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CYCLIC COVERS OF AFFINE T-VARIETIES

CHARLIE PETITJEAN

Abstract. We consider normal affine T-varieties X endowed with an action of finite abelian group G

commuting with the action of T. For such varieties we establish the existence of G-equivariant geometrico-
combinatorial presentations in the sense of Altmann and Hausen. As an application, we determine explicit
presentations of the Koras-Russell threefolds as bi-cyclic covers of A3 equipped with a hyperbolic C∗-action.

Introduction

Every algebraic action of the one dimensional torus T ≃ C∗ on a complex affine variety X is determined
by a Z-grading A = ⊕m∈ZAm of its coordinate ring A, the spaces Am consisting of semi-invariant regular
functions of weightm onX . One possible way to construct Z-graded algebras, which was studied by Demazure
[2], is to start with a variety Y and a Q-divisor D on Y and to let A = ⊕m∈ZΓ(Y,OY (mD)). For a well
chosen pair (Y,D), this algebra is finitely generated, corresponding to the ring of regular functions of an
affine variety, X = S(Y,D) with a C∗-action whose algebraic quotient is isomorphic to Spec(Γ(Y,OY )). A
slight variant of this construction [3] already enabled a complete description of C∗-actions on normal surfaces
X : namely they correspond to graded algebras of the form:

A = ⊕m<0Γ(Y,OY (mD−))⊕ Γ(Y,OY )⊕m>0 Γ(Y,OY (mD+)),

for suitably chosen triples (Y,D+, D−) consisting of a smooth curve Y and a pair of Q-divisors D+ and D−
on it.

Demazure’s construction was generalized by Altmann and Hausen [1] to give a description of all normal
affine varietiesX equipped with an effective action of an algebraic torus T ≃ (C∗)k, k ≥ 1. Here the Z-grading
is replaced by a grading by the lattice M ≃ Zk of characters of the torus, and the graded pieces are recovered
from a datum consisting of a variety Y of dimension dim(X) − dim(T) and a so-called polyhedral divisor
D on Y , a generalization of Q-divisors for higher dimensional tori: D can be considered as a collection of
Q-divisors D(u) parametrized by a “weight cone ” σ∨ ∩M , for which we have A = ⊕u∈σ∨∩MΓ(Y,OY (D(u))).
The T-variety associated to a pair (Y,D) is denoted by S(Y,D).

In this article, we consider affine T-varieties X endowed with an additional action of a finite abelian group
G commuting with the action of T. The quotient X ′ = X//G is again an affine T′-variety for a torus T′ ≃ T
obtained as a quotient of T by an apporpriate finite group, and our aim is to understand the relation between
the presentations X = S(Y,D) of X and those of X ′ = S(Y ′,D′). A pair (Y,D) such that X = S(Y,D) is not
unique but we will show that it is always possible to choose a particular pair (Y,DG) consisting of a variety
Y endowed with a G-action and a G-invariant polyhedral divisor DG such that X is G × T equivariantly
isomorphic to S(Y,DG). The G-invariant divisor DG corresponds in turn to a certain polyhedral divisor D′

on the quotient Y//G with property that X ′ = S(Y//G,D′) as a T′-variety.
More precisely, our main result reads as follows:

Theorem. Let X be a T-variety and let G be a finite abelian group acting on X such that the two actions
commute. Then the following hold:

1) There exist a semi-projective variety Y endowed with an action of G and a G-invariant pp-divisor DG

defined on Y such that X is T×G equivariantly isomorphic to S(Y,DG).
2) Moreover X//G is equivariantly isomorphic to the T′-variety S(Y//G,D′) where D′ can be chosen such

that F∗(DG) = ϕ∗G(D
′), where ϕG : Y → Y//G denotes the quotient morphism and F :M∨ →M ′∨ is a linear

map induced by the inclusion between the character lattices M ′ of T′ and M of T.

2000 Mathematics Subject Classification. 14R05, 14L30.
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We then apply this result to determine presentations of a family of exotic affine spaces of dimension 3
with hyperbolic C∗-actions: the Koras-Russell threefolds. We exploit the fact that these threefolds arise as
equivariant bi-cyclic cover of the affine space A3 equipped with a hyperbolic C∗-action.

The article is organized as follows. The first section is devoted to a short recollection on Altmann-Hausen
representations, with a particular focus on the methods to construct pairs (Y,D) corresponding to a given
graded algebra. The main theorem above is then established in section two. Finally, explicit Altmann-Hausen
representations of the Koras-Russell threefolds are determined in section three.

1. Recollection on the Altmann-Hausen representation

In this section, we introduce the correspondence between normal affine T-varieties X and pairs (Y,D)
composed of a normal semi-projective variety Y and a so-called polyhedral divisor D established by Altmann-
Hausen [1]. In particular, for a given X , we summarize a construction of a corresponding Y and explain a
method to determine a possible D.

1.1. Normal affine T-varieties. Let N ≃ Zk be a lattice of rank k and let M = Hom(N,Z) be its dual.
A pointed convex polyhedral cone σ ⊆ NQ = N ⊗Z Q is an intersection of finitely many closed linear half
spaces in NQ which does not contain any line. Its dual:

σ∨ := {v ∈MQ | ∀u ∈ σ 〈u, v〉 ≥ 0} ⊆MQ =M ⊗Z Q,

consists of all linear forms on MQ that are non-negative on σ. A polytope Π ⊂ NQ is the convex hull of
finitely many points in NQ, and a convex polyhedron ∆ ⊆ NQ is the intersection of finitely many closed affine
half spaces in NQ. Every polyhedron admits a decomposition: ∆ = Π∆ +σ, where Π∆ is a polytope and σ is
a pointed convex polyhedral cone, called the tail cone of ∆. The set of all polyhedra which admit the same
tail cone is a semigroup with Minkowski addition, which we denote by Pol+σ (NQ).

