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Abstract

In this paper, we survey the fundamentals of the differential approximation theory, as

well as some operational and structural results.

1 Introduction

In this chapter, we use the notations introduced in chapter R-7. Also, given an approximation
algorithm A for an NPO problem Π, we denote by mA(x, y), the value of the solution y computed
by A on instance x of Π. When clear from the context, reference to A will be omitted.

Very frequently, the commonly used approximation measure (called standard approximation
ratio in what follows) may not be very meaningful, in particular if the ratio of m(x, yw), the
worst solution’s value for x, to opt(x) is already bounded (above, if goal(Π) = min, below,
otherwise). Consider, for instance, the seminal maximal matching algorithm for min vertex

cover (the definitions of the most of the problems dealt in this chapter can be found in [4, 35];
also, for graph-theoretic notions, the interested reader can be referred to [13]), that achieves
approximation ratio 2 for this problem. There, given a graph G(V,E), a maximal1 matching M
of G is computed and the endpoints of the edges in M are added in the solution for min vertex

cover. IfM is perfect (almost any graph, even relatively sparse, admits a perfect matching [14]),
then the whole of V has been included in the cover built, while an optimal cover contains at
least a half of V . So, the absolutely worst solution (that one could compute without using any
algorithm) achieves in most cases approximation ratio 2.

The remark above is just one drawback of the standard approximation ratio. Several other
drawbacks have been also observed, for instance, the artificial dissymmetry between “equivalent”
minimization and maximization problems (for example, max cut and min clustering, see [55])
introduced by the standard approximation ratio. The most blatant case of such dissymmetry
is the one appearing when dealing with the approximation of min vertex cover and max

independent set (given a graph, a vertex cover is the complement of an independent set with
respect to the vertex set of the graph). In other words, using linear programming vocabulary, the
objective function of the former is an affine transformation of the objective function of the latter.

∗Preliminary version of Chapter 13 to appear in T. Gongalez (ed.), Approximation algorithms and metaheuris-

tics, Taylor and Francis.
1With respect to the inclusion.
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This equivalence under such simple affine transformation is not reflected to the approximability
of these problems: the former is approximable within constant ratio, in other words it is in APX

(see [4, 53] for definition of the approximability classes dealing with the standard paradigm; the
ones of the differential paradigm are defined analogously), while the latter is inapproximable
within ratio Ω(nǫ−1), for any ǫ > 0 (see [41]). In other words, the standard approximation ratio
is unstable under affine transformations of the objective function.

In order to remedy to these phenomena, several researchers have tried to adopt alterna-
tive approximation measures not suffering from these inconsistencies. One of them is the ratio
δ(x, y) = (ω(x) − m(x, y))/(ω(x) − opt(x)), called differential ratio in the sequel, where ω(x)
is the value of a worst solution for x, called worst value. It will be formally dealt in the next
sections. It has been used rather punctually and without following a rigorous axiomatic approach
until the paper [29] where such an approach is introduced. To our knowledge, differential ratio
is introduced in [5] in 1977, and [6, 1, 60] are, to our knowledge, the most notable cases in which
this approach has been applied. It is worth noting that in [60], a weak axiomatic approach is
also presented.

Finally, let us note that several other authors that have also recognized the methodological
problems implied by the standard ratio, have proposed other alternative ratios. It is interesting
to remark that the main such ratios are very close, although with some small or less small
differences, to the differential ratio. For instance, in [17], for studying max tsp, it is proposed
the ratio d(x, y, zr) = |opt(x)−m(x, y)|/|opt(x)− zr|, where zr is a positive value computable in
polynomial time, called reference-value. It is smaller than the value of any feasible solution of x,
hence smaller than ω(x) (for a maximization problem a worst solution is the one of the smallest
feasible value). The quantities |opt(x) − m(x, y)| and |opt(x) − zr| are called deviation, and
absolute deviation, respectively. The approximation ratio d(x, y, zr) depends on both x and zr,
in other words, there exist a multitude of such ratios for an instance x of an NPO problem,
one for any possible value of zr. Consider a maximization problem Π and an instance x of Π.
Then, d(x, y, zr) is increasing with zr, so, d(x, y, zr) 6 d(x, y, ω(x)). In fact, in this case, for any
reference value zr: r(x, y) > 1 − d(x, y, zr) > 1 − d(x, y, ω(x)) = δ(x, y), where r denotes the
standard-approximation ratio for Π. When ω(x) is computable in polynomial time, d(x, y, ω(x))
is the smallest (tightest) over all the d-ratios for x. In any case, if for a given problem, one sets
zr = ω(x), then d(x, y, ω(x)) = 1 − δ(x, y) and both ratios have the natural interpretation of
estimating the relative position of the approximate solution-value in the interval worst solution-
value – optimal value.

2 Towards a new approximation paradigm

2.1 The differential approximation ratio

In [29], it is undertaken the task of adopting, in an axiomatic way, an approximation measure
founded on both intuitive and mathematical links between optimization and approximation. It
is claimed there that a “consistent” ratio must be order preserving (i.e., the better the solution
the better the approximation ratio achieved) and stable under affine transformation of the objec-
tive function. Furthermore, it is proved that no ratio function of two parameters – for example,
m, opt – can fit this latter requirement. Hence it is proposed what will be called differential ap-
proximation ratio2 in what follows. Problems related by affine transformations of their objective
functions are called affine equivalent.

Consider an instance x of an NPO problem Π and a polynomial time approximation algo-
rithm A for Π, the differential approximation ratio δA(x, y) of a solution y computed by A in x is

2This notation is suggested in [29]; another notation drawing the same measure is z-approximation suggested
in [39].
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defined by:

δA(x, y) =
(ω(x) −mA(x, y))

(ω(x) − opt(x))

where ω(x) is the value of a worst solution for x, called worst value. Note that for any goal,
δA(x, y) ∈ [0, 1] and, moreover, the closer δA(x, y) to 1, the closermA(x, y) to opt(x). By definition,
when ω(x) = opt(x), i.e., all the solutions of x have the same value, then the approximation ratio
is 1. Notice that, mA(x, y)) = δA(x, y)opt(x) + (1− δA(x, y))ω(x). So, differential approximation
ratio measures how an approximate solution is placed in the interval between ω(x) and opt(x).

We note that the concept of the worst solution has a status similar to the one of the op-
timal solution. It depends on the problem itself and is defined in a non-constructive way, i.e.,
independently of any algorithm that could build it. The following definition for worst solution
is proposed in [29].

