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Abstract. A particular data format for interchange,  specifically designed for
Quantum Chemistry programs, was proposed within a COST activity. The new
features  of  the  recent  version  1.0  are  presented,  together  with  the  Q5Cost
library that allows to use the data format within a user program. The problem of
a general description of the wave function is presented as well as the adopted
strategy  for  including  it  into  the  data  format.  Several  utilities  have  been
delivered for the use of the developers and the users of the library, as well as
various converters for well known Quantum Chemistry codes.

Introduction

The present article describes the design, setup and upgrading of a data format and a
FORTRAN library, Q5Cost, for the management of data produced by a generic  ab-
initio Quantum Chemistry (QC) code. The data structure has been defined with the
aim  of  making  code  interoperability  easier  in  the  scientific  area  of  Quantum
Chemistry. This activity has been carried out within the COST network, supporting
cooperation among researchers in Europe: the former D23 “Metachem” action, now
concluded, and the D37 “GridChem” action, started in July 2006 [1].

The first problem to be faced when integrating different QC codes in a common
workflow is the lack of a standard and the different data formats adopted by each
code.  Our  suggestion  was  to  adopt  such  a  standard,  specifically  designed  for
interchange, and to connect each code in the set through a converter. Of course not to
invent  “yet  another  format”,  we strongly tried  to  design  a  format  as  general  and



 

flexible as possible and to coordinate ourselves with other similar initiatives in the
quantum chemistry context.

The first idea was to adopt two different technologies for describing large binary
data  and  small  coded information.  HDF5 (Hierarchical  Data  Format)  [2]  was  the
technology  of  choice  for  the  first  type  of  data,  and  XML  (eXtensible  Markup
Language) [2] for the second one.

Nevertheless, during the project development, important considerations lead us to
the  decision  to  collect  all  the  data  structures  into  a  unique  data  format  and,  in
particular, to design a single user interface for managing all the data. A first definition
of the data model and a description of the library has been reported elsewhere [3,4].
In this paper we want to report the state of the art of the library, now at the version
1.0,  in  addition  to  a  critical  examination  of  the  improvements  and  modifications
carried on it.

The next section will discuss the improvements carried on in the data format, in
terms of “Geometry”, “Basis set” and “Wave function”. The same issues are then
considered in the following section from the user interface point of view. The strategy
adopted for storing the wave function is then discussed in detail, since this is a point
that  poses  difficult  problems  due  to  the  size  and  wide  variety  of  possible  wave
functions. A number of utilities have been set up to facilitate the use of the Q5Cost
library and are described in the next session. The utilities are addressed to the library
developers but also to the programmers that are using the library in their programs to
manage the files produced by a QC calculation. Wrappers are the last topic presented
in this paper; they are specific translation programs that use the Q5Cost library for
converting the proprietary data format into the Q5Cost data format and vice versa. 

The data format

The structure of the first versions of the Q5Cost data format has been fully described
elsewhere [3,4], as well as its connections with the inherent HDF5 structure [2]. Here
we just want to briefly recall the main features and present in details the modifications
introduced with the present version.

Q5Cost is a common interchange format for data coming from ab initio quantum
chemistry calculations. In this context ab initio refers to methods that are based on a
wave function rather than an electronic density. In particular, the Density Functional
Theory (DFT) methods at the moment are not supported by our format. This choice is
justified by the fact that the majority of the codes involved in this project are based on
Slater-Determinant expansions of the wave function. 

The q5Cost format is flexible and extensible, so we can design it in an incremental
way. The data format consists of a collection of chemical objects related within a
hierarchical structure in a logical containment relationship as reported in Figure 1.



 

Fig. 1. Schema of the Q5Cost data format

The green boxes are containers  (groups in HDF5 terminology),  and the orange
boxes are  data (data sets),  while the metadata  (attributes describing the data)  are
listed in the white labels. The light green boxes are the new entities included in the
1.0 version of the data format.

Originally the Q5Cost data format was designed to handle only the large binary
data  coming  from  Quantum Chemistry,  together  with  the  information  (metadata)
needed  for  describing  them.  The  data  structures  described  by  the  format  were
basically integrals, on the Atomic and Molecular orbitals, the accompanying metadata
entities like electrons number,  symmetry indices, nuclear energy, molecular orbital
labels,  but  also  coefficients  needed  to  define  symmetry  adapted  orbitals  or  to
transform the Atomic orbitals into Molecular orbitals.