Definition 1.1. A σ-tailed polyhedral divisor D on an algebraic variety Y is a formal finite sum

D =
∑

∆i ⊗Di ∈ Pol+σ (NQ)⊗Z WDiv(Y ),

where Di are prime divisors on Y and ∆i are σ-polyhedra.

Every element u ∈ σ∨ ∩M determines a map Pol+σ (NQ)⊗Z WDiv(Y ) → Q⊗Z WDiv(Y ) which associates

to D =
∑

∆i ⊗Di the Weil Q-divisor D(u) =
∑

min
v∈∆i

〈u, v〉Di on Y .

Given a Weil Q-divisor D and a section s ∈ Γ(Y,OY (D)), that is, an effective Weil divisor D′ linearly
equivalent to the round-down ⌊D⌋ of D, we denote by Ys the open subset Y \ Supp(D′) of Y .

Definition 1.2. ([1, Definition 2.5 and 2.7]) A proper-polyhedral divisor, noted pp-divisor, is a polyhedral
divisor D =

∑
∆i ⊗Di on Y which satisfies the following properties:

1) Each Di is an effective divisor and D(u) is a Q-Cartier divisor on Y for every u ∈ σ∨ ∩M .
2) D(u) is semi-ample for each u ∈ σ∨ ∩ M , that is, for some n ∈ Z>0 the open subsets Ys , where

s ∈ Γ(Y,OY (D(nu))), cover Y .
3) D(u) is big for each u ∈ relint(σ∨) ∩ M , that is, for some n ∈ Z>0 there exist a section s ∈

Γ(Y,OY (D(nu))) such that Ys is affine.

Recall [1, Definition 2.1] that a variety Y is said to be semi-projective if Γ(Y,OY ) is finitely generated and
Y is projective over Y0 = Spec(Γ(Y,OY )). Given a pp-divisor D on Y , the graded algebra

A =
⊕

u∈σ∨∩M

Au =
⊕

u∈σ∨∩M

Γ(Y,OY (D(u))).

is finitely generated, and Spec(A) is a T-variety for T = Spec(C[M ]) ≃ (C∗)k. More precisely Altmann and
Hausen, showed the following:

Theorem 1.1. [1] For any pp-divisor D on a normal semi-projective variety Y , the scheme

S(Y,D) = Spec(
⊕

u∈σ∨∩M

Γ(Y,OY (D(u))))

is a normal affine T-variety of dimension dim(Y ) + dim(T). Conversely any normal affine T-variety is
isomorphic to an S(Y,D) for suitable Y and D.
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1.2. Determining the semi-projective variety. The semi-projective variety Y is not unique, however
there exists a natural construction, which we will use in the remainder of the article. It can be summarized
as follows ([1, section 6]).

Let X = Spec(
⊕

u∈M

Au) be an affine variety endowed with an effective action of the torus T = Spec(C[M ]).

For each u ∈M the set of semistable points

Xss(u) := {x ∈ X / ∃n ∈ Z≥0 and f ∈ Anu such that f(x) 6= 0}

is an open T-invariant subset of X which admits a good T-quotient

Yu = Xss(u)//T = ProjA0
(
⊕

n∈Z≥0

Anu).

Following [1, section 6], there exists a fan Λ ∈MQ generated by a finite collection of cones λ such that the
following holds:

1) For any u and u′ in the relative interior of λ, Xss(u) = Xss(u′). We denote Wλ = Xss(u) for any
u ∈ relint(λ)

2) If γ is a face of λ, Wλ is an open subset of Wγ . Let W = ∩
λ∈Λ

Wλ = lim
←
Wλ.

The quotient maps qλ : Wλ → Wλ//T form an inverse system indexed by the cones in Λ, whose inverse
limit exist as a morphism q : W −→ Z = lim

←
Yλ. The desired semi-projective variety Y is the normalization

of the closure of the image of W by q.

W //

q

��

Wλ
//

qλ

��

Wγ
//

qγ

��

X

q0

��

Z

++❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲ // Yλ

))❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
// Yγ

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

Y0 = Spec(A0)

1.3. Maps of proper polyhedral divisor. Let Y and Y ′ be normal semi-projective varieties, N and N ′

be lattices and σ ⊂ NQ, σ′ ⊂ N ′Q be pointed cones. Let D =
∑

∆i ⊗Di and D′ =
∑

∆′i ⊗D′i be pp-divisors
on Y and Y ′ respectively with corresponding tail cones σ and σ′.

Definition 1.3. [1, Definition 8.3 ]1) For a morphism ϕ : Y → Y ′ such that ϕ(Y ) is not contained in
Supp(D′i) for any i, the polyhedral pull-back of D′ is defined by :

ϕ∗(D′) :=
∑

∆′i ⊗ ϕ∗(D′i)

Where ϕ∗(D′i) is the usual pull-back of D′i. It is a polyhedral divisor on Y with tail cone σ′.

2) For a linear map F : N → N ′ such that F (σ) ⊂ σ′, the polyhedral push forward is defined as :

F∗(D) :=
∑

(F (∆i) + σ′)⊗Di

It is also a polyhedral divisor on Y with tail cone σ′.