Definition 1. Given an NPO problem Π = (I,Sol,m, goal), a worst solution of an instance x
of Π is defined as an optimal solution of a new problem Π̄ = (I,Sol,m, goal), i.e., of a NPO

problem having the same sets of instances and of instances and of feasible solutions and the same
value-function as Π but its goal is the inverse of the one of Π, i.e., goal = min if goal = max and
vice-versa.

Example 1. The worst solution for an instance of min vertex cover or of min coloring

is the whole vertex-set of the input-graph, while for an instance of max independent set the
worst solution is the empty set. On the other hand, if one deals with an max independent

set with the additional constraint that a feasible solution has to be maximal with respect to
inclusion, the worst solution of an instance of this variant is a minimum maximal independent
set, i.e., an optimal solution of a very well-known combinatorial problem, the min independent

dominating set. Also, the worst solution for min tsp is a “heaviest” Hamiltonian cycle of the
input-graph, i.e., an optimal solution of max tsp, while for max tsp the worst solution is the
optimal solution of a min tsp. The same holds for the pair max sat, min sat.

From Example 1, one can see that, although for some problems a worst solution corresponds to
some trivial input-parameter and can be computed in polynomial time (this is, for instance, the
case of min vertex cover, max independent set, min coloring, etc.), there exist a lot of
problems for which, determining a worst solution is as hard as determining an optimal one (as
for min independent dominating set, min tsp, max tsp, min sat, max sat, etc.).

Remark 1. Consider the pair of affine equivalent problems min vertex cover, max in-

dependent set and an input-graph G(V,E) of order n. Denote by τ(G) the cardinality of a
minimum vertex cover of G and by α(G), the stability number of G. Obviously, τ(G) = n−α(G).
Based upon what has been discussed above, the differential ratio of some vertex cover C of G
is δ(G,C) = (n − |C|)/(n − τ(G)). Since the set S = V \ C is an independent set of G, its
differential ratio is δ(G,S) = (|S| − 0)/(α(G) − 0) = (n− |C|)/(n− τ(G)) = δ(G,C).

As we have already mentioned, the differential ratio, although without systematic use or ax-
iomatic approach, has been used at several times by many authors, before and after [29]. They
use it in several contexts going from mathematical (linear or non-linear) programming [12, 49, 58]
to pure combinatorial optimization [6, 7, 1, 39, 40], or they disguise differential approximation
of a problem to standard approximation of affine transformations of it. For instance, in order to
study differential approximation of bin packing, one can deal with standard approximation of
the problem of maximizing the number of unused bins; for min coloring, the affinely equivalent
problem is the one of maximizing the number of unused colors, for min set cover, this problem
is the one of maximizing the number of unused sets, etc.
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2.2 Asymptotic differential approximation ratio

In any approximation paradigm, the notion of asymptotic approximation (dealing, informally,
with a class of “interesting” instances) is pertinent. In the standard paradigm, the asymptotic
approximation ratio is defined on the hypothesis that the interesting (from an approximation
point of view) instances of the simple problems are the ones whose values of the optimal solutions
tend to ∞ (because, in the opposite case3, these problems, called simple ([54]), are polynomial).
In the differential approximation framework on the contrary, the size (or the value) of the optimal
solution is not always a pertinent hardness criterion (see [31] for several examples about this
claim). Henceforth, in [31], another hardness criterion, the number σ(x) of the feasible values
of x, has been used to introduce the asymptotic differential approximation ratio. Under this
criterion, the asymptotic differential approximation ratio of an algorithm A is defined as

δ∞
A

(x, y) = lim
k→∞

inf
x

σ(x)>k

{

ω(x) −m(x, y)

ω(x) − opt(I)

}

(1)

Let us note that σ(x) is motivated by, and generalizes, the notion of the structure of the instance
introduced in [6]. We also notice that the condition σ(x) > k characterizing “the sequence of
unbounded instances” (or “limit instances”) cannot be polynomially verified4. But in practice,
for a given problem, it is possible to directly interpret condition σ(x) > k by means of the
parameters ω(x) and opt(x) (note that σ(x) is not a function of these values). For example, for
numerous cases of discrete problems, it is possible to determine, for any instance x, a step π(x)
defined as the least variation between two feasible values of x. For example, for bin packing,
π(x) = 1. Then,

σ(x) 6
(ω(x) − opt(x))

π(x)
+ 1

Therefore, from (1):

δ∞
A

(x, y) > lim
k→∞

inf
x

ω(x)−opt(x)
π(x)

>k−1

{

ω(x) −m(x, y)

ω(x) − opt(x)

}

Whenever π can be determined, condition (ω(x) − opt(x))/π(x) > k−1 can be easier to evaluate
than σ(x) > k, and in this case, the former condition is used (this is not senseless since we try
to bound below the ratio).

The adoption of σ(x) as hardness criterion can be motivated by considering a class of prob-
lems, called radial problems in [31], that includes many well-known combinatorial optimization
problems, as bin packing, max independent set, min vertex cover, min coloring, etc.
Informally, a problem Π is radial if, given an instance x of Π and a feasible solution y for x,
one can, in polynomial time, on the one hand, deteriorate y as much as one wants (up to finally
obtain a worst-value solution) and, on the other hand, greedily improve y in order to obtain
(always in polynomial time) a sub-optimal solution (eventually the optimal one).

Definition 2. A problem Π = (I,Sol,m, goal) is radial if there exist three polynomial algo-
rithms ξ, ψ and ϕ such that, for any x ∈ I:

1. ξ computes a feasible solution y(0) for x;

2. for any feasible solution y of x strictly better (in the sense of the value) than y(0), algo-
rithm ϕ computes a feasible solution ϕ(y) (if any) such that m(x, ϕ(y)) is strictly worse

3The case where optimal values are bounded by fixed constants.
4The same holds for the condition opt(x) > k induced by the hardness criterion in the standard paradigm.
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than m(x, y) (i.e., m(x, ϕ(y)) > m(x, y), if goal(Π) = min and m(x, ϕ(y)) < m(x, y),
if goal(Π) = max);

3. for any feasible solution y of x with value strictly better than m(x, y(0)), there exists k ∈ N

such that ϕk(y) = y(0) (where ϕk denotes the k-times iteration of ϕ);

4. for a solution y such that, either y = y(0), or y is any feasible solution of x with value
strictly better than m(x, y(0)), ψ(y) computes the set of ancestors of y, defined by:

ψ(y) = ϕ−1({y}) = {z : ϕ(z) = y}

(this set being eventually empty) .

