)y m z n-1 ∂ ∂x , δ is a locally nilpotent derivation of C[x, y, z].
Therefore, the exponential map associated to δ is a polynomial automorphism of C 3 . Actually, it is an element of GA 2 (C[z]) and we have

ϕ λ = exp(λδ) = (x - m+1 k=1 m + 1 k λ k ∆ k y m+1-k z nk-1 , y + λ∆z n , z)
for all λ ∈ C. Moreover, it follows from the theory developed by Shestakov and Umirbaev, and improved by Kuroda, that ϕ λ is a wild automorphism of C 3 , if λ = 0 (see e.g. Theorem 2.3. in [START_REF]Wildness of polynomial automorphisms in three variables[END_REF]).

We can now state the main result of our paper as follows.

Theorem 4.2. If n = 2m + 1, then

ϕ λ = exp(λδ) = (x - m+1 k=1 m + 1 k λ k ∆ k y m+1-k z nk-1 , y + λ∆z n , z)
is, for all λ = 0, a wild automorphism of C 3 , which belongs to the closure of TA 3 (C).

As a corollary, we thus obtain the following result.

Corollary 4.3. The tame automorphism subgroup is not (weakly) closed in GA 3 (C).

Before proving our main result, let us make two remarks. First, note that the famous Nagata automorphism N = (x -2y(y 2 + zx) -z(y 2 + zx) 2 , y + z(y 2 + zx), z) corresponds to the case n = m = 1 (and λ = 1), which does not satisfy the condition n = 2m + 1. Therefore, the following question naturally shows up. Question 4.4. Does the Nagata automorphism belong to the closure of the tame automorphism subgroup of C 3 ? Let us also point out that every tame automorphism of C 3 can be easily obtained as a limit of wild automorphisms.

Proposition 4.5. The set GA 3 (C) TA 3 (C) of wild automorphisms of C 3 is dense in GA 3 (C).

Proof. Let σ be a tame automorphism of C 3 and let σ t be the family of automorphisms of C 3 defined by σ t := ϕ t • σ for all t ∈ C, where ϕ t is the exponential map of the locally nilpotent derivation δ described above. Since ϕ 0 is simply equal to the identity map, σ t converges to σ, when t → 0. Thus, σ is a limit of wild automorphisms.

In order to prove Theorem 4.2, we need to introduce some other notations. For every positive integer m ≥ 1, we let

P m (U ) = m k=0 m + 1 2 k U k ∈ Q[U ].
Note that the polynomial P m (U ) is equal to the formal power series of (1 + U ) m+ 1 2 truncated at the order m. We consider also the two following triangular (tame) automorphisms of A 3 C(t) .

F t = (x, y, z+t m+1 (tx 2 -y 2m+1 )) and G t = (x+

z 2m+1 t m+1 P m ( ty z 2 ), y+ z 2 t , z).
Remark that G t indeed defines an automorphism of A 3 C(t) , since

z 2m+1 t m+1 P m ( ty z 2 ) = m k=0 m + 1 2 k t -(m+1-k) y k z 2m+1-2k is an element of C(t)[y, z]. Finally, we set σ t = G -1 t • F t • G t ∈ GA 3 (C(t)
). It turns out that the map σ t has all its coefficients in C[t]. More precisely, we have the following result.

Theorem 4.6. Let σ t be the tame automorphism of A 3 C(t) defined above. Then all three components of σ t are elements of C[t][x, y, z]. Moreover, putting t = 0 in their formulas, we get a wild polynomial automorphism of C 3 , whose last two components are y -4z 2m+1 (xz -m+ 1 2 m+1 y m+1 ) and z, respectively.