An equivariant morphism from S(Y,D) to S(Y ′,D′) is given by a homomorphism of algebraic groups
ψ : T → T′ and a morphism φ : S(Y,D) → S(Y ′,D′) satisfying φ(λ.x) = ψ(λ).φ(x). Every such morphism is
uniquely determined by a triple (ϕ, F, f) defined as above consisting of a dominant morphism ϕ : Y → Y ′, a
linear map F : N → N ′ as above and a plurifunction f ∈ N ′ ⊗Z C(Y )∗ such that :

ϕ∗(D′) ≤ F∗(D) + div(f).

The identity map of a pp-divisor is the triple (id, id, 1) and the composition of two maps (ϕ, F, f) and
(ϕ′, F ′, f ′) is (ϕ′ ◦ ϕ, F ′ ◦ F, F ′∗(f).ϕ

∗(f ′)).
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1.4. Determining proper polyhedral divisors. A method to determine a possible pp-divisor D ([1,
section 11]) associated to a T-variety X with T = (C∗)k is to embed X as a T-stable subvariety of a toric
variety. The calculation is then reduced to the toric case by considering an embedding in Am with linear
action for m sufficiently large. In other words, X is realized as a (C∗)k-stable subvariety of a (C∗)m-toric
variety. The inclusion of (C∗)k corresponds to an inclusion of the lattice of characters Zk of T into Zm. We
obtain the exact sequence:

0 // Zk

F
// Zm

P
//

s
zz

Zm/Zk // 0 ,

where F is given by the action of (C∗)k on Am and s is a section of F . The (C∗)m-toric variety is determined
by the first integral vectors vi of the unidimensional cone generated by the i-th column vector of P as rays in
a Zm lattice, and each vi correspond to a divisor. The support of Di is the intersection between X and the
divisor corresponding to vi. The tail cone is σ := s(Qm

≥0∩F (Q)), and the polytopes are Πi = s(Rm
≥0∩P

−1(vi)).

2. Actions of finite abelian groups

Let X = Spec(A) be a normal affine variety with an effective action of a torus T and let G be a finite
abelian group of order d ≥ 2 whose action on X commutes with that of T. The goal of this section is to
determine the relationship between the Altmann-Hausen representations ofX and those ofX//G = Spec(AG).

Let Y be a semi-projective variety equipped with an action ψ : G × Y → Y of an algebraic group G. If
DG is a G-invariant pp-divisor, i.e a pp-divisor such that ψ(g, ·)∗DG = DG for every g ∈ G, then for every
u ∈ σ∨ ∩M the space Au = Γ(Y,O(DG(u))) of global sections O(DG(u)) is endowed with a G-action. It
follows that S(Y,DG) = Spec(

⊕
u∈σ∨∩M

Γ(Y,OY (D(u)))) admits an action of G commuting with that of T.

Theorem 2.1. Let X be a T-variety and let G be a finite abelian group acting on X such that the two actions
commute. Then the following hold:

1) There exist a semi-projective variety Y endowed with an action of G and a G-invariant pp-divisor DG

on Y such that X is T×G equivariantly isomorphic to S(Y,DG).
2) Moreover X//G is equivariantly isomorphic to the T′-variety S(Y//G,D′) where D′ can be chosen such

that F∗(DG) = ϕ∗G(D
′), where ϕG : Y → Y//G denotes the quotient morphism and F :M∨ →M ′∨ is a linear

map induced by the inclusion between the character lattices M ′ of T′ and M of T (see 2.3 ).

We will divide the proof in several steps. First we will prove that the action of G on X induces an action
of G on Y . Secondly we will consider the case where the orbits of the G-action are included in the orbits of
the T-action and finally we consider the case where the action of G× T is effective on X .

Lemma 2.1. Let Y a quasi-projective variety endowed with an action of a finite group G and let Ŷ → Y be

the normalization of Y . Then the action of G lifts to an action on Ŷ and the induced morphism Ŷ //G→ Y//G
is the normalization of Y//G.

Proof. Since Y is quasi-projective and G is finite, every x ∈ X admits a G-invariant affine open neighborhood.
The normalization being a local operation, we may assume that Y is affine. Using the universal properties
of the normalization and of the quotient we obtain the following commutative diagram:

Y → Y//G
↑ ↑

Ŷ → Ŷ//G
ց ↑

Ŷ //G

Thus C[Ŷ//G] ⊂ C[Ŷ ]G. Conversely, let f ∈ C[Ŷ ]G. Then g.f = f for all g in G and there exists a monic
polynomial P with coefficients in C[Y ] such that P (f) = 0. Since G is finite, Q =

∏
g∈G

g.P is a monic

polynomial with G-invariant coefficients and G(f) = 0. So f ∈ C[Ŷ//G] . �
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Corollary 2.1. Let X be a T-variety and suppose that a finite abelian group G acts on X such the two
actions commute. Then there exists a semi-projective variety Y and a pp-divisor D on Y such that X is
G× T equivariantly isomorphic to S(Y,D) and the action of G on S(Y,D) induces an action of G on Y .

Proof. We consider the construction of Y given in section 1.2. Since the action of G and T commute, for
every λ ∈ Λ the subset Xss(u) with u ∈ relint(λ) is G-stable. Thus W := ∩λ∈ΛWλ is also G-stable. Since

q′ : W → Z is the quotient by T, the action of G on W induces one on q′(W ). The closure q′(W ) is again

G-stable, and since q′(W ) is quasi-projective it follows from lemma 2.1 that the action of G lifts to an action
on Y . �

Lemma 2.2. Let X = Spec(A) be a T-variety and let G a finite abelian group acting on X such that the two
actions commute. Then there exists a G-invariant pp-divisor DG defined on Y such that X is equivariantly
isomorphic to S(Y,DG).

