
HAL Id: hal-00958028
https://hal.science/hal-00958028

Preprint submitted on 11 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximability preserving reduction
Giorgio Ausiello, Vangelis Paschos

To cite this version:

Giorgio Ausiello, Vangelis Paschos. Approximability preserving reduction. 2005. �hal-00958028�

https://hal.science/hal-00958028
https://hal.archives-ouvertes.fr

Laboratoire d'Analyse et Modélisation de Systèmes pour

l'Aide à la Décision

CNRS UMR 7024

CAHIER DU LAMSADE

227

Septembre 2005

Approximability preserving reductions

Giorgio AUSIELLO, Vangelis Th. PASCHOS

Approximability preserving reductions∗

Giorgio Ausiello1 Vangelis Th. Paschos2

1 Dipartimento di Informatica e Sistemistica

Università degli Studi di Roma “La Sapienza”

ausiello@dis.uniroma1.it

2 LAMSADE, CNRS UMR 7024 and Université Paris-Dauphine

paschos@lamsade.dauphine.fr

September 15, 2005

Abstract

We present in this paper a “tour d’horizon” of the most important approximation-pre-

serving reductions that have strongly influenced research about structure in approximability

classes.

1 Introduction

The technique of transforming a problem into another in such a way that the solution of the
latter entails, somehow, the solution of the former, is a classical mathematical technique that has
found wide application in computer science since the seminal works of Cook [10] and Karp [19]
who introduced particular kinds of transformations (called reductions) with the aim of study-
ing the computational complexity of combinatorial decision problems. The interesting aspect
of a reduction between two problems consists in its twofold application: on one side it allows
to transfer positive results (resolution techniques) from one problem to the other and, on the
other side, it may also be used for deriving negative (hardness) results. In fact, as a conse-
quence of such seminal work, by making use of a specific kind of reduction, the polynomial-time
Karp-reducibility, it has been possible to establish a complexity partial order among decision
problems, which, for example, allows us to state that, modulo polynomial time transformations,
the satisfiability problem is as hard as thousands of other combinatorial decision problems,
even though the precise complexity level of all these problems is still unknown.

Strictly associated with the notion of reducibility is the notion of completeness. Problems
that are complete in a complexity class via a given reducibility are, in a sense, the hardest
problems of such class. Besides, given two complexity classes C and C′ ⊆ C, if a problem Π
is complete in C via reductions that belong (preserve membership) to C′, in order to establish
whether C′ ⊂ C it is “enough” to assess the actual complexity of Π (informally we say that Π is
a candidate to separate C and C′).

In this chapter we will show that an important role is played by reductions also in the
field of approximation of hard combinatorial optimization problems. In this context the kind
of reductions which will be applied are called approximation preserving reductions. Intuitively,
in the most simple case, an approximation preserving reduction consists of two mappings f

∗Preliminary version of Chapter 7 to appear in T. Gongalez (ed.), Approximation algorithms and metaheuris-

tics, Taylor and Francis.

1

and g: f maps an instance x of problem Π into an instance f(x) of problem Π′, g maps back
a feasible solution y of Π′ into a feasible solution g(y) of Π with the property that g(y) is an
approximate solution of problem Π whose quality is almost as good as the quality of the solution y
for problem Π′. Clearly, again in this case, the role of an approximation preserving reduction
is twofold: on one side it allows to transfer an approximation algorithm from problem Π′ to
problem Π; on the other side, if we know that problem Π cannot be approximated beyond a
given threshold, such limitation applies also to problem Π′.

Various kinds of approximation preserving reducibilities will be introduced in this chapter
and we will show how they can be exploited in a positive way, to transform solution heuris-
tics from a problem to another and how, on the contrary, they may help in proving negative,
inapproximability results.

It is well known that NP-hard combinatorial optimization problems behave in a very different
way with respect to approximability and can be classified accordingly. While for some problems
there exist polynomial-time approximation algorithms that provide solutions with a constant
approximation ratio w.r.t. the optimum solution, for some other problems even a remotely ap-
proximate solution is computationally hard to achieve. Analogously to what happens in the case
of the complexity of decision problems, approximation preserving reductions allow to establish
a partial order among optimization problems in terms of approximability properties, indepen-
dently from the actual level of approximation that for such problems can be achieved (and that
in some cases is still undefined). Approximation preserving reductions can also be used to define
complete problems which play an important role in the study of possible separations between
approximation classes. The discovery that a problem is complete in a given approximation class
provides a useful insight in understanding what makes a problem not only computationally hard
but also resilient to approximate solutions.

As a final remark on the importance of approximation preserving reductions, let us observe
that such reductions require that some correspondence between the combinatorial structure of
two problems is established. This is not the case for reductions between decision problems. For
example, in such case, we see that all NP-complete decision problems turn out to be mutually
interreducible by means of polynomial-time reduction while when we consider the correspond-
ing optimization problems, the different approximability properties, come to evidence. As a
consequence, we can say that approximation preserving reductions are also a useful tool to ana-
lyze the deep relation existing between combinatorial structure of problems and the hardness of
approximation.

The rest of this chapter is organized as follows. The next section is devoted to basic definitions
and preliminary results concerning reductions among combinatorial optimization problems. In
Section 3 we provide the first, simple example of approximation preserving reducibility, namely
the linear reducibility, that while not as powerful as the reducibilities that will be presented in
the sequel is widely used in practice. In Section 4 we introduce the reducibility that, historically,
has been, the first to be introduced, the strict reducibility and we discuss the first completeness
results based on reductions of such kind. Next, in Section 5 we introduce AP-reduction, and in
Section 6 we discuss more extensive completeness results in approximation classes. In Section 7,
we present a new reducibility, called FT-reducibility, that allows PTAS-completeness of natural
NPO problems. Finally, in Section 8 we present other reductions with the specific aim of proving
further inapproximability results. The last two sections of the chapter contain conclusions and
references.

In this paper we assume that the reader is familiar with the basic notions of computational
complexity regarding both decision problems and combinatorial optimization problems, as they
are defined in [3, 25].

2

2 Basic definitions

Before introducing the first examples of reductions between optimization problems, let us recall
the definitions of the basic notions of approximation theory and of the most important classes
of optimization problems, characterized in terms of their approximability properties. First of all
we introduce the class NPO which is the equivalent, for optimization problems, of the class of
decision problems NP.

Definition 1. An NP optimization problem, NPO, Π is defined as a four-tuple (I, Sol,m, goal)
such that:

• I is the set of instances of Π and it can be recognized in polynomial time;

• given x ∈ I, Sol(x) denotes the set of feasible solutions of x; for any y ∈ Sol(x), |y| (the
size of y) is polynomial in |x| (the size of x); given any x and any y polynomial in |x|, one
can decide in polynomial time if y ∈ Sol(x);

• given x ∈ I and y ∈ Sol(x), m(x, y) denotes the value of y and can be computed in
polynomial time;

• goal ∈ {min,max} indicates the type of optimization problem.

Given an NPO problem Π = (I, Sol,m, goal) an optimum solution of an instance x of Π is
usually denoted y∗(x) and its measure m(x, y∗(x)) is denoted by opt(x).

Definition 2. Given an NPO problem Π = (I, Sol,m, goal), an approximation algorithm A is
an algorithm that given an instance x of Π returns a feasible solution y ∈ Sol(x). If A runs
in polynomial time with respect to |x|, A is called a polynomial-time approximation algorithm
for Π.

The quality of the solution given by an approximation algorithm A for a given instance x is
usually measured as the ratio ρA(x), approximation ratio, between the value of the approximate
solution, m(x,A(x)), and the value of the optimum solution opt(x). For minimization problems,
therefore, the approximation ratio is in [1,∞), while for maximization problems it is in [0, 1].