Other small pieces of information, mainly ASCII coded in conventional QC data
formats, are needed to define a QC system. They can be classified into three classes:
Geometry,  Basis  set,  spatial  Symmetry  of  the  system under  investigation.  In  the
original version of the data format those data were represented using an XML based
language in a separated file [3]. Starting from this version, we decided to merge them
into the Q5Cost data format, in order to ensure a unique coherent structure grouping
all the specifications on the chemical system. This is a new feature of the format that
now includes the whole information about a molecular system.

Data represented into the Q5Cost format belong to two different categories:



 

1. Data:  the  large  binary  quantities  used  in  quantum  chemistry  for  representing
integrals, properties and wave functions. They can be stored using matrices with an
arbitrary  number of  indices  (rank-n arrays),  scale  aggressively  with the system
size,  and  are  normally  accessed  with  a  “chunked”  approach  (i.e.,  using  well-
defined blocks of data).

2. Metadata:  simple and small  pieces  of  data that  describes  and better  defines the
previous data. They represent well-known chemical entities like nuclear energy,
molecular  orbital  labels,  and molecular  symmetry and can be stored as scalars,
vectors or matrices. For example, the nuclear repulsion energy is a floating point
scalar,  molecular  orbitals  coefficients  are  an  (N,M)  floating  point  matrix,  the
associated orbital energies are a floating point vector, the molecular orbital labels
are a vector of strings, and so on. 

Among the “data” entities we can include two-electron integrals, or atomic orbital
overlap, but also other more application-specific objects, like the four particle density
matrix. In the modern approaches based on localized orbitals, these matrices are of
sparse  nature;  this  encourages  the  storage  of  only  nonzero  elements,  each  one
associated to n indices in the case of a rank-n array. This representation of the data,
although not particularly efficient in terms of space occupation, is well-known by the
interested parties, easy to debug, and already integrated in the current code-base both
for memory representation and file storage of data.

A great part of these data objects can be described by a “generic property” object,
provided that we define the matrix rank, the involved operator(s) and basis functions.
Nevertheless, since some of these “properties” are well-known chemical entities, and
chemists are used to referring to them by name, we provide a specific library access to
most of them (overlap, one-electron integrals, two-electron integrals...), in addition to
an  interface  to  the  “generic  property”  for  handling other  properties  not  explicitly
provided by the library. This should ensure both ease of use and general adaptability
of the library to either alternative or future theoretical developments.

All the chemical objects described in the Q5Cost data format are related within a
hierarchical structure, and logical containment relations can be defined for them. A
first (root) container, named System, represents the molecular system as defined by its
structural data (chemical composition and spatial geometry). All the general metadata,
that cannot be integrated into a specific domain, can be associated to this container. A
system can contain several “Domains”. The role of the Domain is to group together
entities whose indices conceptually refer to the same kind of functions. In the present
version three Domains have been defined: 
1. Atomic Orbital (AO): refers  to the data defined on the AO basis, overlap, one-

electron integrals, two-electron integrals and the generic property, i.e. any other
property  that  can  be  described  on  the  AO basis  (dipole  moment  integrals,  for
example). This domain contains also the definition of the Basis Set.

2. Molecular Orbital (MO): refers to the data defined on the MO basis,  one- and two-
electron  integrals  and  the  generic  property.  This  domain  contains  also  the
transformation matrix needed to define the MO on the AO basis.

3. Wave Function (WF): refers to the definition of the wave function. This will be
described if full details in the next section.



 

4.
One- and two-electron integrals and the generic property are present in both AO and
MO domain but they are different quantities. The first set is defined on the AO basis
and the second is obtained from the first one thought the transformation matrix, i.e.
the matrix containing the molecular orbitals coefficients.
In the data format are present, with respect to the previous version, two additional
groups of information about Geometry and Basis set.

Geometry is specified by giving the Cartesian coordinates, the atomic number and
label of each atom unique by symmetry. Only a single geometry can be stored, at
present, in a given Q5Cost file and this group is contained in the System container.
We are considering the possibility to store multiple geometries in a single file,  in
order to facilitate the treatment  of problems such as the study of potential energy
surfaces or direct dynamics.

The basis set information are specific of the AO domain, so in a given Q5Cost file
several AO definitions are possible.  The AO domain (like all the other domains) can
be splitted into several sub-domains, each for every different AO choice. The different
AO integrals can arise from different basis set or from different orbital types (Atomic
Orbitals vs. Symmetry Adapted Linear Combination of Atomic Orbitals)

.
Concerning the wave function, complex issues arise because no clear agreement is

reached  on  the  many  different  wave  functions  that  could  be  stored.  A  general
agreement has been found that the lowest level representation of a wave function is a
multi-reference  configuration  interaction,  where  each  determinant  is  described
together with a proper coefficient.  This allows a complete description of the wave
function, and should therefore be generally present among the stored information. We
do however realize the following points:
1. A multireference description lacks any additional information about the true nature

of the wave function (examples like HF, CAS, RAS, CAS+S etc..). Description of
higher level information is important to prevent loss. Q5Cost must provide access
to proper storing of diversified information to fully qualify the described entity.