Let us note that the class of radial problems includes in particular the well-known class of
hereditary problems for which any subset of a feasible solution remains feasible. In fact, for
an hereditary (maximization) problem, a feasible solutions y is a subset of the input-data, for
any instances x, y(0) = ∅ and for any other feasible solution y, ϕ(y) is just obtained from y
by removing a component of y. The hereditary notion deals with problems for which a feasible
solution is a subset of the input-data, while the radial notion allows problems for which solutions
are also second-order structures of the input-data.

Example 2. We show that bin packing is radial. Consider a list L of n rational numbers;
then,

• one can easily compute a solution B(0) for bin packing consisting of putting an item per
bin (so B(0) is a collection of n one-item bins); so, condition 1 is satisfied;

• given a feasible solutio B, one can deteriorate it by removing an item a from a bin of B
containing at least two items and by putting a in a new (unused) bin; so, condition 2 is
satisfied;

• one can continue this deterioration of B by repeatedly executing the above item until
solution B(0) is obtained; so, condition 3 is satisfied;

• we show finally that condition 4 of definition 2 is also satisfied; consider either solution B (0)

or any other feasible solution B

– one can obtain better solutions by iteratively trying to empty some bins of B(0) (or B),
i.e., by considering an single-item bin and by trying to place its item in another non-
empty bin of B(0) (or B);

– one can continue this procedure as far as it leads to smaller feasible bin packing-
solutions;

– moreover, if one guesses successfully the single items to be moved, then one could
obtain even an optimal bin packing-solution;

In all, bin packing satisfies all the items of Definition 2.

Proposition 1. ([31]) Let κ be a fixed constant and consider a radial problem Π such that, for
any instance x of Π of size n, σ(x) 6 κ. Then, Π is polynomial.
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3 Differential approximation results for some optimization problems

In general, no systematic way allows to link results obtained in standard and differential ap-
proximation paradigms when dealing with minimization problems. In other words, there is no
evident transfer of positive or inapproximability results from one framework to the other one.
Hence, a “good” differential approximation result does not signify anything for the behavior of
the approximation algorithm studied, or of the problem itself, when dealing with the standard
framework, and vice-versa. Things are somewhat different for maximization problems with pos-
itive solution-values. In fact, considering an instance x of a maximization problem Π and a
solution y ∈ Sol(x) that is a δ-differential approximation, we immediately get:

m(x, y) − ω(x)

opt(x) − ω(x)
> δ =⇒

m(x, y)

opt(x)
> δ + (1 − δ)

ω(x)

opt(x)

ω(x)>0
=⇒

m(x, y)

opt(x)
> δ

So, positive results are transferred from differential to standard approximation, while transfer of
inapproximability thresholds is done in the opposite direction.

Fact 1. Approximation of a maximization NPO problem Π within differential-approximation
ratio δ, implies its approximation within standard-approximation ratio δ.

Fact 1 has interesting applications. The most immediate of them deals with the case of max-
imization problems with worst-solution values 0. There, standard and approximation ratios
coincide. In this case, the differential paradigm inherits the inapproximability thresholds of the
standard one. For instance, the inapproximability of max independent set within nǫ−1, for
any ǫ > 0 ([41]), becomes a result shared from both of the paradigms.

Furthermore, since max independent set and min vertex cover are affine equivalent,
henceforth differentially equi-approximable, the negative result for max independent set is
shared, in the differential paradigm, by min vertex cover.

Corollary 1. Both max independent set and min vertex cover are inapproximable within
differential ratios nǫ−1, for any ǫ > 0, unless P = NP.

Notice that differential equi-approximability of max independent set and min vertex cover

makes that, in this framework the latter problem is not constant approximable but inherits also
the positive standard approximation results of the former one ([30, 28, 38]).

In what follows in this section, we mainly focus ourselves on three well-known NPO prob-
lems: min coloring, bin packing, tsp in both minimization and maximization variants, ant
min multiprocessor scheduling. As we will see, approximabilities of min coloring and
min tsp are radically different from the standard paradigm (where these problems are very hard)
to the differential one (where they become fairly well-approximable). For the two first of them,
differential approximability will be introduced by means of more general problem that encom-
passes both min coloring and bin packing, namely, the min hereditary covering. min

hereditary covering@min hereditary covering

3.1 min hereditary cover

Let π be a non-trivial hereditary property5 on sets and C a ground set. A π-covering of C is a
collection S = {S1, S2, Sq} of subsets of C (i.e. a subset of 2C), any of them verifying π and such
that ∪q

i=1Si = C. Then, min hereditary cover consists, given a property π, a ground set C
and a family S including any subset of C verifying π, of determining a π-covering of minimum

5A property is hereditary if whenever is true for some set, it is true for any of its subsets; it is non-trivial if it
is true for infinitely many sets and false for infinitely many sets also.
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size. Observe that, by definition of the instances of min hereditary cover singletons of the
ground sets are included in any of them and are always sufficient to cover C. Henceforth, for
any instance x of the problem, ω(x) = |C|.

It is easy to see that, given a π-covering, one can yield a π-partition (i.e., a collection S where
for any Si, Sj ∈ S, Si ∩ Sj = ∅) of the same size, by greedily removing duplications of elements
of C. Henceforth, min hereditary cover or min hereditary partition are, in fact, the
same problem. min hereditary cover has been introduced in [44] and revisited in [39] under
the name min cover by independent sets. Moreover, in the former paper, using a clever
adaptation of the local improvement methods of [37], a differential ratio 3/4 for min hereditary

cover has been proposed. Based upon [32], this ratio has been carried to 289/360 by [39].
A lot of well-known NPO problems are instantiations of min hereditary cover. For

instance, min coloring becomes an min hereditary cover-problem, considering as ground
set the vertices of the input-graph and as set-system, the set of the independent sets6 of this
graph. The same holds for the partition of the covering of a graph by subgraphs that are planar,
or by degree-bounded subgraphs, etc. Furthermore, if any element of C is associated with a
weight and a subset Si of C is in S if the total weight of its members is at most 1, then one
recovers bin packing.

In fact, an instance of min hereditary cover can be seen as a virtual instance of min set

cover, even if there is no always need to explicit it. Furthermore, the following general result
links min k-set cover (the restriction of min set cover to subsets of cardinality at most k)
and min hereditary cover (see [52] for its proof in the case of min coloring; it can be
immediately seen that its extension to the general min hereditary cover is immediate).