Definition 3. An NPO problem Π belongs to the class APX if there exist a polynomial time
approximation algorithm A and a value r ∈ Q such that, given any instance x of Π, ρA(x) 6 r
(resp., ρA(x) > r) if Π is a minimization problem (resp., a maximization problem). In such case A
is called an r-approximation algorithm.

Examples of combinatorial optimization problems belonging to the class APX are max satis-
fiability, min vertex cover, min euclidean tsp.

In some cases, a stronger form of approximability for NPO problems can be obtained by a
polynomial-time approximation scheme (PTAS for short), that is a family of algorithms Ar such
that, given any ratio r ∈ Q, the algorithm Ar is an r-approximation algorithm whose running
time is bounded by a suitable polynomial p as a function of |x|.

Definition 4. An NPO problem Π belongs to the class PTAS if there exists a polynomial-time
approximation scheme Ar such that, given any r ∈ Q, r 6= 1, and any instance x of Π, ρAr

(x) 6 r
(resp., ρAr

(x) > r) if Π is a minimization problem (resp., a maximization problem).

Among the problems in APX listed above, the problem min euclidean tsp can be approx-
imated by means of a polynomial-time approximation scheme and hence belongs to the class

3

PTAS. Moreover, other examples of combinatorial optimization problems belonging to the class
PTAS are min partitioning and max independent set on planar graphs.

Finally, a stronger form of approximation scheme can be used for particular problems in
PTAS, such as, for example, max knapsack or min knapsack. In such cases, in fact, the
running time of the algorithm Ar is uniformly polynomial in r as made precise in the following
definition.

Definition 5. An NPO problem Π belongs to the class FPTAS if there exists a polynomial-time
approximation scheme Ar such that, given any r ∈ Q, r 6= 1, and any instance x of Π, ρAr

(x) 6

r (resp., ρAr
(x) > r) if Π is a minimization problem (resp., a maximization problem) and,

furthermore, there exists a two variate polynomial q such that the running time of Ar(x) is
bounded by q(x, 1/(r − 1)) (resp., q(x, 1/(1 − r)) in case of maximization problems).

It is worth to remember that under the hypothesis that P 6= NP all the above classes form a
strict hierarchy that is FPTAS ⊂ PTAS ⊂ APX ⊂ NPO.

Let us note that there exist also other notorious approximability classes, as Poly-APX, Log-

APX, Exp-APX, the classes of problems approximable within ratios that are, respectively,
polynomials (or inverse of polynomials if goal = max) logarithms (or inverse of logarithms),
exponentials (or inverse of exponentials) of the size of the input. The best studied among them
is the class Poly-APX. Despite of their interest, for economy, these classes are not dealt in the
chapter.

When the problem of characterizing approximation algorithms for hard optimization problems
was tackled, soon the need arose for a suitable notion of reduction that could be applied to
optimization problems in order to study their approximability properties ([17]).

What is it that makes algorithms for different problems behave in the same way? Is
there some stronger kind of reducibility than the simple polynomial reducibility that
will explain these results, or are they due to some structural similarity between the
problems as we define them?

Approximation preserving reductions provide an answer to the above question. Such reductions
have an important role when we wish to assess the approximability properties of an NPO

optimization problem and locate its position in the approximation hierarchy. In such case, in
fact, if we can establish a relationship between the given problem and other known optimization
problems, we can derive both positive information on the existence of approximation algorithms
(or approximation schemes) for the new problem or, on the other side, negative information,
showing intrinsic limitations to approximability. With respect to reductions between decision
problems, reductions between optimization problems have to be more elaborate. Such reductions,
in fact, have to map both instances and solutions of the two problems, and they have to preserve,
so to say, the optimization structure of the two problems.

The first examples of reducibility among optimization problems were introduced by Ausiello,
d’Atri and Protasi in [5, 6] and by Paz and Moran in [26]. In particular in [6] the notion of
structure preserving reducibility is introduced and for the first time the completeness of max
wsat in the class of NPO problems is proved. Still it took a few more years until suitable
notions of approximation preserving reducibilities were introduced by Orponen and Mannila
in [22]. In particular their paper presented the strict reduction (see Section 4) and provided the
first examples of natural problems who are complete under approximation preserving reductions:
(min wsat, min 0-1 linear programming and min tsp).

Before introducing specific examples of approximation preserving reduction in the next sec-
tions, let us explain more formally how reductions between optimization problems can be defined,

4

starting from the notion of basic reducibility (called R-reducibility in the following, denoted 6R)
which underlays the most of the reducibilities that will be later introduced.

Definition 6. Let Π1 and Π2 be two NPO maximization problems. Then we say that Π1 6R Π2

if there exist two polynomial time computable functions f , g that satisfy the following properties:

• f : IΠ1
→ IΠ2

such that ∀x1 ∈ IΠ1
, f(x1) ∈ IΠ2

; in other words, given an instance x1

in Π1, f allows to build an instance x2 = f(x1) in Π2;

• g : IΠ1
× SolΠ2

→ SolΠ1
such that, ∀(x1, y2) ∈ (IΠ1

× SolΠ2
(f(x1))), g(x1, y2) ∈ SolΠ1

(x1);
in other words, starting from a solution y2 of the instance x2, g determines a solution y1 =
g(x1, y2) of the initial instance x1.

As we informally said in the introduction the aim of an approximation preserving reduction is to
guarantee that if we achieve a certain degree of approximation in the solution of problem Π2, then
a suitable degree of approximation is reached for problem Π1. As we will see, the various notions
of approximation preserving reducibilities that will be introduced in the following, essentially
differ in the mapping that is established between the approximation ratios of the two problems.

Before closing this section, let us introduce the notion of closure of a class of problems under a
given type of reducibility. In what follows, given two NPO problems Π et Π′ and a reducibility X,
we will generally use the notation Π 6X Π′ to indicate that Π reduces to Π′ via reduction of
type X.

Definition 7. Let C be a class of NPO problems and X a reducibility. Then, the closure C
X

of C under X is defined as: C
X

= {Π ∈ NPO : ∃Π′ ∈ C,Π 6X Π′}.

3 The linear reducibility

The first kind of approximation preserving reducibility that we want to show is a very natural
and simple transformation among problems which consists in two linear mappings, one between
the values of the optimum solutions of the two problems and one between the errors of the
corresponding approximate solutions: the linear reducibility (L-reducibility, denoted 6L).

Definition 8. Let Π and Π′ be two problems in NPO. Then, we say that Π1 6L Π2, if there exist
two functions f and g (basic reduction) and two constants α1 > 0 and α2 > 0 such that ∀x ∈ IΠ

and ∀y′ ∈ SolΠ′(f(x)):

• optΠ′(f(x)) 6 α1optΠ(x);

• |mΠ(x, g(y′)) − optΠ(x)| 6 α2|mΠ′(f(x), y′) − optΠ′(f(x))|.

This type of reducibility has been introduced in [24] and has played an important role in the
characterization of the hardness of approximation. In fact it is easy to observe that the following
property holds.

Fact 1. Given two problems Π and Π′, if Π 6L Π′ and Π′ ∈ PTAS, then Π ∈ PTAS. In other
words, the L-reduction preserves membership in PTAS.

Example 1. max 3-sat 6L max 2-sat. Let us consider an instance ϕ with m clauses (w.l.o.g.,
let us assume that all clauses consist of exactly three literals); let l1i , l

2
i and l3i , be the three

literals of of the i-th clause, i = 1, . . . ,m. To any clause we associate the ten following new
clauses, each one consisting of at most two literals: l1i , l

2
i , l

3
i , l

4
i , l̄

1
i ∨ l̄2i , l̄

1
i ∨ l̄3i , l̄

2
i ∨ l̄3i , l

1
i ∨ l̄4i ,

l2i ∨ l̄4i , l
3
i ∨ l̄4i , where l4i is a new variable. Let C ′

i be the conjunction of the ten clauses derived

5

from clause Ci. The formula ϕ′ = f(ϕ) is the conjunction of all clauses C ′
i, i = 1, . . . ,m, i.e.,

ϕ′ = f(ϕ) = ∧m
i=1C

′
i and it is an instance of max 2-sat.