Proof. Remark that the inverse G -1 t of G t is given by

G -1 t = (x - z 2m+1 t m+1 P m ( ty -z 2 z 2 ), y - z 2 t , z).
Note that z 2m+1 P m ( ty-z 2 z 2 ) ∈ C[t][x, y, z]. In particular, the components of

σ t = G -1 t • F t • G t are all elements of C[t, t -1 ][x, y, z].
Let us denote them by X := σ * t (x), Y := σ * t (y) and Z := σ * t (z), respectively. By construction, it is clear that σ t is a tame automorphism of A 3 C(t) . We will further prove the following assertions.

(1) X, Y, Z ∈ C[t, x, y, z].

(2) Z ≡ z mod (t).

(3

) Y ≡ y -4z 2m+1 (xz -m+ 1 2 m+1 y m+1 ) mod (t). (4) σ := (X| t=0 , Y | t=0 , Z| t=0 ) is a wild automorphism of C 3 .
Let us first compute Z. Setting T = ty z 2 , we get y + z 2 t = z 2 t (1 + T ), and thus

Z = z + t m+1 t x + z 2m+1 t m+1 P m (T ) 2 - z 2 t (1 + T ) 2m+1 = z + t m+2 x 2 + 2txz 2m+1 P m (T ) + z 4m+2 t m P m (T ) 2 -(1 + T ) 2m+1 .
Since P m (U ) is the formal power series of (1 + U ) m+ 1 2 truncated at the order m, we have P m (U ) 2 ≡ (1 + U ) 2m+1 modulo (U m+1 ). So, P m (T ) 2 ≡ (1 + T ) 2m+1 modulo (t m+1 ) and we obtain therefore that Z = σ * t (z) ∈ C[t, x, y, z] and Z| t=0 = z. This proves Assertion (2). Now, Y = σ * t (y) = y + z 2 t -Z 2 t = y -(Z + z) Z-z t . Since the formal power series of (1 + U ) m+ 1 2 truncated at the order m + 1 is equal to P m (U ) +

m+ 1 2 m+1 U m+1 , we have P m (U ) 2 ≡ (1 + U ) 2m+1 -2 m+ 1 2 m+1 U m+1 .
From this, we deduce that P m (T ) 2 ≡ (1 + T ) 2m+1 -2 m+ 1 2 m+1 T m+1 modulo (t m+2 ), where T = ty z 2 . Thus,

Z ≡ z + 2txz 2m+1 P m (T ) + z 4m+2 t m -2 m + 1 2 m + 1 T m+1 mod (t 2 ) ≡ z + 2txz 2m+1 -2 m + 1 2 m + 1 ty m+1 z 2m mod (t 2 ). Therefore, σ * t (y) = y -(Z + z) Z-z t ∈ C[t][x, y, z] and Y | t=0 = y -4z 2m+1 (xz - m + 1 2 m + 1 y m+1 ).
This proves Assertion (3). For X = σ * t (x), we have

X = x + z 2m+1 t m+1 P m ( ty z 2 ) - Z 2m+1 t m+1 P m ( ty + z 2 -Z 2 Z 2 ) = x + 1 t m+1 z 2m+1 P m ( ty z 2 ) -Z 2m+1 P m ( tY Z 2 ) = x + 1 t m+1 m k=0 m + 1 2 k t k y k z 2m+1-2k -Y k Z 2m+1-2k
We will prove that z 2m+1 P m ( ty z 2 ) -Z 2m+1 P m ( tY Z 2 ), which is an element of C[x, y, z, t], is congruent to 0 modulo (t m+1 ). It suffices to prove that

z 2m+1 P m ( ty z 2 ) 2 -Z 2m+1 P m ( tY Z 2 ) 2 ≡ 0 mod (t m+1 )
and that z 2m+1 P m ( ty z 2 ) + Z 2m+1 P m ( tY Z 2 ) ≡ 0 mod (t). The second assertion holds since z 2m+1 P m ( ty z 2 ) ≡ z 2m+1 and Z 2m+1 P m ( tY Z 2 ) ≡ Z 2m+1 ≡ z 2m+1 modulo (t). For the first one, recall that P m (U ) 2 is congruent to (1 + U ) 2m+1 modulo (U m+1 ). Therefore, we have the following congruences modulo (t m+1 ).

z 2m+1 P m ( ty z 2 ) 2 ≡ (z 2 ) 2m+1 (1 + ty z 2 ) 2m+1 ≡ (z 2 + ty) 2m+1 and 
Z 2m+1 P m ( tY Z 2 ) 2 ≡ (Z 2 + tY ) 2m+1 = (z 2 + ty) 2m+1 .
This implies the desired result, and so Assertion (1) follows.