2. A design assumption about the concept of Domain is that Properties living into a
given  Domain  have indexes  referring  to  a  particular  concept  belonging  to  that
Domain.  As  an  example,  the  molecular  orbitals  one-electron  integrals  refer  to
molecular orbitals, and they belong to the MO Domain.. 

The Library

The new interface for the user provides access for handling geometry and basis set
information. Furthermore, storage of the wave function is discussed.

The “Geom” routines allow the client to store and retrieve the molecular geometry.
The  geometry  is  considered  top  level  information  of  the  chemical  system  under
investigation, therefore is associated with the System. At present only one System,
and consequently only one geometry, per Q5Cost file is allowed. The restriction to a
single System per file will be possibly lifted in future releases of the library. This will



 

require,  however,  a  slightly  modified  programming  interface,  and  considerations
about  inter-System characteristics,  currently  outside  the  scope  of  our  efforts.  The
actual  data  handled  by  these  routines  are  the  Cartesian  coordinates,  the  atomic
numbers  and  the  labels  for  all  the  atoms,  unique  by  symmetry,  contained  in  the
system. The only metadata needed by these routines is the number of atoms. If in
future releases  other coordinate types are going to be supported in addition to the
Cartesian, specific metainformation will be added. 

Information about the Basis Set is associated to the AO domain, since multiple
basis sets can exist in a given Q5Cost file. Its presence is bound to the presence of a
Geometry description. The routines allow the user to store and retrieve the exponents
and  contraction  coefficients  of  each  contracted  function  defined  for  each  angular
momentum on each atom of the system. The actual  data handled by the basis set
routines are the exponents and the coefficients defining the contraction. The required
metadata include the type of angular functions, angular momentum, and the number
of  functions  for  each  contraction.  A  possible  link  to  the  EMSL data  bank [5]  is
advisable  in  the  future.  Basis  set  names  like  “6-31G*”  could  also  be  an  option,
however, these names do not represent a standard nor in terms of naming, neither in
terms  of  actual  contents  among  different  quantum  chemistry  programs.  As  a
consequence, the plain use of basis sets' simple name should be discouraged, because
it makes difficult to check for the consistency between two stored bases, and hence
preventing easy interoperability.

The routines for storing and retrieving the wave function are still a matter of debate
in the working group, as better described in the following section. A tentative set of
routines are available anyway for  a  Configuration Interaction  type Wave Function
(CI-WF), in terms of a linear combination of Slater determinants made of Molecular
orbitals. The data to be considered are the coefficients (real numbers) and the Slater
determinants that are part of the combination. The metadata needed depends on the
type of WF to be described and includes the energy and the core energy associated to
the WF, the Molecular orbitals to be used for the determinants and their classification.

The Wave function

The storage of the Wave Function (WF) is a particularly relevant point, and poses
different problems because of its size and the wide variety of possible WF’s. The
wave function  is  usually  a  very  large  object,  and  its  storage  often  represents  the
largest amounts of data needs in a quantum-chemistry calculation.  Several options
are possible, each one typically suited for a particular type of WF calculation.

Usually a WF is called of Configuration Interaction (CI) type if it is expressed as a
linear combination of Slater determinants (thereafter “determinants”). Therefore, a CI
WF is  expressed  in  terms  of  a  list  of  Slater  determinants  and  the  corresponding
coefficients of the linear expansion. We notice that this is, by no means, the only
possibility.  In  fact,  many  other  different  WFs  are  currently  used  in  Quantum
Chemistry, depending on the level of theory used to study the system. For instance:
Coupled Cluster (CC) Contracted CI (C-CI), Density-Matrix Renormalization Group



 

(DMRG), and many others. At the moment, we decided to restrict our work on CI WF
because the interest of all the partners of the project is on this type of WF. We plan in
the future to extend our definition to more general WF's. In particular, CC or C-CI
wave functions could be easily stored by simple generalization of the procedure used
for a CI WF; some works is in progress on this point. Things are more complex for
DMRG, and we do not plan, for the moment, to deal with this kind of formalism.