It is easy to see that all truth assignments for ϕ′ satisfy at most seven clauses in any C ′
i.

On the other side, for any truth assignment for ϕ satisfying Ci, the following truth assignment
for l4i is such that the extended truth assignment satisfies exactly seven clauses in C ′

i: if exactly
one (resp., all) of the variables l1i , l

2
i , l

3
i is (resp., are) set to true, then l4i is set to false (resp.,

true); otherwise (exactly one literal in Ci is set to false), l4i can be indifferently true or false.
Finally, if Ci is not satisfied (l1i , l

2
i and l3i are all set to false), no truth assignment for l4i can

satisfy more than six clauses of C ′
i while six are guaranteed by setting l4i to false. This implies

that opt(ϕ′) = 6m+ opt(ϕ) 6 13opt(ϕ) (since m 6 2opt(ϕ), see Lemma 2 in Section 6.2).
Given a truth assignment for ϕ′, we consider its restriction τ = g(ϕ, τ ′) on the variables of ϕ;

for such assignment τ we have: m(ϕ, τ) > m(ϕ′, τ ′) − 6m. Then:

opt(ϕ) −m(ϕ, τ) = opt
(

ϕ′
)

− 6m−m(ϕ, τ) 6 opt
(

ϕ′
)

−m
(

ϕ′, τ ′
)

This means that the reduction we have defined is an L-reduction with α1 = 13 and α2 = 1.

L-reductions provide a simple way to prove hardness of approximability. An immediate conse-
quence of the reduction that has been shown above and of Fact 1 is that, since max 3-sat does
not allow a PTAS (see [3, 25]) so does max 2-sat. The same technique can be used to show the
non existence of PTAS for a large class of optimization problems, among others max cut, max
independent set-B (that is, max independent set on graphs with bounded degree), min
vertex cover etc.

Before closing this section, let us observe that the set of ten 2-sat clauses that we have used
in Example 1 for constructing the 2-sat formula ϕ′ = f(ϕ), is strongly related to the bound on
approximability established in the example. Really, the proof of the result is based on the fact
that at least six out of the ten clauses can always be satisfied while exactly seven out of ten can
be satisfied, if and only if the original 3-sat clause is satisfied. A combinatorial structure of this
kind, which allows to transfer (in)approximability results from a problem to another, is called a
gadget (see [29]). The role of gadgets in approximation preserving reductions will be discussed
further in Section 8.

4 Strict reducibility and complete problems in NPO

As we informally said in the introduction, an important characteristic of an approximation
preserving reduction from a problem Π1 to a problem Π2 is that the solution y1 of problem Π1

produced by the mapping g should be at least as good as the original solution y2 of problem Π2.
This property is not necessarily true for any approximation preserving reduction (it is easy to
observe that, for example L-reductions do not always satisfy it) but it is true for the most
natural reductions that have been introduced in the early phase of approximation studies: the
strict reductions [22].

In the following, we present the strict reducibility (S-reducibility, denoted 6S) referring to
minimization problems but the definition can be trivially extended to all types of optimization
problems.

Definition 9. Let Π1 and Π2 be two NPO minimization problems. Then, we say that Π1 6S Π2

if there exist two polynomial time computable functions f , g that satisfy the following properties:

• f and g are defined as in a basic reduction;

• ∀x ∈ IΠ1
, ∀y ∈ SolΠ2

(f(x)), ρΠ2
(f(x), y) > ρΠ1

(x, g(x, y)).

6

It is easy to observe that the S-reducibility preserves both membership in APX and in PTAS.

Property 1 . Given two minimization problems Π1 and Π2, if Π1 6S Π2 and Π2 ∈ APX

(resp., Π2 ∈ PTAS), then Π1 ∈ APX (resp., Π2 ∈ PTAS).

Example 2. Consider the min weighted vertex cover problem in which the weights of
vertices are bounded by a polynomial p(n) and let us prove that this problem S-reduces to the
unweighted min vertex cover problem. Let us consider an instance (G(V,E), ~w) of the former
and let us see how it can be transformed into an instance G′(V ′, E′) of the latter. We proceed
as follows: for any vertex vi ∈ V , with weight wi, we construct an independent set Wi of wi new
vertices in V ′; next, for any edge (vi, vj) ∈ E, we construct a complete bipartite graph among
the vertices of the independent sets Wi et Wj in G′. This transformation is clearly polynomial
since the resulting graph G′ has

∑n
i=1wi 6 np(n) vertices.

Let us now consider a cover C ′ of G′ and, w.l.o.g., let us assume it is minimal w.r.t. inclusion
(in case it is not, we can easily delete vertices until we reach a minimal cover). We claim that
at this point C ′ has the form: ∪ℓ

j=1Wij , i.e., there is an ℓ such that C ′ consists of ℓ independent
sets Wi. Suppose that the claim is not true. Let us consider an independent set Wk which is only
partially included in C ′ (that is a non empty portion W ′

k of it belongs to C ′). Let us also consider
all independent sets Wp that are entirely or partially included in C ′ and moreover are connected
by edges to the vertices of Wk. Two cases may arise: (i) all considered sets Wp have their vertices
included in C ′; in this case the existence of W ′

k would contradict the minimality of C ′; (ii) among
the considered sets Wp there is at least one set Wq out of which only a non empty portion W ′

q is
included in C ′; in this case, since the subgraph of G′ induced by Wk ∪Wq is a complete bipartite
graph, the edges connecting the vertices of Wp \W

′
p with the vertices of Wq \W

′
q are not covered

by C ′ and this would contradict the assumption that C ′ is a cover of G′. As a consequence, the
size of C ′ satisfies |C ′| =

∑ℓ
j=1wij and the function g of the reduction can then be defined as

follows: if C ′ is a cover of G′ and if Wi, i = 1, . . . , ℓ, are the independent sets that form C ′, then

a cover C for G contains all corresponding vertices v1, . . . , vℓ of V . Clearly g can be computed
in polynomial time.

From these premises we can immediately infer that the same approximation ratio that is
guaranteed for A on G′ is also guaranteed by g on G. The shown reduction is hence an S-
reduction.

An immediate corollary of the strict reduction shown in the example is that the approxima-
tion ratio 2 for min vertex cover (that we know can be achieved by various approximation
techniques, see [16]) also holds for the weighted version of the problem, dealt in Example 2.

The S-reducibility is indeed a very strong type of reducibility: in fact it requires a strong
similarity between two optimization problems and it is not easy to find problems that exhibit such
similarity. The interest for the S-reducibility arises mainly from the fact that by making use of
reductions of this kind, Orponen and Mannila have identified the first optimization problem that
is complete in the class of NPO minimization problems: the problem min wsat. Let us consider
a Boolean formula in conjunctive normal form ϕ over n variables x1, . . . , xn and m clauses. Any
variable xi has a positive weight wi = w(xi). Let us assume that the truth assignment that puts
all variables to true is feasible, even if it does not satisfy ϕ. Besides, let us assume that ti is
equal to 1 if τ assigns value true to the i-th variable and 0 otherwise. We want to determine the
truth assignment τ of ϕ which minimizes:

∑n
i=1witi. The problem max wsat can be defined in

similar terms. In this case we assume that the truth assignment that puts all variables to false

is feasible and we want to determine the truth assignment τ that maximizes:
∑n

i=1witi. In the
variants min w3-sat and max w3-sat, we consider that all clauses contain exactly 3 literals.