It remains to show Assertion (4). To check that σ is a polynomial automorphism of C 3 , we can consider the natural extension of F t and G t as birational maps of C 4 t,x,y,z fixing the first coordinate. Note that their Jacobian are both equal to 1. Thus, the endomorphism ϕ of C 4 t,x,y,z defined by ϕ = (t, X, Y, Z) is also of Jacobian 1 and it is a birational map. This implies (see for example Corollary 1.1.34 in [vdE00]) that ϕ is a polynomial automorphism of C 4 . In particular, σ is an automorphism of C 3 . By Assertion (2), σ is an element of GA 2 (C[z]). Finally, Assertion (3) and the main result of [START_REF]The tame and the wild automorphisms of polynomial rings in three variables[END_REF] is a tame automorphism of A 3 C(t) which has all its coefficient in C[t]. Computing explicitly these coefficients and letting t = 0 in the formulas, we find then the following wild automorphism of C 3 , which is the limit when t → 0 of the family (σ t ) t =0 of tame automorphisms of C 3 . σ = (x + 9 8 y 3 z 2 -3xyz 3 + 27 32 y 4 z 5 -9 2 xy 2 z 6 + 6x 2 z 7 , y + 3 2 y 2 z 3 -4xz 4 , z)

= x + 3 4 z 2 y( 3 2 y 2 -4xz) + 3 8 z 5 ( 3 2 y 2 -4xz) 2 , y + z 3 ( 3 2 y 2 -4xz), z .
Finally, we prove Theorem 4.2.

Proof. (of Theorem 4.2). Let m ≥ 1 be a fixed integer. For every λ ∈ C * , let Ψ λ be the affine automorphism of C 3 defined by Ψ λ = (ax, by, cz), where a, b, c ∈ C * are chosen such that -m+ 1 2 m+1 b m+1 = 1, -4c 2m+1 = λb and ac = 1. Then, consider the automorphism α t of A 3 C(t) given by α t = Ψ -1 λ • σ t • Ψ λ , where σ t denotes the automorphism defined before Theorem 4.6. By Theorem 4.6, we have that (α t ) t∈C * is a family of tame automorphisms of C 3 , which converges to a wild automorphism α of C 3 , when t → 0. Moreover, the two last components of α are equal to y + λ(xz + y m+1 )z 2m+1 and z, respectively. Note that these two are also the last components of ϕ λ = exp(λδ) in the case n = 2m + 1. Therefore, there exists a tame polynomial automorphism f of C 3 of the form f = (dx + P (y, z), y, z) with d ∈ C * and P (y, z) ∈ C[y, z] such that f • α = ϕ λ . Thus, (f • α t ) t =0 is a family of tame automorphisms, which converges to ϕ λ for t → 0. This proves the theorem.

Question 3. 5 .

 5 Is L closed in G? In other words, does the equality T = L hold? Question 3.6. Is T dense in G?

  allow us to conclude that σ is a wild automorphism of C 3 , since Y | t=0 is a wild coordinate of C[z][x, y] (see e.g. Proposition 2 in [EV01]).

	Example 4.7. For m = 1, we obtain that					
	σ t = (x-	3yz 2t	+	z 3 2t 2 , y -	z 2 t	, z)•(x, y, z +t 3 x 2 -t 2 y 3 )•(x+	3yz 2t	+	z 3 t 2 , y +	z 2 t	, z)
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