Theorem 1. If min k-set cover is approximable in polynomial time within differential ap-
proximation ratio δ, then min hereditary cover is approximable in polynomial time within
differential-approximation ratio min{δ, k/(k + 1)}.

3.1.1 min coloring

min coloring has been systematically studied in the differential paradigm. Sub-sequent pa-
pers ([23, 24, 40, 36, 37, 57, 32]) have improved its differential approximation ratio from 1/2
to 289/360. This problem is also a typical example of a problem that behaves in completely
different ways when dealing with the standard or the differential paradigms. Indeed, dealing
with the former one, min coloring is inapproximable within ratio n1−ǫ, for any ǫ > 0, unless
problems in NP can be solved by slightly super-polynomial deterministic algorithms (see [4]).

As we have seen just previously, given a graph G(V,E), min coloring can be seen as a min

hereditary cover-problem considering C = V and taking for S the set of the independent
sets of G. According to Theorem 1 and to [32], where min 6-set cover is proved approximable
within differential ratio 289/360, one can derive that also is approximable within differential
ratio 289/360. Notice that any result for min coloring holds also for the minimum vertex-
partition (or covering) into cliques problem since an independent set in some graph G becomes
a clique in the complement Ḡ of G (in other words this problem is also an instantiation of min

hereditary cover). Furthermore, in [23, 24], a differential ratio preserving reduction is devised
between minimum vertex-partition into cliques and minimum edge-partition (or covering) into
cliques. So, as in the standard paradigm, all these three problems have identical differential
approximation behavior.

Finally, it is proved in [9] that min coloring is DAPX-complete (see also Section 4.3.1);
consequently, unless P = NP, it cannot be solved by polynomial time differential-approximation

6It is well-known that the independence property is hereditary.
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schemata. This derives immediately that neither min hereditary cover belongs to DPTAS,
unless P = NP.

3.1.2 bin packing

We now deal with another very well-known NPO problem, the bin packing. According to
what has been discussed just above, bin packing being a particular case of min hereditary

cover, it is approximable within differential ratio 289/360. In what follows in this section,
we refine this result by first presenting an approximation preserving reduction transforming
any standard approximation ratio ρ into differential approximation ratio δ = 2 − ρ. Then,
based upon this reduction we show that bin packing can be solved by a polynomial time
differential approximation schema; in other words, bin packing ∈ DPTAS. This result draws
another, although less dramatical than the one in Section 3.1.1, difference between standard and
differential approximation. In the former paradigm, bin packing is solved by an asymptotical
polynomial time approximation schema, more precisely within standard-approximations ratio
1 + ǫ + (1/opt(L)), for any ǫ > 0 ([34]), but it is NP-hard to approximate it by a “real”
polynomial time approximation schema ([35]).

Consider a list L = {x1, . . . , xn}, instance of bin packing, assume, without loss of generality,
that items in L are rational numbers ranged in decreasing order and fix an optimal solution B∗

of L. Observe that ω(L) = n. For the purposes of this section, a bin i will be denoted either
by bi, or by explicit listing of the numbers placed in it; finally, any solution will be alternatively
represented as union of its bins.

Lemma 1. ([25]) Let k∗ be the number of bins in B∗ that contain a single item. Then, there
exists an optimal solution B̄∗ = {x1} ∪ . . . ∪ {xk∗} ∪ B̄∗

2 for L, where any bin in B̄∗

2contains at
least two items. Furthermore, for any optimal solution B̂ = {bj : j = 1, . . . , opt(L)} and for
any set J ⊂ {1, . . . , opt(L)}, the solution Bj = {bj ∈ B : j ∈ J} is optimal for the sub-list
Lj = ∪j∈Jbj.

Theorem 2. From any algorithm achieving standard approximation ratio ρ for bin packing,
can be derived an algorithm achieving differential approximation ratio δ = 2 − ρ.

Sketch of proof. Consider Algorithm SA achieving standard approximation ratio ρ for bin

packing, denote by SA(L) the solution computed by it, when running on an instance L (recall
that L is assumed ranged in decreasing order), and run the following algorithm, denoted by DA

in the sequel, which uses SA as sub-procedure:

1. for k = 1 to n set: Lk = {xk+1, . . . , xn}, Bk = {x1} ∪ . . . ∪ {xk} ∪ SA(Lk);

2. output B = argmin{|Bk| : k = 0, . . . , n− 1}.

Let B̄∗ be the optimal solution claimed by Lemma 1. Then, B̄∗

2 is an optimal solution for the
sub-list Lk∗ . Observe that Algorithm SA called by DA has also been executed on Lk∗ and denote
by Bk∗ the solution so computed by DA. The solution returned in Step 2 verifies |B| 6 |Bk∗ |.
Finally, since any bin in B̄∗

2 contains at least two items, |Lk∗ | = n− k∗ > 2opt(Lk∗). Putting all
this together, we get:

δDA(L,B) =
n− |B|

n− opt(L)
>

|Lk∗ | − |Bk∗ |

|Lk∗ | − opt (Lk∗)
> 2 − ρ

q.e.d.
In what follows, denote by EXHAUSTIVE an exhaustive-search algorithm for bin packing,

by SA any polynomial algorithm approximately solving bin packing within (fixed) constant
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standard-approximation ratio ρSA > 1, by ASCHEMA(ǫ) the asymptotic polynomial time standard-
approximation schema of [34], parameterized by ǫ > 0, and consider the following algorithm,
denoted by EBP(L,η), parameterized by η ∈ {0, . . . , n} (L is always assumed ranged in decreasing
order):

1. for k = n− η + 1, . . . , n build list Lk−1 where Lk−1 is as in Step 1 of Algorithm DA;

2. for any list Li computed in Step 1 above, set Bi = {{x} : x ∈ L \ Li} ∪ EXHAUSTIVE(Li);

3. return B the smallest of the solutions computed in Step 2.

Algorithm EBP(L,η) obviously computes a feasible bin packing-solution for L in polynomial
time whenever η is a fixed constant.

Lemma 2. ([25]) Assume a list L such that |Lk∗+1| 6 η. Then, algorithm EBP(L,η) exactly
solves bin packing in L in polynomial time when µ is a fixed constant.