7

The fact that min wsat is complete in the class of NPO minimization problems under S-
reductions implies that this problem does not allow any constant ratio approximation (unless P =
NP) ([6, 26, 22]). In fact, due to the properties of S-reductions, if a problem which is complete in
the class of NPO minimization problems problem was approximable then all NPO minimization
problems would. Since it is already known that some minimization problems in NPO do not
allow any constant ratio approximation algorithm (namely min tsp on general graphs), then
we can deduce that (unless P = NP) no complete problem in the class of NPO minimization
problems allows any constant ratio approximation algorithm.

Theorem 1. min wsat is complete in the class of minimization problems belonging to NPO

under S-reductions.

Sketch of proof. The proof is based on a modification of Cook’s proof of the NP-completeness
of sat [10]. Let us consider a minimization problem Π ∈ NPO, the polynomial p which provides
the bounds relative to problem Π (see Definition 1) and an instance x of Π. The following
non deterministic Turing machine M (with two output tapes T1 and T2) generates all feasible
solutions y ∈ Sol(x) together with their values:

• generate y, such that |y| 6 p(|x|);

• if y /∈ Sol(x), then reject; otherwise, write y on output tape T1, m(x, y) on output tape T2

and accept.

Let us now consider the reduction that is currently used in the proof of Cook’s theorem (see [23])
and remember that such reduction produces a propositional formula in conjunctive normal form
that is satisfied if and only if the computation of the Turing machine accepts. Let ϕx be such
formula and xn, xn−1, . . . , x0 the variables of ϕx that correspond to the cells of tape T2 where M
writes the value m(x, y) in binary (w.l.o.g., we can assume such cells to be consecutive), such
that a satisfying assignment of ϕx, xi is true if and only if the (n− i)-th bit of m(x, y) is equal
to 1. Given an instance x of Π the function f of the S-reduction provides an instance of min
wsat consisting of the pair (ϕx, ψ) where ψ(x) = ψ (xi) = 2i, for i = 0, . . . , n and ψ(x) = 0, for
any other variable x in ϕx.

The function g of the S-reduction is defined as follows. For any instance x of Π and any
solution τ ′ ∈ Sol(f(x)) (i.e., any truth assignment τ ′ which satisfies the formula ϕx (for simplic-
ity we only consider the case in which the formula ϕx is satisfiable)), we recover from ϕx the
representation of the solution y written on tape T1. Besides, we have that:

m
(

x, g
(

x, τ ′
))

=
∑

τ ′(xi)=true

2i = m
(

(ϕx, ψ), τ ′
)

where by τ ′(xi) we indicate the value of variable xi according to the assignment τ ′. As a
consequence we have: r(x, g(x, τ ′)) = r(f(x), τ ′) and the described reduction is an S-reduction.

After having established that min wsat is complete for NPO minimization problems under
the S-reducibility we can then proceed to find other complete problems in this class.

Let us consider the following definition of the min 0-1 linear programming problem
(the problem max 0-1 linear programming can be defined analogously). We consider a
matrix A ∈ Zm×n and two vectors~b ∈ Zm and ~w ∈ Nn. We want to determine a vector ~y ∈ {0, 1}n

that verifies A~y > ~b and minimizes the quantity ~w · ~y.
Clearly min 0-1 linear programming is an NPO minimization problem. The reduction

from min wsat to min 0-1 linear programming is a simple modification of the standard
reduction among the corresponding decision problems. Suppose that the following instance of
min 0-1 linear programming, consisting of a matrix A ∈ Zm×n and two vectors ~b ∈ Zm

8

and ~w ∈ Nn, is the image f(x) of an instance x of min wsat and suppose that ~y is a feasible
solution of f(x) whose value is m(f(x), ~y) = ~w ·~y. Then, g(x, ~y) is a feasible solution of x, that is
a truth assignment τ , whose value is m(x, τ) =

∑n
i=1witi where ti is equal to 1 if τ assigns value

true to the i-th variable and 0 otherwise. Since we have
∑n

i=1witi = ~w · ~y it is easy to see that
the reduction (f, g, c), where c is the identity function, is an S-reduction1 and, as a consequence,
min 0-1 linear programming is also complete in the class of NPO minimization problems.

It is not difficult to prove that an analogous result holds for maximization problems, that is,
max wsat is complete under S-reductions in the class of NPO maximization problems.

At this point of the chapter we still do not have the technical instruments to establish a more
powerful result, that is, to identify problems which are complete under S-reductions for the entire
class of NPO problems. In order to prove such result we need to introduce a more involved
kind of reducibility, the AP-reducibility (see Section 5). In fact, by means of AP-reductions max
wsat can itself be reduced to min wsat and viceversa (see [12]) and therefore it can be shown
that (under AP-reductions) both problems are indeed NPO-complete.

5 AP-reducibility

After the seminal paper by Orponen and Mannila [22] research on approximation preserving
reducibility was further developed (see, for example, [27, 28, 21]); nevertheless, the beginning
of the structural theory of approximability of optimization problems can be traced back to the
fundamental paper by Crescenzi and Panconesi [13] where reducibilities preserving membership
in APX (A-reducibility), PTAS (P-reducibility) and FPTAS (F-reducibility) were studied and
complete problems for each of the three kinds of reducibilities were shown, respectively in NPO,
APX and PTAS. Unfortunately the problems which are proved complete in APX and in PTAS

in this paper are quite artificial.
Along a different line of research, during the same years, the study of logical properties of

optimization problems has led Papadimitriou and Yannakakis ([24]) to the syntactic character-
ization of an important class of approximable problems, the class Max-SNP. Completeness
in Max-SNP has been defined in terms of L-reductions (see Section 3) and natural complete
problems (e.g., max 3-sat, max 2-sat, min vertex cover-B etc.) have been found. The rele-
vance of such approach is related to the fact that it is possible to prove that Max-SNP-complete
problems do not allow PTAS (unless P = NP).

The two approaches have been reconciled by Khanna, Motwani, Sudan and Vazirani, in [20],
where the closure of syntactically defined classes with respect to an approximation preserving
reduction were proved equal to the more familiar computationally defined classes. As a con-
sequence of this result any Max-SNP-completeness result appeared in the literature can be
interpreted as an APX-completeness result. In this paper a new type of reducibility is intro-
duced, the E-reducibility. With respect to the L-reducibility, in the E-reducibility the constant α1

is replaced by a polynomial p(|x|). This reducibility is fairly powerful since it allows to prove that
max 3-sat is complet for APX-PB (the class of problems in APX whose values are bounded
by a polynomial in the size of the instance) such as max 3-sat. On the other side it remains
somewhat restricted because it does not allow the transformation of PTAS problems (such as
max knapsack) into problems belonging to APX-PB.

The final answer to the problem of finding the suitable kind of reducibility (powerful enough
to establish completeness results both in NPO and APX) is the AP-reducibility introduced by
Crescenzi, Kann, Silvestri and Trevisan in [12].

In fact, the types of reducibility that we have introduced so far (linear and strict reducibilities)
suffer from various limitations. In particular we have seen that strict reductions allow us to prove

1Note that, in this case, the reduction is also a linear reductions with α = β = 1

9

the completeness of min wsat in the class of NPO minimization problems but are not powerful
enough to allow the identification of problems which are complete for the entire class NPO.
Besides, both linear and strict reductions, in different ways, impose strong constraints on the
values of the solutions of the problems among which the reduction is established.

In this section, we provide the definition of the AP-reducibility (denoted 6AP) and we illus-
trate its properties. Completeness results in NPO and in APX based on AP-reductions are
shown in Section 6.