Proof. By lemma 2.1 the action of G on X induces an action of G on Y . By the proof of Theorem 3.4 in
[1], a pp-divisor on Y corresponding to X is determined by the choice of a homomorphism h from M into
the fraction field of A with the property that for every u ∈ M , h(u) is semi-invariant of weight u. Namely,
if u ∈ σ∨ ∩M is any saturated element, that is, u ∈ σ∨ ∩M such that

⊕
n∈NAnu is generated in degree

1, then there exist a unique Cartier divisor D(u) such that Au = h(u).Γ(Y,OY (D(u))): its local equations

on open subsets Ys with s ∈ Au are h(u)/s. By definition h(u) = f
g where f and g are both non zero and

f ∈ Au1
, g ∈ Au2

such that u1 − u2 = u. Since Au is G-stable for all u ∈ M , we can choose f ∈ Au1
,

g ∈ Au2
semi-invariant for the action of G with u1 − u2 = u so that h(u) = f/g is also semi-invariant for G.

The corresponding divisor D(u) is then G-invariant. In the case of a general u ∈ σ∨ ∩M , we can choose a
saturated multiple nu and define D(u) = D(nu)/n. �

To complete the proof of Theorem 2.1, we divide the argument into two cases. First we consider the
situation where G is a subgroup of T and secondly where the action of G× T is effective.

Lemma 2.3. Let X be the T-variety S(Y,D) and let G be a finite abelian subgroup of T = Spec(C[M ]).
Then X ′ = X//G is a T′-variety where T′ ≃ T//G and is equivariantly isomorphic to the S(Y, F∗(D)) where
F : N = M∨ → N ′ = (M ′)∨ is the linear map induced by the inclusion between the character lattices M ′ of
T′ and M of T.

Proof. Let Y be as in 1.2. Since by hypothesis the G-orbits are contained in T-orbits, the induced G-action
on Y is trivial. In this case, for each u ∈ σ∨ ∩M , AG

u is either Au or {0}. Letting M ′ be the sublattice M
generated by the elements u ∈ σ∨ ∩M such that AG

u 6= 0,

X ′ = X//G = Spec(
⊕

u∈σ∨∩M ′

AG
u )

is a T′-variety where T′ = Spec(C[M ′]) is a torus of the same dimension as T. The inclusion M ′ →֒M gives
rise the desired linear map F : N =M∨ → N ′ =M ′∨. �

Remark 2.1. This case corresponds to the map of pp-divisors (id, F, 1) defined in as 1.3. Indeed the quotient
morphism ϕ : Y → Y//G is the identity.

Lemma 2.4. Let X be a normal affine variety with an effective action of G× T where G is a finite abelian
group. Then there exists a semi-projective variety Y on which G acts and a G-invariant pp-divisor DG on Y
such that X is G× T-equivariantly isomorphic to S(Y,DG).

Moreover X//G is T-equivariantly isomorphic to S(Y//G,D′) where DG = ϕ∗G(D
′).

Proof. By lemmas 2.1 and 2.2, Y is endowed with an action of G, and we can assume that X is equivariantly
isomorphic to S(Y,DG). Since DG is G-stable, for each u ∈ σ∨ ∩ M , Γ(Y,O(DG(u))) is a G-invariant
submodule of Γ(X,OX) and moreover there exists D′ satisfies ϕ∗G (D′) = DG. Therefore, Γ(X//G,OX//G) =

(
⊕

u∈σ∨∩M

Γ(Y,O(DG(u))))
G =

⊕
u∈σ∨∩M

Γ(Y,O(DG(u)))
G.

By assumption, ϕ : Y → Y//G is the quotient morphism, and D′ satisfying ϕ∗G (D′) = DG. Thus

Γ(Y,O(DG(u)))
G =

{
f ∈ C(Y )G, div(f) +DG(u) ≥ 0

}
∪ {0}

= {h ∈ C(Y//G), ϕ∗(div(h) +D′(u)) ≥ 0} ∪ {0}

= {h ∈ C(Y//G), div(h) +D′(u) ≥ 0} ∪ {0} .
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We conclude that X//G ≃ Spec(
⊕

u∈σ∨∩M

Γ(Y//G,O(D′(u)))). �

Remark 2.2. This lemma is the analogue of 4.1 in [2], in which Demazure established a similar result for alge-
bras constructed from Q-divisors. This case corresponds to the map of proper polyhedral divisors (ϕG, id, 1)
defined as in 1.3.

Proof. (of Theorem 2.1) Consider a finite abelian group G acting on X = S(Y,D) whose action commutes
with that of T. By virtue of lemmas 2.1 and 2.2, we may assume that G acts on Y and that D is G-invariant.
Then we let H be the subgroup of G × T consisting of elements which act trivially on X . We let G0 ⊂ G
and T0 ⊂ T be the images of H by the two projections and we let G′ = G/G0 and T′ = T/T0. Applying
lemma 2.3 to X equipped with the action of G0, we obtain a variety X//G0 endowed with an effective action
of G′×T′ to which the lemma 2.4 can be applied. Any map (ϕG, F, 1) is obtained by composing maps of the
two types above. �

3. Applications in the case T = C∗

3.1. Basic examples of C∗-actions. The coordinate ring of a normal affine variety X = Spec(A) equipped
with an effective C∗-action is Z-graded in a natural way viaA =

⊕
n∈ZAn whereAn := {f ∈ A/f(λ · x) = λnf(x)}.