Lemma 3. ([25]) Fix a polynomial time approximation algorithm SA for bin packing that
guarantees standard-approximation ratio ρSA, let ǫ be any fixed positive constant and L be an
instance of bin packing (ranged in decreasing order). Assume that L is such that |Lk∗+1| >

2(ρSA − 1 + ǫ)/ǫ2. Then, if opt(Lk∗+1) 6 ǫ|Lk∗+1|/(ρSA − 1 + ǫ), the approximation ratio of
algorithm DA, when calling SA as sub-procedure, is δ > 1− ǫ; on the other hand, if opt(Lk∗+1) >

ǫ|Lk∗+1|/(ρSA − 1 + ǫ), then the approximation ratio of algorithm DA, when calling ASCHEMA(ǫ/2)
as sub-procedure, is δ > 1 − ǫ.

Fix any polynomial algorithm A for bin packing with standard-approximation ratio ρ and
consider the following algorithm for bin packing, denoted by DSCHEMA:

1. fix a constant ǫ > 0 and set η = ⌊2(ρ− 1 + ǫ)/ǫ2⌋;

2. run EBP and DA both with A and ASCHEMA(ǫ/2), respectively as sub-procedures on L;

3. output the best among the three solutions computed in Step 2.

Theorem 3. ([25]) Algorithm DSCHEMA is a polynomial time differential-approximation schema
for bin packing. So, bin packing ∈ DPTAS.

Sketch of proof. Since ρ and ǫ do not depend on n, neither does η, computed at Step 1.
Consequently, by Lemma 2, execution of EBP at Step 2 can be performed in polynomial time
and, if |Lk∗+1| 6 η, it provides some optimal solution for L. On the other hand, if |Lk∗+1| >

2(ρ − 1 + ǫ)/ǫ2, Algorithm PTDAS achieves, by Lemma 3, differential-approximation ratio 1 − ǫ
for any possible value of opt(Lk∗+1).

Let us note that, as we will see in Section 4.4, bin packing is DPTAS-complete; conse-
quently, unless P = NP it is inapproximable by fully polynomial time differential-approximation
schemata. Inapproximability of bin packing by such schemata has independently been shown
also in [30].

3.2 Travelling salesman problems

min tsp is one of the most paradigmatic problems in combinatorial optimization and one of the
hardest one to approximate. Indeed, unless P = NP, no polynomial algorithm can guarantee,
on an edge-weighted complete graph of size n when no restriction is imposed to the edge-weights,
standard-approximation ratio O(2p(n)), for any polynomial p. As we will see in this section things
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is completely different when dealing with differential approximation where min tsp ∈ APX.
This result draws another notorious difference between the two paradigms.

Consider an edge-weighted complete graph of order n, denoted by Kn and observe that
the worst min tsp-solution in Kn is an optimal solution for max tsp. Consider the following
algorithm (originally proposed by [45] for max tsp) based upon a careful patching of the cycles
of a minimum-weight 2-matching7 of Kn:

• compute a M = (C1, C2, . . . , Ck); denote by {vj
i : j = 1, . . . , k, i = 1, . . . , |Cj |}, the vertex-

set of Cj ; if k = 1, return M ;

• for any Cj , pick arbitrarily four consecutive vertices vj
i , i = 1, . . . , 4; if |Cj | = 3, vj

4 = vj
1;

for Ck (the last cycle of M), pick also another vertex, denoted by u that is the other
neighbor of vk

1 in Ck (hence, if |Ck| = 3, then u = vk
3 while if |Ck| = 4, then u = vk

4 );

• if k is even (resp., odd), then set:

– R1 = ∪k−1
j=1{(v

j
2, v

j
3)} ∪ {(vk

1 , v
k
2 )}

A1 = {(vk
1 , v

1
3), (v

1
2, v

2
2)} ∪

(k−2)/2
j=1 {(v2j

3 , v
2j+1
3 ), (v2j+1

2 , v2j+2
2 )}

(resp., R1 = ∪k
j=1{(v

j
2, v

j
3)}, A1 = {(vk

2 , v
1
3)} ∪

(k−1)/2
j=1 {(v2j−1

2 , v2j
2 ), (v2j

3 , v
2j+1
3 )})

T1 = (M \R1) ∪A1;

– R2 = ∪k−1
j=1{(v

j
1, v

j
2)} ∪ {(u, vk

1 )}

A2 = {(u, v1
2), (v

1
1, v

2
1)} ∪

(k−2)/2
j=1 {(v2j

2 , v
2j+1
2 ), (v2j+1

1 , v2j+2
1 )}

(resp., R2 = ∪k
j=1{(v

j
1, v

j
2)}, A2 = {(vk

1 , v
1
2)} ∪

(k−1)/2
j=1 {(v2j−1

1 , v2j
1 ), (v2j

2 , v
2j+1
2 )})

T2 = (M \R2) ∪A2;

– R3 = ∪k−1
j=1{(v

j
3, v

j
4)} ∪ {(vk

2 , v
k
3 )}

A3 = {(vk
2 , v

1
4), (v

1
3, v

2
3)} ∪

(k−2)/2
j=1 {(v2j

4 , v
2j+1
4 ), (v2j+1

3 , v2j+2
3 )}

(resp., R3 = ∪k
j=1{(v

j
3, v

j
4)}, A3 = {(vk

3 , v
1
4)} ∪

(k−1)/2
j=1 {(v2j−1

3 , v2j
3 ), (v2j

4 , v
2j+1
4 )})

T3 = (M \R3) ∪A3;

• output T the best among T1, T2 and T3.

As it is proved in [45], the set (M \ ∪3
i+1Ri) ∪

3
i+1 Ai is a feasible solution for min tsp, the value

of which is a lower bound for ω(Kn); furthermore:

m (Kn, T ) 6

3
∑

i=1
m (Kn, Ti)

3

Then, a smart analysis, leads to the following theorem (the same result has been obtained, by a
different algorithm working also for negative edge-weights, in [39]).

Theorem 4. ([45]) min tsp is differentially 2/3-approximable.

Notice that min tsp, max tsp, min metric tsp and max metric tsp are all affine equivalent
(see [47] for the proof; for the two former of them, just replace weight d(i, j) of edge (vi, vj)
by M − d(i, j), where M is some number greater than the maximum edge weight). Hence, the
following theorem holds.

7A minimum total weight partial subgraph of Kn any vertex of which has degree at most 2; this computation
is polynomial, see, for example [16]; in other words a 2-matching is a collection of paths and cycles, but when
dealing with complete graphs a 2-matching can be considered as a collection of cycles.
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Theorem 5. min tsp, max tsp, min metric tsp and max metric tsp are differentially
2/3-approximable.

A very famous restrictive version of min metric tsp is the min tsp12, where edge-weights are
all either 1, or 2. In [46], it is proved that this version (as well as, obviously, max tsp12) is
approximable within differential ratio 3/4.