Definition 10. Let Π1 and Π2 be two minimization NPO problems. An AP-reduction be-
tween Π1 et Π2 is a triple (f, g, α), where f and g are functions and α is a constant, such that,
for any x ∈ IΠ1

and r > 1:

• f(x, r) ∈ IΠ2
is computable in time tf (|x|, r) polynomial in |x| for a fixed r; tf (n, ·) is non

increasing;

• for any y ∈ SolΠ2
(f(x, r)), g(x, y, r) ∈ SolΠ1

(x) is computable in time tg(|x|, y, r) which is
polynomial both in |x| and in |y| for an fixed r; tg(n, n, ·) is non increasing;

• for any y ∈ SolΠ2
(f(x, r)), ρΠ2

(f(x, r), y) 6 r implies ρΠ1
(x, g(x, y, r)) 6 1 + α(r − 1).

It is worth to underline the main differences of AP-reductions with respect to the reductions
introduced until now. In first place, with respect to L-reductions the constraint that the optimum
values of the two problems are linearly related has been dropped. In second place, with respect
to the S-reductions we allow a weaker relationship to hold between the approximation ratios
achieved for the two problems. Besides, an important condition which is needed in the proof
of APX-completeness is that, in AP-reductions, the two functions f and g may depend on the
approximation ratio r. Such extension is somewhat natural since there is no reason to ignore the
quality of the solution we are looking for, when reducing one optimization problem to another and
it plays a crucial role in the completeness proofs. On the other side, since in many applications
such knowledge is not required, whenever functions f and g do not use the dependency on r,
we will avoid specifying this dependency. In other words, we will write f(x) and g(x, y) instead
of f(x, r) and g(x, y, r), respectively.

Proposition 1. Given two minimization problems Π1 and Π2, if Π1 6AP Π2 and Π2 ∈ APX

(resp., Π2 ∈ PTAS), then Π1 ∈ APX (resp., Π1 ∈ PTAS).

Sketch of proof. Let (f, g, α) be such reduction. Assume Π2 ∈ APX; let A2 be an approxi-
mation algorithm for Π2 which guarantees an approximation ratio smaller than, or equal to, r2.
Then, by definition 10, the algorithm A1(x) = g(x, A2(f(x, r)), r) is an approximation algorithm
for Π1 which guarantees an approximation ratio r1 6 1 + α(r2 − 1). This is a constant, not
depending on x, since so are r2 and α.

Analogously, if Π2 ∈ PTAS and A2 is a polynomial time approximation scheme for Π2,
then A1(x, r2) = g(x, A2(f(x, r1), r1), r1) is a polynomial time approximation scheme for Π1

with r1 = 1 + ((r2 − 1)/α).
As a last remark, let us observe that the S-reducibility is a particular case of AP-reducibility,

corresponding to the case in which α = 1. More generally, the AP-reducibility is sufficiently
broad to encompass almost all known approximation preserving reducibilities while maintaining
the property of establishing a linear relation between performance ratios: this is important in
order to preserve membership in all approximation classes.

10

6 NPO-completeness and APX-completeness

6.1 NPO-completeness

In the preceding section, we have announced that by means of a suitable type of reduction
we can transform an instance of max wsat into an instance of min wsat. This can now
be obtained by making use of AP-reductions. By combining this result with Theorem 1 and
with the corresponding result concerning the completeness of max wsat in the class of NPO-
maximization problems, we can assemble the complete proof that min wsat is complete for the
entire class NPO under AP-reductions. The inverse reduction, from min wsat to max wsat
can be shown in a similar way, leading to the proof that also max wsat is complete for the
entire class NPO under AP-reductions.

Theorem 2. max wsat can be AP-reduced to min wsat and vice-versa.

Sketch of proof. The proof works as follows. First a simple reduction can be defined which
transforms a given instance ϕ of max wsat into an instance ϕ′ of min wsat with α depending
on r. Such reduction can then be modified into a real AP-reduction in which α is a constant,
not depending on r, while, of course, the functions f and g will depend on r. We limit ourselves
to describing the first step. The complete proof can be found in [3].

Let ϕ be the formula produced in the reduction proving the completeness of max wsat for
the class of NPO maximization problems. Then, f(ϕ) be the formula ϕ∧α1 ∧ · · · ∧αs where αi

is zi ≡ (v1∧· · ·∧vi−1∧vi), z1, . . . , zs are new variables with weights w(zi) = 2i for i = 1, . . . , s, and
all other variables (even the v-variables) have zero weight. If τ is a satisfying truth assignment
for f(ϕ), let g(ϕ, τ) be the restriction of τ to the variables that occur in ϕ. This assignment
clearly satisfies ϕ. Note that exactly one among the z-variables is true in any satisfying truth
assignment of f(ϕ). If all z-variables were false, then all v-variables would be false, which is
not allowed. On the other hand, it is clearly not possible that two z-variables are true. Hence,
for any feasible solution τ of f(ϕ), we have that m(f(ϕ), τ) = 2i, for some i with 1 6 i 6 s.
This finally implies: 2s−i 6 m(ϕ, g(ϕ, τ)) < 2 · 2s−i and since:

m(f(ϕ), τ) = 2i ⇔ zi = 1 ⇐⇒ v1 = v2 = · · · = vi−1 = 0, vi = 1

⇐⇒ 2s−i
6 m(ϕ, g(ϕ, τ)) < 2 · 2s−i

we have that, for any feasible solution τ of f(ϕ):

2s

m(f(ϕ), τ)
6 m(ϕ, g(ϕ, τ)) < 2

2s

m(f(ϕ), τ)

This is in particular true for the optimal solution (observe that any satisfying truth assignment
for ϕ can be easily extended to a satisfying truth assignment for f(τ)). Thus, after some easy al-
gebra, the performance ratio of g(ϕ, τ) with respect to ϕ verifies: r(ϕ, g(ϕ, τ)) > 1/(2r(f(ϕ), τ)).

Thus, the performance ratio of g(ϕ, τ) with respect to ϕ is:

r(ϕ, g(ϕ, τ)) =
m(ϕ, g(ϕ, τ))

opt(ϕ)
>

2s

m(f(ϕ),τ)

2 2s

opt(f(ϕ))

=
1

2

opt(f(ϕ))

m(f(ϕ), τ)
=

1

2

1

r(f(ϕ), τ)

The reduction satisfies the approximation preserving condition with a factor α = (2r−1)/(r−1).
In order to obtain a factor α not depending on r the reduction can be modified by introducing 2k

more variables for a suitable integer k.

11

Other problems that have been shown NPO-complete are min (max) w3-sat and min
tsp ([22]). As it has been observed before, as a consequence of their NPO-completeness under
approximation preserving reductions, for all these problems does not exist any r-approximate
algorithm with constant r, unless P = NP.

6.2 APX-completeness

As it has been mentioned above, the existence of an APX-complete problem has already been
shown in [13] (see also [4]) but the problem that is proved complete in such framework is a
rather artificial version of max wsat. The reduction used in such result is called P-reduction.
Unfortunately no natural problem has been proved complete in APX using the same approach.
In this section, we prove the APX-completeness under AP-reduction of a natural and popular
problem: max 3-sat. The proof is crucially based on the following two lemmas (whose proofs
are not provided in this paper).

The first lemma is proved in [1] and is based on a powerful algebraic technique for the
representation of propositional formulæ (see also [3]), while the second one states a well known
property of propositional formulæ and is proved in [3, 17].

Lemma 1. There is a constant ǫ > 0 and two functions fs and gs such that, given any propo-
sitional formula ϕ in conjunctive normal form, the formula ψ = fs(ϕ) is a conjunctive normal
form formula with at most three literals per clause which satisfies the following property: for
any truth assignment T ′ satisfying at least a portion 1− ǫ of the maximum number of satisfiable
clauses in ψ, gs(ϕ, T

′) satisfies ϕ if and only if ϕ is satisfiable.