The semi-projective variety associated to the Altmann-Hausen representation of X is the irreducible com-
ponent which correspond to the normalization of the closure of the image of W by q′ (see 1.2) in the fiber
product :

Y (X) := Y−(X) ×
Y0(X)

Y+(X)

where Y0(X) = X//C∗ = Spec(A0) , Y±(X) = ProjA0
(

⊕
n∈Z≥0

A±n).

A C∗-action said to be hyperbolic if there is at least one n1 < 0 and one n2 > 0 such that An1
and An2

are nonzero. In this case, the tail cone σ is equal to {0} (see 1.4 ). If in addition X is smooth, then Y (X) is
in fact equal to the fiber product which is itself isomorphic to the blow-up of Y0(X) with center at th closed
suscheme defined by the ideal I = 〈Ad.A−d〉 where d > 0 is chosen so that

⊕
n∈ZAdn is generated by A0 and

A±d ( [8] Theorem 1.9 and proposition 1.4).

In what follows, we denote by π : Ãn
(I) → An the blow-up of the ideal (I) in An

(x1,...,xn)
= Spec(C[x1, ..., xn]) .

Given an irreducible and reduced hypersurface H = {f(x1, ..., xn) = 0} ⊂ An containing the origin, the
hypersurface Xn,p,f of An+2 = Spec(C[x1, ..., xn][y, t]) defined by the equation

f(x1y, ..., xny)

y
+ tp = 0

comes equipped with an effective C∗-action induced by the linear one λ·(x1, ..., xn, y, t) = (λpx1, ..., λ
pxn, λ

−py, λt)
on An+2. We have An+2//C∗ ≃ An+1 = Spec(C[u1, ..., un+1]) via ui = xiy for i = 1, ..., n and un+1 = ytp.

Proposition 3.1. The variety Xn,p,f is equivariantly isomorphic to S(Ãn
(u1,...,un)

,D) for with D =
{

1
p

}
D+

[0, 1p ]E, where E is the exceptional divisor of the blow up and D is the strict transform of the hypersurface

H ⊂ An.

Proof. We determine Y (Xn,p,f ) and the pp-divisor D using the method described in sections 1.2 and 1.3. We
consider the exact sequence :

0 // Z
F

// Zn+2

P
//

s

{{
Zn+1 // 0

where F = t(p, ..., p,−p, 1), P =




1 0

In
...

...
1 0

0 · · · 0 1 p


 In being the identity matrix of rank n× n and

s = (0, ..., 0, 1).
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The fan in Zn+2 is generated by the rays {vi}i=1,..,n+2 where vi is the first integral vector of the unidimen-

sional cone generated by the i-th column vector of P . It corresponds to the blow up of the origin in An+1,
as a toric variety.

The variety Y is equal to the strict transform by π : Ãn+1
(u1,...,un)

→ An+1 ≃ An+2//C∗ of {f(u1, ..., un) + un+1 = 0} ⊂ An+1,

thus Y ≃ Ãn.
Since σ := s(Qm

≥0 ∩ F (Q)) is {0}, applying the formula Πi = s(Rm
≥0 ∩ P

−1(vi)), we deduce that D has the

form
{

1
p

}
D+[0, 1p ]E, where D corresponds to the restriction to Y of the toric divisor given by the ray vn+2.

It is the restriction of {un+1 = ytp = 0} to Y thus D is the strict transforms of the hypersurface H ⊂ An.
The divisor E corresponds to the restriction to Y of the toric divisor given by vn+1, that is, the exceptional
divisor. �

Example 3.1. Specializing the above construction we obtain examples of linear hyperbolic C∗-actions on
A3 which will be building blocks for further applications :

a) Choosing n = 2 and f(x1, x2) = x1, we obtain that X2,x1,p is isomorphic to S(Ã2
(u,v),D) with D ={

1
p

}
D + [0, 1p ]E, where E is the exceptional divisor of the blow up and D is the strict transform of the

line {u = 0} ⊂ A2. Thus X2,x1,p ⊂ A4 is isomorphic to A3 equipped with the C∗-action : λ · (x2, y, t) =
(λpx2, λ

−py, λt).

b) In particular, if p = 1 then X2,x1,1 is isomorphic to S(Ã2
(u,v),D) with D = {1}D + [0, 1]E. Since

D = {1}D + [0, 1]E is equivalent to D′ = [−1, 0]E, we have that X2,x1,1 is equivariantly isomorphic to

S(Ã2
(u,v),D

′).

Example 3.2. Choosing n = 2 and f(x1, x2) = x1 + (xd1 + xd2)
l yields that

X2,p,f = {x1 + ydl−1(xd1 + xd2)
l + tp = 0} ⊂ A4

is isomorphic to S(Ã2
(u,v),D =

{
1
p

}
D+ [0, 1p ]E) , where E is the exceptional divisor of the blow up and D is

the strict transform of the curve {v+(vd+ud)l = 0} ⊂ A2. Note that in contrast with the previous example,
X2,p,f is not isomorphic to A3. Indeed, if it were, then by the result of Koras-Russell [7], the C∗ action on
X2,p,f would be linearizable. By considering the linear action induced on the tangent space of the fixed point,
we find that X2,p,f would have to be equivariantly isomorphic to X2,x1,p for some p. On the other hand it
follows from [1, corollary 8.12] that two pp-divisors Di, defined on Yi respectively with the same tail cone,
define equivariantly isomorphic varieties S(Yi,Di) if and only if there exist projective birational morphisms
ψi : Yi → Y and a pp-divisor D on Y such that Di ≃ ψ∗i (D) i = 1, 2. This would induce an automorphism φ

of Ã2, such that φ∗(f) = x1, which is not possible, since a general fiber of f is singular.