3.3 min multiprocessor scheduling

We now deal with a classical scheduling problem, the min multiprocessor scheduling ([42]),
where we are given n tasks t1, . . . , tn with (execution) time lengths l(tj), j = 1, . . . , n, polynomial
with n, that have to be executed on m processors, and the objective is to partition these tasks on
the processors in such a way that the occupancy of the busiest processor is minimized. Observe
that the worst solution is the one where all the task are executed in the same processor; so,
given an instance x of min multiprocessor scheduling, ω(x) =

∑n
j=1 l(tj). A solution y of

this problem will be represented as a vector in {0, 1}mn, the non-zero components yi
j of which

correspond to the assignment of task j to processor i.
Consider a simple local search algorithms that starts from some solution and improves it

upon any change of the assignment of a single task from one processor to another one. Then the
following result can be obtained ([48]).

Theorem 6 . min multiprocessor scheduling is approximable within differential ratio
m/(m+ 1).

Sketch of proof. Assume that both tasks and processors are ranged with decreasing lengths
and occupancies, respectively. Denote by l(pi), the total occupancy of processor pi, i = 1, . . . ,m.
Then:

opt(x) > l (t1)

l (p1) =
n

∑

j=1

y1
j l (tj) = max

i=1,...,m







l (pi) =
n

∑

j=1

yi
jl (tj)







Denote, w.l.o.g., by 1, . . . , q, the indices of the tasks assigned to p1. Since y is a local optimal,
it verifies, for i = 2, . . . ,m, j = 1, . . . q: l(tj) + l(pi) > l(p1). We can assume q > 2 (on
the contrary y is optimal). Then, adding the preceding expression for j = 1, . . . , q, we get:
l(pi) > l(p1)/2. Also, adding l(p1) with the preceding expression for l(pi), i = 2, . . . ,m, we
obtain: ω(x) > (m+ 1)l(p1)/2. Putting all this together we finally get:

m(x, y) = l (p1) 6
mopt(x)

m+ 1
+

ω(x)

m+ 1

q.e.d.

4 Structure in differential approximation classes

What has been discussed in the previous sections makes clear that the entire theory of approx-
imation, that tries to characterize and to classify problems with respect to their approximabil-
ity hardness, can be redone in the differential paradigm. There exist problems having several
differential-approximability levels and inapproximability bounds. What follows further confirms
this claim. It will be shown that the approximation paradigm we deal with, allows to devise
its proper tools and to use them in order to design an entire structure for the approximability
classes involved.
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4.1 Differential NPO-completeness

Obviously, the strict reduction of [50] (see also [3]), can be identically defined in the framework
of the differential approximation; for clarity, we denote this derivation of the strict reduction by
D-reduction. Two NPO problems will be called D-equivalent if there exist D-reductions from
any of them to the other one.

Theorem 3.1 in [50] (where the differential approximation ratio is mentioned as possible way
of estimating the performance of an algorithm), based upon an extension of Cook’s proof ([15])
of SAT NP-completeness to optimization problems, works also when the differential ratio is
dealt instead the standard one. Furthermore, solution triv, as defined in [50] is indeed a worst
solution for min wsat. On the other hand, the following proposition holds.

Proposition 2. ([3]) max wsat and min wsat are D-equivalent.

Sketch of proof. With any clause ℓ1∨ . . .∨ℓt of an instance ϕ of max wsat, we associate in the
instance ϕ′ of min wsat the clause ℓ̄1∨ . . .∨ ℓ̄t. Then, if an assignment y satisfies the instance ϕ,
the complement y′ of y satisfies ϕ′, and vice-versa. So, m(ϕ, y) =

∑n
i=1w(xi) − m(ϕ′, y′),

for any y′. Thus, δ(ϕ, y) = δ(ϕ′, y′). The reduction from min wsat to wsat is completely
analogous.

In a completely analogous way, as in Proposition 2, it can be proved that min 0-1 integer

programming and max 0-1 integer programming are also D-equivalent. Putting all the
above together the following holds

Theorem 7. max wsat, min wsat, min 0-1 integer programming and max 0-1 integer

programming are NPO-complete under D-reducibility.

4.2 The class 0-DAPX

Informally, class 0-DAPX is the class of NPO problems for which the differential ratio of any
polynomial algorithm is equal to 0. In other words, for any such algorithm, there exists an
instance on which it will compute its worst solution. Such situation draws the worst case for
the differential approximability of a problem. Class 0-DAPX is defined in [3] by means of a
reduction, called G-reduction. It can be seen as a particular kind of the GAP-reduction ([2, 4, 59]).

Definition 3. A problem Π is said to be G-reducible to a problem Π′, if there exists a polynomial
reduction that transforms any δ-differential approximation algorithm for Π′, δ > 0 into an optimal
(exact) algorithm for Π.

Let Π be an NP-complete decision problem and Π′ an NPO problem. The underlying idea for
Π 6G Π′ in definition 3 is, starting from an instance of Π, to construct instances for Π′ that have
only two distinct feasible values and to prove that any differential δ-approximation for Π′, δ > 0,
could distinguish between positive instances and negative instances for Π. Note finally that the
G-reduction generalizes both the D-reduction of Section 4.1 and the strict reduction of [50].

Definition 4. 0-DAPX is the class of NPO problems Π′ for which there exists an NP-complete
problem Π G-reducible to Π′. A problem is said to 0-DAPX-hard, if any problem in 0-DAPX

G-reduces to it.

An obvious consequence of Definition 4 is that 0-DAPX is the class of NPO problems Π for
which approximation within any differential approximation ratio δ > 0 would entail P = NP.

Proposition 3. ([11]) min independent dominating set ∈ 0-DAPX.

12



Sketch of proof. Given an instance ϕ of sat with n variables x1, . . . , xn and m clauses
C1, . . . , Cm, construct a graph G, instance of min independent dominating set associating
with any positive literal xi a vertex ui and with any negative literal x̄i a vertex vi. For i = 1, . . . , n,
draw edges (ui, vi). For any clause Cj , add in G a vertex wj and an edge between wj and any
vertex corresponding to a literal contained in Cj . Finally, add edges in G in order to obtain
a complete graph on w1, . . . , wm. An independent set of G contains at most n + 1 vertices.
An independent dominating set containing the vertices corresponding to true literals of a non
satisfiable assignment and one vertex corresponding to a clause not satisfied by this assignment,
is a worst solution of G of size n + 1. If ϕ is satisfiable then opt(G) = n. If ϕ is not satisfiable
then opt(G) = n + 1. So, any independent dominating set of G has cardinality either n, or
n+ 1.