Lemma 2. Given a propositional formula in conjunctive normal form, at least one half of its
clauses can always be satisfied.

Theorem 3. max 3-sat is APX-complete.

Sketch of proof. As it has been done in the case of the proofs of NPO-completeness, we
split the proof in two parts. First, we show that max 3-sat is complete in the class of APX

maximization problems and then we show that any APX minimization problem can be reduced
to an APX maximization problem. In order to make the proof easier, we adopt the convention
used in [3]. The approximation ratio of a maximization problem in this context will be defined
as the ratio between the value of the optimum solution opt(x) and the value of the approx-
imate solution m(x, A(x)). For both maximization and minimization problems, therefore, the
approximation ratio is in [1,∞). Let us first observe that max 3-sat ∈ APX since it can be
approximated up to the ratio 0.8006 ([29]).

Now we can sketch the proof that max 3-sat is hard for the class of maximization prob-
lems in APX. Let us consider a maximization problem Π ∈ APX. Let AΠ be a polynomial
time rΠ-approximation algorithm for Π. In order to construct an AP-reduction, let us define
the parameter α as follows: α = 2(rΠ log rΠ + rΠ − 1) × ((1 + ǫ)/ǫ) where ǫ is the constant of
Lemma1. Let us now chose r > 1 and let us consider the following two cases: 1 + α(r − 1) > rΠ

and 1 + α(r − 1) < rΠ.
In the case 1 + α(r − 1) > rΠ, given any instance x of Π and given any truth assignment τ

for max 3-sat, we trivially define: f(x, r) to be the empty formula and g(x, τ, r) = AΠ(x). It can
easily be seen that r(x, g(x, τ, r)) 6 rΠ 6 1 + α(r − 1) and the reduction is an AP-reduction.

Let us then consider the case 1 + α(r − 1) < rΠ and let us define rn = 1 + α(r − 1); then:

r =
rn − 1

α
+ 1

12

If we define k = ⌈logrn
rΠ⌉, we can partition the interval [m(x, AΠ(x)), rΠm(x, AΠ(x))] in the

following k subintervals:

[m (x, AΠ(x)) , rnm (x, AΠ(x))]
[

ri
nm (x, AΠ(x)) , r

i+1
n m (x, AΠ(x))

]

, i = 1, . . . , k − 2
[

rk−1
n m (x, AΠ(x)) , rΠm (x, AΠ(x))

]

Then we have m(x, AΠ(x)) 6 opt(x) 6 rΠm(x, AΠ(x)) 6 rk
nm(x, AΠ(x)), i.e., the optimum value

of instance x of Π belongs to one of the subintervals.
Note that by, definition, k < (rΠ log rΠ + rΠ − 1)/(rn − 1) and by making use of the defini-

tions of α, r and k, we obtain: r < (ǫ/(2k(1 + ǫ))) + 1.
For any i = 0, 1, . . . , k − 1, let us consider an instance x of Π and the following non de-

terministic algorithm where p is the polynomial that bounds the value of all feasible solutions
of Π:

• guess a candidate solution y with value at most p(|x|);

• if y ∈ SolΠ(x) and mΠ(x, y) 6 ri+1
n m(x, AΠ(x)), then return yes, otherwise return no.

Applying once again the technique of Theorem 1, we can construct k propositional formulæ
ϕ0, ϕ1, . . . , ϕk−1 such that for any truth assignment τi satisfying ϕi, i = 0, 1, . . . , k − 1, in poly-
nomial time we can build a feasible solution y of the instance x with mΠ(x, y) > ri

nm(x, AΠ(x)).
Hence, the instance ψ of max 3-sat that we consider is the following:

ψ = f(x, r) =
k−1
∪

i=0
fs (ϕi)

where fs is the function defined in Lemma 1; w.l.o.g., we can suppose that all formulæ fs(ϕi), i =
0, . . . , k − 1, contain the same number of clauses.

Denote by T a satisfying truth assignment of ψ achieving approximation ratio r and by ri

the approximation ratio guaranteed by τ over fs(ϕi). By Lemma 2 we get:

m (ri − 1)

2ri
6 opt(ψ) −m(ψ, T) 6 km

r − 1

r

Using this expression for i = 0, . . . , k−1, we have m(ri−1)/2ri 6 km(r−1)/r, which implies 1−
(2k(r − 1)/r) 6 1/ri and, finally, ri 6 1 + ǫ.

Using again Lemma 1, we derive that, for i = 0, . . . , k − 1, the truth assignment τi =
gs(ϕi, τ) (where gs is as defined in Lemma 1) satisfies ϕi if and only if ϕi is satisfiable. Let us
call i∗ the largest i for which τi satisfies ϕi; then:

ri∗

n m (x, AΠ(x)) 6 optΠ(x) 6 ri∗+1
n m (x, AΠ(x))

Starting from τi∗ , we can then construct a solution y for Π whose value is at least ri∗

n m(x, AΠ(x)).
This means that y guarantees an approximation ratio rn. In other words, r(x, y) 6 rn =
1+α(r−1) and the reduction (f, g, α) that we have just defined (where g consists in applying gs,
determining i∗ and constructing y starting from τi∗) is an AP-reduction.

Since Π is any maximization problem in APX, the completeness of max 3-sat for the class
of maximization problems in APX follows.

We now turn to the second part of the theorem. In fact, we still have to prove that all
minimization problems in APX can be AP-reduced to maximization problems and, henceforth,
to max 3-sat.

13

Let us consider a minimization problem Π ∈ APX and an algorithm A with approximation
ratio r for Π; let k = ⌈r⌉. We can construct a maximization problem Π′ ∈ APX and prove
that Π 6AP Π′. The two problems have the same instances and the same feasible solutions,
while the objective function of Π′ is defined as follows: given an instance x and a feasible
solution y of x,

mΠ′(x, y) =

{

(k + 1)mΠ(x, A(x)) − kmΠ(x, y) if mΠ(x, y) 6 mΠ(x, A(x))
mΠ(x, A(x)) otherwise

Clearly, mΠ(x, A(x)) 6 optΠ′(x) 6 (k+1)mΠ(x, A(x)) and, by definition of Π′, the algorithm A is
also an approximation algorithm for this problem with approximation ratio k+1; therefore Π′ ∈
APX. The reduction from Π to Π′ can now be defined as follows: for any instance x of Π, f(x) =
x; for any instance x of Π and for any solution y of instance f(x) of Π′:

g(x, y) =

{

y if mΠ(x, y) 6 mΠ(x, A(x))
A(x) otherwise

and α = k + 1. Note that f and g do not depend on the approximation ratio r.
We now show that the reduction we have just defined is an AP-reduction. Let y be an r ′-

approximate solution of f(x); we have to show that the ratio rΠ(x, g(x, y)) of the solution g(x, y)
of the instance x of Π is smaller than, or equal to, 1 + α(r′ − 1). We have the following two
cases: mΠ(x, y) 6 mΠ(x, A(x)) and mΠ(x, y) > mΠ(x, A(x)).

• In the case mΠ(x, y) 6 mΠ(x, A(x)), we have: g(x, y) = y, mΠ′(x, y) > optΠ′(x)/r,

mΠ(x, A(x)) 6 optΠ′(x) 6 (k + 1)mΠ(x, A(x))

and mΠ(x, A(x)) 6 optΠ(x). By considering such relations and the definition of α, we can
derive:

mΠ(x, y) 6
(

1 + α
(

r′ − 1
))

optΠ(x)

In other words: rΠ(x, g(x, y)) = rΠ(x, y) 6 1 + α(r′ − 1).