3.2. Koras-Russell threefolds. Smooth affine, contractible threefolds with a hyperbolic C∗-action whose
quotient is isomorphic to A2/G where G is a finite cyclic group have been classified by Koras and Russell
[5], in the context of the linearization problem for C∗-actions on A3 [7]. These threefolds, which we call
Koras-Russell threefolds, provide examples of T-varieties of complexity two. According to [6] they admit the
following description:

Let a′,b′ and c′ be pairwise prime natural numbers with b′ ≥ c′ and let µa′ , the group of a′-th roots
of unity, act on A2 = Spec(C[u, v]) by (u, v) → (λc

′

u, λb
′

v) where λ ∈ µa′ . Consider a semi-invariant
polynomial f of weight congruent to b′ modulo a′ and with the property that L = {f = 0} is isomorphic
to a line and meets the axis u = 0 transversely at the origin and at r − 1 ≥ 1 other points. With these
assumptions the polynomial s−c

′

f(sc
′

u, sb
′

v) can be rewritten in the form F (w, u, v) with w = sa
′

where

F is semi-invariant of weight b′ for the C∗-action (w, u, v) 7−→ (λ−a
′

w, λc
′

u, λb
′

v). Then for any choice of
pairwise prime integers (α1, α2, α3) such that gcd(α1, a

′) = gcd(α2, b
′) = gcd(α2, c

′) = 1, the hypersurface
X = {(x, y, z, t) ∈ A4/tα3 + F (yα1 , zα2 , x) = 0} is a Koras-Russell threefold.

Here we mainly consider two families of such threefolds:
1) The first kind is defined by equations of the form:

{x+ xdy + zα2 + tα3 = 0},

where 2 ≤ d, 2 ≤ α2 < α3 with gcd(α2, α3) = 1 and equipped with the C∗-action induced by the linear one
on A4 with weights (α2α3,−(d− 1)α2α3, α3, α2). These correspond to the choice of f = u+ v + vd.



CYCLIC COVERS OF AFFINE T-VARIETIES 8

2) The second type is defined by

{x+ y(xd + zα2 )l + tα3 = 0},

where 2 ≤ d, 1 ≤ l , 2 ≤ α2 < α3 with gcd(α2, d) = gcd(α2, α3) = 1 and equipped with the C∗-action
induced by the linear one on A4 with weights (α2α3,−(dl− 1)α2α3, dα3, α2). These correspond to the choice
of f = v + (u+ vd)l.

To obtain the Altmann-Hausen representation for these threefolds, we will exploit the fact that they arise
as C∗-equivariant bi-cyclic covers of A3. We will see that the polyhedral coefficients are related with the
choice of (α1, α2, α3) and the divisors are related with the choice of the fiber L = {f = 0} in the construction
above.

3.3. The Russell Cubic. We begin with the Russell cubic X = {x + x2y + z2 + t3 = 0} in A4 =
Spec(C[x, y, z, t]) which corresponds to the choice a′ = b′ = c′ = 1, α1 = 1, α2 = 2, α3 = 3 and
f(u, v) = u + v + v2 in the construction above. By construction X is equiped with the C∗-action in-
duced by the linear one on A4 with weights (6,−6, 3, 2). The algebraic quotient X//C∗ is isomorphic to
A2

(u,v) = Spec(C[u, v]) where u = yz2 and v = yx.

Proposition 3.2. (see also [4]) The Russell Cubic X is isomorphic to S(Ã2
(u,v),D) for

D =

{
1

2

}
D3 +

{
−
1

3

}
D2 +

[
0,

1

6

]
E,

where E is the exceptional divisor of π : Ã2
(u,v) → A2, and where D2 and D3 are the strict transforms of the

curves {u = 0} and
{
u+ v + v2 = 0

}
in A2 respectively.

Proof. The two projections Φ2 = prx,y,t : X → X2 = A3 and Φ3 = prx,y,z : X → X3 = A3 express X

as cyclic Galois covers of A3 of degrees 2 and 3 respectively, whose Galois groups µ2 and µ3 act on X
by ξ · (x, y, z, t) = (x, y, ξz, t) and ζ · (x, y, z, t) = (x, y, z, ζt) respectively. Furthermore these two actions
commute and the quotient X6 = X//(µ2 × µ3) is isomorphic to A3 = Spec(C[x, y, z2]). Letting A =

⊕
n∈Z

An

be the coordinate ring of X equipped with the grading corresponding to the given C∗-action, we have in fact
Xℓ = Spec(