By analogous reductions, restricted versions of optimum weighted satisfiability problems are
proved 0-DAPX in [53].

Finally, the following relationship between NPO and 0-DAPX holds.

Theorem 8. ([3]) Under D-reducibility, NPO-complete = 0-DAPX-complete ⊆ 0-DAPX.

If, instead D, a stronger reducibility is considered, for instance, by allowing f and/or g to be
multivalued in the strict reduction, then, under this type of reducibility, it can be proved that
NPO-complete = 0-DAPX ([3]).

4.3 DAPX- and Poly-DAPX-completeness

In this section we address the problem of completeness in the classes DAPX and Poly-DAPX.
For this purpose, we first introduce a differential approximation schemata preserving reducibility,
originally presented in [3], called DPTAS-reducibility.

Definition 5. Given two NPO problems Π and Π′, Π DPTAS-reduces to Π′ if there exist a
(possibly) multi-valued function f = (f1, f2, . . . , fh), where h is bounded by a polynomial in the
input-length, and two functions g and c, computable in polynomial time, such that:

• for any x ∈ IΠ, for any ǫ ∈ (0, 1) ∩ Q, f(x, ǫ) ⊆ IΠ′ ;

• for any x ∈ IΠ, for any ǫ ∈ (0, 1)∩Q, for any x′ ∈ f(x, ǫ), for any y ∈ solΠ′(x′), g(x, y, ǫ) ∈
solΠ(x);

• c : (0, 1) ∩ Q → (0, 1) ∩ Q;

• for any x ∈ IΠ, for any ǫ ∈ (0, 1) ∩ Q, for any y ∈ ∪h
i=1solΠ′(fi(x, ǫ)), ∃j 6 h such that

δΠ′(fj(x, ǫ), y) > 1 − c(ǫ) implies δΠ(x, g(x, y, ǫ)) > 1 − ǫ.

It can be easily shown that given two NPO problems Π and Π′, if Π 6DPTAS Π′ and Π′ ∈ DAPX,
then Π ∈ DAPX.

4.3.1 DAPX-completeness

If one restricts her/himself to problems with polynomially computable worst solutions, then
things are rather simple. Indeed, given such a problem Π ∈ DAPX, it is affine equivalent to
a problem Π′ defined on the same set of instances and with the same set of solutions but, for
any solution y of an instance x of Π, the measure for solution y with respect to Π′ is defined as
mΠ′(x, y) = mΠ(x, y)−ω(x). Affine equivalence of Π and Π′ ensures that Π′ ∈ DAPX; further-
more, ωΠ′(x) = 0. Since, for the latter problem, standard and differential approximation ratios
coincide, it follows that Π′ ∈ APX. max independent set is APX-complete under PTAS-
reducibility ([19]), a particular kind of the AP-reducibility [4, 18, 20]. So, Π′ PTAS-reduces to max
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independent set. Putting together affine equivalence between Π and Π′, PTAS-reducibility
between Π′ and max independent set, and taking into account that composition of these
two reductions is an instantiation of DPTAS-reduction, we conclude the DAPX-completeness of
max independent set.

However, things become much more complicated, if one takes into account problems with non-
polynomially computable worst solutions. In this case, one needs more sophisticated techniques
and arguments. We informally describe here the basic ideas and the proof-schema in [3]. It is
first shown that any DAPX problem Π is reducible to max wsat-B by a reduction transforming
a polynomial time approximations schema for max wsat-B into a polynomial time differential-
approximation schema for Π. For simplicity, denote this reduction by S-D. Next, a particular
APX-complete problem Π′ is considered, say max independent set-B. max wsat-B, that is
in APX, is PTAS-reducible to max independent set-B. max independent set-B is both
in APX and in DAPX and, moreover, standard and differential approximation ratios coincide
for it; this coincidence draws a trivial reduction called ID-reduction. It trivially transforms a
differential polynomial time approximation schema into a standard polynomial time approxima-
tion schema. The composition of the three reductions specified (i.e., the S-D-reduction from Π
to max wsat-B, the PTAS-reduction from max wsat-B to max independent set-B and the
ID-reduction) is a DPTAS-reduction transforming a polynomial time differential-approximation
schema for max independent set-B into a polynomial time differential-approximation schema
for Π, i.e., max independent set-B is DAPX-complete under DPTAS-reducibility.

Also, by standard reductions that turn out to be DPTAS-reductions also, the following can
be proved.

Theorem 9. ([3, 9]) max independent set-B, min vertex cover-B, for fixed B, max

k-set packing, min k-set cover, for fixed k, and min coloring are DAPX-complete under
DPTAS-reducibility.

4.3.2 Poly-DAPX-completeness

Let us notice first that, for reasons very cleverly explained in [43] for the standard paradigm, use
of restrictive reductions as the E-reducibility introduced there, where the functions f and g do not
depend on any parameter ǫ seems very unlikely to be able to handle Poly-APX-completeness.
For this reason, in [43], only Poly-APX-completeness for polynomially bounded problems is
handled. As it is shown in [9], in order to handle the whole Poly-APX-completeness, less
restrictive reducibilities are needed. The same observation can be done also for Poly-DAPX-
completeness and any translation of E-reducibility to the differential paradigm.

Fortunately, the scope of the DPTAS-reducibility is large enough to allow not only apprehen-
sion of DAPX-completeness but also of Poly-DAPX-completeness. Recall that a maximization
problem Π ∈ NPO is canonically hard for Poly-APX ([43]), if and only if there exist a polyno-
mially computable transformation T from 3sat to Π, two constants n0 and c and a function F ,
hard for Poly8, such that, given an instance x of 3sat on n > n0 variables and a number N > nc,
the instance x′ = T (x,N) belongs to IΠ and verifies the three following properties: (i) if x is
satisfiable, then opt(x′) = N ; (ii) if x is not satisfiable, then opt(x′) = N/F (N); (iii) given a
solution y ∈ solΠ(x′) such that m(x′, y) > N/F (N), one can polynomially determine a truth
assignment satisfying x.

Based upon DPTAS-reducibility and the notion of canonical hardness, the following is proved
in [9].

8The set of functions from N to N bounded by a polynomial ; a function f ∈ Poly is hard for Poly, if and
only if there exist three constants k, c and n0 such that, for any n > n0, f(n) 6 kF (nc).
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Theorem 10. If a (maximization) problem Π ∈ NPO is canonically hard for Poly-APX, then
any problem in Poly-DAPX DPTAS-reduces to Π.