• In the case mΠ(x, y) > mΠ(x, A(x)), since α > 1, we have:

rΠ(x, g(x, y)) = rΠ(x, A(x)) = rΠ′(x, y) 6 r′ 6 1 + α
(

r′ − 1
)

In conclusion, all minimization problems in APX can be AP-reduced to maximization problems
in APX and all maximization problems in APX can be AP-reduced to max 3-sat. Since the
AP-reduction is transitive the APX-completeness of max 3-sat is proved.

6.3 Negative results based on APX-completeness

Similarly to what we saw for completeness in NPO, also completeness in APX implies negative
results in terms of approximability of optimization problems. In fact if we could prove that an
APX-complete problem admits a PTAS, then so would all problems in APX. On the other side,
it is well known that, unless P = NP there are problems in APX that do not admit a PTAS
(one example for all, min scheduling on identical machines, see [3]), therefore, under the
same complexity theoretic hypothesis, no APX-complete problem admits a PTAS.

As a consequence of the results in the previous subsection, we can therefore assert that,
unless P = NP, max 3-sat does not admit a PTAS, neither do all other optimization problems
that have been shown APX-complete: (max 2-sat, min vertex cover, max cut, min metric
tsp etc.).

14

Note that the inapproximability of max 3-sat has been proved by Arora et al. ([1]) in a
breakthrough paper by means of sophisticated techniques based on the concept of probabilis-
tically checkable proofs, without any reference to the notion of APX-completeness. This fact,
though, does not diminish the relevance of approximation preserving reductions and the related
completeness notion. In fact most results that state the non existence of PTAS for APX op-
timization problems have been proved starting from max 3-sat, via approximation preserving
reductions that allow to carry over the inapproximability results from one problem to another.
In second place, it is worth noting that the structure of approximation classes with respect to
approximation preserving reductions is richer than it appears from this survey. For example,
beside complete problems, other classes of problems can be defined inside approximation classes,
identifying the so called intermediate problems (see [3]).

7 FT-reducibility

As we have already pointed out in Section 5, PTAS-completeness has been studied in [13] under
the so-called F-reduction, preserving membership in FPTAS. Under this type of reducibility, a
single problem, a rather artificial version of max wsat has been shown PTAS-complete. In
fact, F-reducibility is quite restrictive since it mainly preserves optimality, henceforth, existence
of a PTAS-complete polynomially bounded problem is very unlikely.

In [8], a more “flexible” type of reducibility, called FT-reducibility has been introduced. It is
formally defined as follows.

Definition 11. Let Π and Π′ be two maximization integer-valued problems. Then, Π FT-
reduces to Π′ (denoted by Π 6FT Π′) if, for any ǫ > 0, there exist an oracle ©Π′

α for Π′ and an
algorithm Aǫ calling ©Π′

α such that:

• ©Π′

α produces, for any α ∈]0, 1] and for any instance x′ of Π′, a feasible solution ©Π′

α (x′)
of x′ that is an (1 − α)-approximation;

• for any instance x of Π, y = Aǫ(©
Π′

α , x) ∈ Sol(x); furthermore the approximation ratio of y
is at least (1 − ǫ);

• if ©Π′

α (·) runs in time polynomial in both |f(x)| and 1/α, then Aǫ(©
Π′

α (f(x)), x) is poly-
nomial in both |x| and 1/ǫ.

For the case where at least one among Π and Π′ is a minimization problem it suffices to replace
1 − ǫ or/and 1 − α by 1 + ǫ or/and 1 + α, respectively.

As one can see from Definition 11, FT-reduction is somewhat different from the other ones
considered in this chapter and, in any case, it is not conformal to Definition 6. In fact, it resem-
bles a Turing-reduction. Clearly, FT-reduction transforms a fully polynomial time approximation
schema for Π′ into a fully polynomial time approximation schema for Π, i.e., it preserves mem-
bership in FPTAS. Note also that the F-reduction, as it is defined in [13], is a special case of
the FT-reduction, since the latter explicitly allows multiple calls to oracle © while for the former
this fact is not explicit.

Theorem 4. Let Π′ be an NP-hard problem in NPO. If Π′ ∈ NPO-PB (the class of problems
in NPO whose values are bounded by a polynomial in the size of the instance), then any NPO

problem FT-reduces to Π′. Consequently, (i) PTAS
FT

= NPO and (ii) any NP-hard polynomi-
ally bounded problem in PTAS is PTAS-complete under FT-reductions.

Sketch of proof. We first prove the following claim: if an NPO problem Π′ is NP-hard, then
any NPO problem Turing-reduces (see [3]) to Π′.

15

In order to prove this claim, let Π be an NPO problem and q be a polynomial such that
|y| 6 q(|x|), for any instance x of Π and for any feasible solution y of x. Assume that the
encoding n(y) of y is binary. Then 0 6 n(y) 6 2q(|x|) − 1. We consider problem Π̂ which is the
same as Π up to its value that is defined by:

mΠ̂(x, y) = 2q(|x|)+1mΠ(x, y) + n(y)

If mΠ̂(x, y1) > mΠ̂(x, y2), then mΠ(x, y1) > mΠ(x, y2). So, if a solution y is optimal for x,

with respect to Π̂, it is so with respect to Π. Remark now that Π̂ and its evaluation version Π̂e

are equivalent since given the value of an optimal solution y, one can determine n(y) (hence y)
by computing the remainder of the division of this value by 2q(|x|)+1. Since Π′ is NP-hard, it
can be shown that one can solve the evaluation problem Π̂e, henceforth Π̂ if one can solve, the
(constructive) problem Π′ and the claim is proved.

We now prove the following claim: let Π′ ∈ NPO-PB; then, any NPO problem Turing-
reducible to Π′ is also FT-reducible to Π′.

In order to prove this second claim, let Π be an NPO problem and suppose that there exists
a Turing-reduction between Π and Π′. Let ©Π′

α be as in Definition 11. Moreover, let p be a
polynomial such that for any instance x′ of Π′ and for any feasible solution y′ of x′, m(x′, y′) 6

p(|x′|). Let x be an instance of Π. The Turing-reduction claimed gives an algorithm solving Π
using an oracle for Π′. Consider now this algorithm where we use, for any query to the oracle with
the instance x′ of Π′, the approximate oracle ©Π′

α (x′), with α = 1/(p(|x′|) + 1). This algorithm is
polynomial and produces an optimal solution, since a solution y ′ being an (1− (1/(p(|x′|) + 1)))-
approximation for x′ is an optimal one. So, the claim is proved.

Combination of the above claims easily derives the theorem.
Observe finally that max planar independent set and min planar vertex cover are

in both PTAS ([7]) and NPO-PB. So, the following theorem concludes this section.

Theorem 5. max planar independent set and min planar vertex cover are PTAS-
complete under FT-reductions.

8 Gadgets, reductions and inapproximability results

As it has been pointed out already in Section 3, in the context of approximation preserving
reductions we call gadget a combinatorial structure which allows to transfer approximability (or
inapproximability) results from a problem to another. A classical example is the set of ten 2-
sat clauses that we have used in Example 1 for constructing the 2-sat formula starting from a
3-sat formula. Although gadgets are used since the seminal work of Karp on reductions among
combinatorial problems, the study of gadgets has been started in [9] and in [29]; from the latter
derive most of the results discussed in this section.