⊕
n∈Z

Aℓn), ℓ = 2, 3, 6. This yields a C∗-equivariant commutative diagram

X

Φ3

))❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙

Φ2

uu❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

Φ6

��

X2 = X//µ2

))❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
X3 = X//µ3

vv❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

X6 = X//(µ2 × µ3)

where C∗ acts linearly on X2, X3 and X6 with weights (3,−3, 1), (2,−2, 1) and (1,−1, 1) respectively.
Furthermore since the action of µ2 × µ3 on X factors through that of C∗ we deduce from Theorem 2.1

that Φ2 corresponds to the map of proper polyhedral divisors (id, F2, 1) and Φ3 corresponds to the map of
proper polyhedral divisors (id, F3, 1) where F ∗ℓ (D) = ℓD, ℓ = 2, 3, 6. The semi-projective varieties Y (X) and
Y (Xℓ), ℓ = 2, 3, 6 are all isomorphic. As observed earlier, A0 = C[u, v] with u = yz and v = yx so that
Y0(X6) ≃ Y0(X) = A2

(u,v). We further observe that A−6n = A0 ·y
n ⊂ A because all semi-invariant polynomials

of negative weights divisible by 6 are divisible by y. This implies that Y−(X6) ≃ Proj(
⊕

n∈Z≥0

A0.y
n) ≃ Y0(X).

Finally,
⊕

n∈≥0

A6n ≃ SymA0
A6 where A6 is the free A0-submodule of A generated by x and z. Therefore

Y (X) ≃ Y (X6) = Y−(X6)×Y0(X6) Y+(X6) ≃ Y+(X6)

is isomorphic to the blow-up Ã2
(u,v) of Y0(X) = A2 at the origin. It remains to determine the pp-divisor D.

We will construct it from those D2 and D3 corresponding to X2 and X3 respectively.
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By Proposition 3.1, X2 = S(Ã2
(u,v), D2 = { 1

3}D2 + [0, 13 ]E) where D2 is the strict transform of the curve

{u = 0} and E is the exceptional divisor and X3 = S(Ã2
(u′,v), D3 = { 1

2}D3 + [0, 12 ]E) where D3 is the

strict transform of the curve {u′ = 0} and E is the exceptional divisor. Theorem 2.1 implies in turn that
2D ∼ D2 = { 1

3}D2 + [0, 13 ]E and 3D ∼ D3 = { 1
2}D3 + [0, 12 ]E. Thus D2 + D = D3 and we conclude that

D =
{
1
2

}
D3 +

{
− 1

3

}
D2 +

[
0, 16

]
E . �

Remark. The choice of the coefficients is not unique since D′ ∼ D + div(f) for any rational function f on
Y . This corresponds for example to D′ ∼ D +D3 + E and more generally for any pair (a, b) ∈ Z2 such that
3a+ 2b = 1 we have that D ∼

{
a
2

}
D3 +

{
b
3

}
D2 +

[
0, 16

]
E.

3.4. Koras Russell threefolds of the first kind. Now we will show that a similar method can be used
to present all Koras-Russell threefolds of the form X = {x+ xdy+ zα2 + tα3 = 0} in A4 = Spec(C[x, y, z, t]).
Namely, we consider a cyclic cover V of X with algebraic quotient V//C∗ isomorphic to A2 = Spec(C[u, v])
where u = yzα2 and v = yx. A representation of V is obtained by the same method as in the previous case
and the representation of X is deduced by applying again Theorem 2.1.

The categorical quotient X//C∗ is isomorphic to A2
(u,v)//µd−1 where µd−1 acts by ξ · (u, v) = (ξu, ξv).

So we consider V a finite cyclic cover of X given by the equation X = {x + xdyd−1 + zα2 + tα3 = 0}
in A4 = Spec(C[x, y, z, t]), equipped with the C∗-action induced by the linear one on A4 with weights
(α2α3,−α2α3, α3, α2). Furthermore µα2

× µα3
× µd−1 acts on V by (ζ, ǫ, ξ) · (x, y, z, t) → (x, ξy, ζz, ǫt).

Observe that the action of µα2
× µα3

factors through that of C∗. This yields the following diagram of
quotient morphisms:

V
Φα3

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

Φα2

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

Φµd−1

��

A3 ≃ V//µα2
X = V//µd−1 A3 ≃ V//µα3

.

By Theorem 2.1, Φα2
corresponds to the map of proper polyhedral divisors (id, Fα2

, 1) and Φα3
corresponds

to the map of proper polyhedral divisor (id, Fα3
, 1) where F ∗ℓ (D) = ℓD, ℓ = 2, 3, 6. In addition we obtain

that Y (V ) is isomorphic to the blow-up Ã2
(u,v) of A2 at the origin on which µα2

× µα3
× µd−1 acts by

(ζ, ǫ, ξ) · (u, v) = (ξu, ξv). This leads to the following diagram:

Y (V )

≃

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

≃

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

ϕµd−1

��

Y (Vα2
) Y (X) ≃ Y (V )//µd−1 Y (Vα3

).

Using example 3.1 we obtain Altmann-Hausen representations of V//µα2
and V//µα3

in the form S(Ã2
(u,v),

Dα2
= { 1

α3

}Dα2
+ [0, 1

α3

]E) where Dα2
is the strict transform of the curve {u = 0}, E is the exceptional

divisor and S(Ã2
(u′,v), Dα3

= { 1
α2

}Dα3
+ [0, 1

α2

]E) where Dα3
is the strict transform of the curve {u′ = 0}, E

is the exceptional divisor. This implies that V is isomorphic to S(Ã2
(u,v),D) for

D =

{
a

α2

}
Dα3

+

{
b

α3

}
Dα2

+

[
0,

1

α2α3

]
E (∗),

where E is the exceptional divisor of π : Ã2
(u,v) → A2, Dα2

and Dα3
are the strict transforms of the curves

{u = 0} and
{
u+ v + vd = 0

}
in A2

(u,v) respectively, and (a, b) ∈ Z2 are chosen such that aα3 + bα2 = 1.