As it is shown in [43], max independent set is canonically hard for Poly-APX. Further-
more, min vertex cover is affine equivalent to max independent set. Henceforth, use of
Theorem 10, immediately derives the following result.

Theorem 11. max independent set and min vertex cover are complete for Poly-DAPX

under DPTAS-reducibility.

Finally let us note that, as it is proved in [9], max independent set is Poly-APX-complete
under PTAS-reducibility.

4.4 DPTAS-completeness

Completeness in DPTAS is tackled by means of a kind of reducibility preserving membership
in DFPTAS, which is called DFT-reducibility in [9].

Definition 6. ([9]) Let Π and Π′ be two NPO problems. Let ©Π′

α be an oracle for Π′ producing,
for any α ∈ (0, 1] and for any instance x′ of Π′, a feasible solution ©Π′

α (x′) of x′ that is an (1−α)-
differential approximation. Then, Π DFT-reduces to Π′ if and only if, for any ǫ > 0, there exists
an algorithm Aǫ(x,©

Π′

α ) such that:

• for any instance x of Π, Aǫ returns a feasible solution which is a (1− ǫ)-differential approx-
imation;

• if ©Π′

α (x′) runs in time polynomial with both |x′| and 1/α, then Aǫ is polynomial with
both |x| and 1/ǫ.

DPTAS-reduction under DFT-reducibility can be easily derived by two intermediate lemmata.
The first one introduces some property of the seminal Turing-reducibility (see [4] for formal
definition).

Lemma 4. ([9]) If an NPO problem Π′ is NP-hard, then any NPO problem Turing-reduces
to Π′.

Before stating the second lemma, we need to introduce the class of diameter polynomially
bounded problems that is a subclass of the radial problems seen in Section 2.2. An NPO prob-
lem Π is diameter polynomially bounded if and only if, for any x ∈ IΠ, |opt(x) − ω(x)| 6 q(|x|).
The class of diameter polynomially bounded NPO problems will be denoted by NPO-DPB.

The second lemma claims that, under certain conditions, a Turing-reduction (that only pre-
serves optimality) can be transformed into an DFT-reduction. Informally, starting from a Turing-
reduction between two NPO problems Π and Π′, where Π′ is polynomially bounded, one can
devise a DFT-reduction transforming a fully polynomial time differential-approximation schema
for Π′ into a fully polynomial time differential-approximation schema for Π.

Lemma 5. ([9]) Let Π′ ∈ NPO-DPB. Then, any NPO problem Turing-reducible to Π′ is also
DFT-reducible to Π′.

Combination of Lemmata 4 and 5 immediately derives the following theorem.

Theorem 12. ([9]) Let Π′ be an NP-hard problem NPO-DPB. Then, any problem in NPO

is DFT-reducible to Π′.
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Theorem 12 immediately implies that, on the one hand, the closure of DPTAS under DFT-
reducibility is the whole NPO and, on the other hand that any NP-hard problem in NPO-DPB∩
DPTAS is DPTAS-complete under DFT-reducibility.

Consider now min planar vertex cover, max planar independent set and bin pack-

ing. They are all NP-hard and in NPO-DPB. Furthermore, they are all in DPTAS (for the
first two problems, this is derived by the inclusion of max planar independent set in PTAS

proved in [8]; for the third one, revisit Section 3.1.2). So, the following theorem holds and
concludes this section.

Theorem 13. ([9]) max planar independent set, min planar vertex cover and bin

packing are DPTAS-complete under DFT-reducibility.

Finally, dealing with the scope of DFT-reducibility, it is proved in [9] that if there exist NPO-
intermediate problems under Turing-reducibility, then there exit problems that are DPTAS-
intermediate, under DFT-reducibility.

5 Discussion and final remarks

As we have already claimed in the beginning of Section 4, the entire theory of approximation can
be reformulated in the differential paradigm. This paradigm has the diversity of the standard
one, it has a non-empty scientific content and, to our opinion, it represents in some sense a kind
of revival for the domain of the polynomial approximation.

Since the work in [29], a great number of paradigmatic combinatorial optimization problems
has been studied in the framework of the differential approximation. For instance, knapsack

has been sudied in [29] and revisited in [39]. max cut, min cluster, stacker crane, min

dominating set, min disjoint cycle cover, max acyclic subgraph, min feedback

arc set have been dealt in [39]. min vertex cover and max independent set are studied
in [29] and in [39]. min coloring is dealt in [23, 24, 40, 36, 37, 32, 9], while min weighted

coloring (where the input is a vertex-weighted graph and the weight of a color is the weight
of the heaviest of its vertices) is studied in [22] (see also [21]). min independent dominating

set is dealt in [11]. bin packing is studied in [24, 31, 25, 26]. min set cover, under several
assumptions on its worst value, is dealt in [29, 39, 10], while min weighted set cover is dealt
in [24, 10]. min tsp and max tsp, as well as, several famous variants of them, min metric

tsp, max metric tsp, min tspab (the most famous restrictive case of this problem is min

tsp12), max tspab are studied in [45, 47, 46, 39, 56]. steiner tree problems under several
assumptions on the form of the input-graph and on the edge-weights are dealt in [27]. Finally,
several optimum satisfiability and constraint satisfaction problems (as max sat, max e2sat,
max 3sat, max e3sat, max eksat, min sat, min ksat, min eksat, min 2sat and their
corresponding constraint satisfaction versions) are studied in [33].

Dealing with structural aspects of approximation, besides the existing approximability classes
(defined rather upon combinatorial arguments) two logical classes have been very notorious
in the standard paradigm. These are Max-NP and Max-SNP, originally introduced in [51]
(see also [4, 53]). Their definitions, independent from any approximation ratio consideration,
make that they can identically be considered also in differential approximation. In the standard
paradigm, the following strict inclusions hold: PTAS ⊂ Max-SNP ⊂ APX and MAX-NP ⊂
APX. As it is proved in [33], max sat /∈ DAPX, unless P = NP. This, draws an important
structural difference in the landscape of approximation classes in the two paradigms, since an
immediate corollary of this result is that MAX-NP 6⊂ DAPX. Position of Max-SNP in
the differential landscape is not known yet. It is conjectured, however, that MAX-SNP 6⊂
DAPX. In any case, formal relationships of Max-SNP and Max-NP with the other differential
approximability classes deserve further study.
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