In order to understand the role of gadgets in approximation preserving reductions, let us first
go back to linear reductions and see what are the implications on the approximation ratio of two
problems Π and Π′, deriving from the fact that Π 6L Π′. Suppose Π and Π′ are minimization
problems, f , g, α1 and α2 are the functions and constants that define the linear reduction, x is
an instance of problem Π, f(x) is the instance of problem Π′ determined by the reduction, y is a
solution of f(x). Then, the following relationship holds between the approximation ratios of Π
and Π′:

rΠ(x, g(x, y)) 6 1 + α1α2 (rΠ′(f(x), y) − 1)

and, therefore, we have that:

rΠ′ 6 1 +
r − 1

α1α2
=⇒ rΠ 6 r

16

In the case of maximization problems we have, instead, the following implication:

rΠ′ =
rα1α2

r (α1α2 − 1) + 1
=⇒ rΠ = r

In the particular case of the reduction between max 3-sat and max 2-sat, we have α1α2 = 13
and, therefore, we can infer the following results on the approximability upper bounds and lower
bounds of the two problems, which may be proved by a simple calculation:

• since it is known that max 2-sat can be approximated with the ratio 0.931 ([15]), then
max 3-sat can be approximated with ratio 0.103;

• Since it is known that max 3-sat cannot be approximated beyond the threshold 7/8, then
max 2-sat cannot be approximated beyond the threshold 103/104.

Although better bounds are now known for these problems (see Karloff and Zwick [18]), it is
important to observe that the above given bounds may be straightforwardly derived from the
linear reduction between the two problems and are useful to show the role of gadgets. In such
reduction, the structure of the gadget is crucial (it determines the value α1) and it is clear that
better bounds could be achieved if the reduction could make use of “smaller” gadgets. In fact,
in [29], by cleverly constructing a more sophisticated type of gadget (in which, in particular,
clauses have real weights), the authors derive a 0.801 approximation algorithm for max 3-sat,
improving on previously known bounds.

Based on [9], in [29] the notion of α-gadget (that is, gadget with performance α) is abstracted
and formalized with reference to reductions among constraint satisfaction problems. In the same
paper, it is shown that, under suitable circumstances, the search for (possibly optimum) gadgets
to be used in approximation preserving reductions, can be pursued in a systematic way by
means of a computer program. An example of the results that may be achieved in this way is
the following.

Let PC0 and PC1 be the families of constraints over three binary variables defined as:

PCi(a, b, c) =

{

1 if a⊕ b⊕ c = i
0 otherwise

and let dicut be the family of constraints corresponding to directed cuts in a graph. There
exists optimum 6.5 gadgets (automatically derived by the computer program) reducing PC0

and PC1 to dicut. As a consequence, for any ǫ > 0, max dicut is hard to approximate to
within 12/13 + ǫ.

9 Conclusion

A large number of other approximation preserving reductions among optimization problems,
beside those introduced in this chapter, have been introduced throughout the years. Here we
have reported only the major developments. Other overviews of the world of approximation
preserving reductions can be found in [11] and [12].

As we have already pointed out in Section 2, we have not dealt in this survey with ap-
proximability classes beyond APX, even if intensive studies have been performed, mainly for
Poly-APX. In [20], completeness results are established, under the E-reduction, for Poly-APX-

PB (the class of problems in Poly-APX whose values are bounded by a polynomial in the size
of the instance). Indeed, as we have already discussed in Section 5, use of restrictive reductions
as the E-reducibility, where the functions f and g do not depend on any parameter ǫ seems
very unlikely to be able to handle Poly-APX-completeness. As it is shown in [8], complete-
ness for the whole Poly-APX can be handled, for instance, by using PTAS-reduction, a further

17

relaxation of the AP-reduction where the dependence between the approximation ratios of Π
and Π′ is not restricted to be linear ([14]). Under PTAS-reduction, max independent set is
Poly-APX-complete ([8]).

Before concluding, it is worth noting that a structural development (based on the defini-
tion of approximability classes, approximation preserving reductions and completeness results),
analogous to the one that has been carried on for the classical approach to the theory of approx-
imation, has been elaborated also for the differential approach (see [2, 8]). In [2] and in [8] the
approximability classes DAPX, Poly-DAPX and DPTAS are introduced, suitable approxima-
tion preserving reductions are defined and complete problems in NPO, DAPX, Poly-DAPX

and DPTAS, under such kind of reductions, are shown.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and in-
tractability of approximation problems. In Proc. FOCS’92, pages 14–23, 1992.

[2] G. Ausiello, C. Bazgan, M. Demange, and V. Th. Paschos. Completeness in differential
approximation classes. International Journal of Foundations of Computer Science. To
appear.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and approximation. Combinatorial optimization problems and their approxima-
bility properties. Springer, Berlin, 1999.

[4] G. Ausiello, P. Crescenzi, and M. Protasi. Approximate solutions of NP optimization prob-
lems. Theoret. Comput. Sci., 150:1–55, 1995.

[5] G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions among convex
optimization problems. J. Comput. System Sci., 21:136–153, 1980.

[6] G. Ausiello, A. D’Atri, and M. Protasi. Lattice-theoretical ordering properties for NP-
complete optimization problems. Fundamenta Informaticæ, 4:83–94, 1981.

[7] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J. As-
soc. Comput. Mach., 41(1):153–180, 1994.

[8] C. Bazgan, B. Escoffier, and V. Th. Paschos. Completeness in standard and differential
approximation classes: Poly-(D)APX- and (D)PTAS-completeness. Theoret. Comput. Sci.,
339:272–292, 2005.

[9] M. Bellare, O. Goldreich, and M. Sudan. Free bits and non-approximability — towards
tight results. SIAM J. Comput., 27(3):804–915, 1998.

[10] S. A. Cook. The complexity of theorem-proving procedures. In Proc. STOC’71, pages
151–158, 1971.

[11] P. Crescenzi. A short guide to approximation preserving reductions. In Proc. Conference
on Computational Complexity, pages 262–273, 1997.

[12] P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. Structure in approximation classes.
SIAM J. Comput., 28(5):1759–1782, 1999.

[13] P. Crescenzi and A. Panconesi. Completeness in approximation classes. Information and
Computation, 93(2):241–262, 1991.

18

[14] P. Crescenzi and L. Trevisan. On approximation scheme preserving reducibility and its
applications. Theory of Computing Systems, 33(1):1–16, 2000.

[15] U. Feige and M. X. Goemans. Approximating the value of two prover proof systems, with
applications to max 2sat and max dicut. In Proc. Israel Symposium on Theory of Computing
and Systems, ISTCS’95, pages 182–189, 1995.

[16] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of
NP-completeness. W. H. Freeman, San Francisco, 1979.

[17] D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. System
Sci., 9:256–278, 1974.

[18] H. Karloff and U. Zwick. A 7/8-approximation for MAX 3SAT? In Proc. FOCS’97, pages
406–415, 1997.

[19] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity of computer computations, pages 85–103. Plenum Press, New York, 1972.

[20] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computational
views of approximability. SIAM J. Comput., 28:164–191, 1998.

[21] M. W. Krentel. The complexity of optimization problems. J. Comput. System Sci., 36:490–
509, 1988.

[22] P. Orponen and H. Mannila. On approximation preserving reductions: complete problems
and robust measures. Technical Report C-1987-28, Dept. of Computer Science, University
of Helsinki, Finland, 1987.

[23] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[24] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity
classes. J. Comput. System Sci., 43:425–440, 1991.

[25] V. Th. Paschos. Complexité et approximation polynomiale. Hermès, Paris, 2004.

[26] A. Paz and S. Moran. Non deterministic polynomial optimization problems and their ap-
proximations. Theoret. Comput. Sci., 15:251–277, 1981.

[27] H. U. Simon. Continuous reductions among combinatorial optimization problems. Acta
Informatica, 26:771–785, 1989.

[28] H. U. Simon. On approximate solutions for combinatorial optimization problems. SIAM
J. Disc. Math., 3(2):294–310, 1990.

[29] L. Trevisan, G. B. Sorkin, M. Sudan, and D. P. Williamson. Gadgets, approximation, and
linear programming. SIAM J. Comput., 29(6):2074–2097, 2000.

19