Applying Theorem 2.1 we obtain

Proposition 3.3. The Koras-Russell threefold X = {x+ xdy + zα2 + tα3 = 0} in A4 = Spec(C[x, y, z, t]) is

isomorphic to S(Ã2
(u,v)//µd−1,D

′) for

D′ =

{
a

α2

}
D′α3

+

{
b

α3

}
D′α2

+

[
0,

1

(d− 1)α2α3

]
E′

where D = ϕ∗µd−1
(D′) , D is defined in the relation (∗) and D′α3

,D′α2
are prime divisors and E′ is the

exceptional divisor of the blow-up of the singularity in A2//µd−1.
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3.5. Koras Russell threefolds of the second kind. For Koras-Russell threefolds of the second kind
X = {x+ y(xd + zα2 )l + tα3 = 0} in A4 = Spec(C[x, y, z, t]) the construction will be slightly different due to
the fact that the variables z and t do no longer play symmetric roles. We will consider again a cyclic cover V
of X , but in this case V//µα2

will not be isomorphic to A3. Recall that by definition, α2 and d are coprime.
We consider a bi-cyclic cover V = {x + ydl−1(xd + zdα2 )l + tα3 = 0} of X of order d × (dl − 1), which we
decompose as a cyclic cover φd : V → Vd = {x+ ydl−1(xd + zα2 )l + tα3 = 0} of degree d, followed by a cyclic
cover φdl−1 : Vd → X of degree dl − 1. The hypersurface V is equipped with the C∗-action induced by the
linear one on A4 with weights (α2α3,−α2α3, α3, α2) and with the action of µα2

× µα3
× µdl−1 × µd defined

by (ζ, ǫ, ξ, δ) · (x, y, z, t) = (x, ξy, ζδz, ǫt). The action of µα2
× µα3

on V factors through that of C∗ and we
obtain the following diagram:

V
Φα3

**❯❯
❯❯❯

❯❯
❯❯

❯❯❯
❯❯

❯❯❯
❯

Φα2

uu❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

Φµd

��

Vα2
= V//µα2

Vd = V//µd

Φµdl−1

��

A3 ≃ Vα3
= V//µα3

X = V//(µd × µdl−1) .

By Theorem 2.1, considering Φα3
, we obtain that Y (V ) is isomorphic to the blow-up Ã2

(u,v) of A2 where

u = yzα2 and v = yx on which µα2
× µα3

×µdl−1 × µd acts by (ζ, ǫ, ξ, δ) · (u, v) = (ξδα2u, ξv). We obtain the
following quotient diagram:

Y (V )

≃

$$■
■■

■■
■■

■■

≃

zz✉✉
✉✉
✉✉
✉✉
✉

ϕµd

��

Y (Vα2
) Y (Vd)

ϕµdl−1

��

Y (Vα3
)

Y (X) .

Now by Proposition 3.1 Vα2
= S(Ã2

(u,v), Dα2
= { 1

α3

}Dα2
+[0, 1

α3

]E) whereDα2
is the strict transform of the

curve
{
v + (vd + ud)l) = 0

}
and E is the exceptional divisor, and Vα3

= S(Ã2
(u,v), Dα3

= { 1
α2

}Dα3
+[0, 1

α2

]E)

whereDα3
is the strict transform of the curve {u = 0} and E is the exceptional divisor. Thus V = S(Ã2

(u,v),D)

for

D =

{
a

α2

}
Dα3

+

{
b

α3

}
Dα2

+

[
0,

1

α2α3

]
E,

where E is the exceptional divisor of π : Ã2
(u,v) → A2, and where Dα2

and Dα3
are the respective strict

transforms of the curves
{
v + (vd + ud)l) = 0

}
and {u = 0} in A2 and (a, b) ∈ Z2 aα3 + bα2 = 1. Note that

the choice of D up to linear equivalence does not depend of the choice on (a, b) ∈ Z2 .

Now we deduce from Theorem 2.1 that Vd = S(Ã2
(u′,v′d),Dd) for

Dd =

{
a′

α2

}
Dd,α3

+

{
b′

α3

}
Dd,α2

+

[
0,

1

α2α3

]
Ed (∗∗),

where a′ = a/d, b′ = b, Ed is the exceptional divisor of π : Ã2
(u′,v′d) → A2 due to the fact that Ã2

(u′,v′)//µd ≃

Ã2
(u′,v′d) for the action of µd as above, and where Dd,α2

and Dd,α3
are the strict transforms of the curves{

v′ + (u′ + v′d)l) = 0
}

and {u′ = 0} ( u′ = ϕd(u
d)) in A2 = Spec(C[u′, v′]) respectively. Applying again

Theorem 2.1 we obtain :

Proposition 3.4. A Koras-Russell threefold X = {x+ y(xd + zα2 )l + tα3 = 0} in A4 = Spec(C[x, y, z, t]) is

isomorphic to S(Ã2
(u′,v′d)//µdl−1,Dd(dl−1)) for
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Dd(dl−1) =

{
a′

α2

}
Dd(dl−1),α3

+

{
b′

α3

}
Dd(dl−1),α2

+

[
0,

1

(dl − 1)α2α3

]
Ed(dl−1),

where Dd = ϕ∗µdl−1
(Dd(dl−1)) , Dd is defined in the relation (∗∗) and Ed(dl−1) is the exceptional divisor of the

blow-up of the singularity in A2//µdl−1.
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