Even  with  this  restriction,  the  different  ways  a  WF can  be  defined  are  rather
numerous.
1. SCF (or HF): If a single determinant is used to describe the WF, this is called of

Self Consistent Field (SCF), or, equivalently, Hartree-Fock (HF) type. One should
notice that the Molecular Orbitals are usually variationally optimized in order to
define an SCF WF.

2. FCI:  If  all  the  Slater  determinants  are  considered,  the  WF  is  called  of  Full
Configuration Interaction (FCI) type.

3. CAS: In the Complete Active Space Self-Consistent Field (CAS-SCF) formalism,
the orbitals are classified into three disjoint classes whose union gives the total set
of orbitals:

− Occupied Orbitals (O), if they are doubly occupied in all CAS determinants;

− Virtual Orbitals (V), if they are empty in all CAS determinants: 

− Active  Orbitals  (A),  if  their  occupation  varies  in  the  set  of  the  CAS
determinants,  i.e.,  each A orbital  can be either  singly or doubly occupied or
empty in the CAS determinants.

4. It is important to note that in the special case when all the orbitals are in the Active
class (O and V classes empty) the CAS-type WF degenerate into a FCI WF. In
other words, the FCI type WF is a special case of the more general CAS-type WF
when the O and V classes are empty. On the other hand, when the A class is empty
and all orbitals are either in the Occupied or Virtual classes, the CAS-type WF
become an SCF one. In conclusion we can assume the CAS-type WF to be a more
general  type of CI wave function with FCI and SCF wave functions as special
cases.

5. TCI:  in  the  Truncated  CI  (TCI)  formalism,  the  determinants  are  obtained  by
exciting a given number of electrons from a set of “Reference” determinants. In the
most  common case,  the  reference  determinants  have  a  CAS structure,  and  the
excitations are restricted to Singles (S) or Singles+Doubles (SD). One obtains then
the CAS-S and CAS-SD CI spaces, respectively.

6. Selected-CI: in this case the set of determinants can be completely arbitrary. This
is  the  case,  for  instance,  if  the determinants  are  derived  from a  TCI or  a  FCI
expansion  by  selecting  those  determinants  whose  coefficients  have  an  absolute
value larger than a given threshold.

In the first four cases, it is possible to define an ordering of the Slater determinants,
and the WF is completely defined by specifying 



 

− The WF nature (SCF, FCI, CAS-CI, etc), and the corresponding information that
uniquely specify it (level of truncation in TCI, nature of the CAS, etc)

− The ordering used for the determinants;

− The corresponding CI coefficients.
In the other case, described at point 5., when this is not possible, for example because
the  determinants  involved  in  the  CI  expansion  are  completely  arbitrary  or  their
generation  schema  is  too  complex,  it  is  necessary  to  explicitly  define  all  the
determinants.  In  order  to  describe  the  CI  WF from a  general  point  of  view,  the
simplest way is to give the determinants list without relying on a possible order. The
price to pay, of course, is that this piece of information can be very large and space
demanding but also redundant in cases like WF’s of type 1-4.

Generally speaking, the WF storage requires two data structures: 
1. the list of the determinants used to define the WF;
2. the corresponding list of the coefficients of the CI expansion.
The second structure is simply a vector of real numbers, while the first one is a vector
of more complicated objects, since there are several not trivial ways to code a Slater
determinant.

The first and common way to define a Slater determinant on the basis of Molecular
Orbitals is to indicate, for each electron in the system, the spin orbital that hosts it, as
shown in Figure 2.

Fig. 2. Data structure for defining a Slater determinant based on the electrons in the system

A similar way, that sometimes can be more effective, is to use vectors running on
the  spinorbitals  and  reporting  the  occupation  (1  if  the  orbital  is  occupied  by  an
electron, 0 if empty), as shown in Figure 3.
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Fig. 3. Data structure for defining a Slater determinant based on the MO in the system

When working with a WF expanded on determinants obtained by an excitation
process on CAS determinants, a hole/particle formalism is more effective to describe
the occupation of the orbitals in the Occupied and Virtual classes. In this formalism it
is  advisable  to  define a reference  occupation  pattern in  the Occupied  and Virtual
classes (the trivial choice is occupation 2 and 0 for the two classes, respectively), and
simply  define  the  occupation  in  these  classes  of  any  other  determinant.  The
differences can be “holes” (an orbital that contained an electron in the reference is
now empty) or “particles” (an orbital that was empty in the reference is now full).

Quite  often  this  formalism is  used  to  take  care  of  the  orbitals  that  are  in  the
Occupied or Virtual classes. In the O class, the number of holes nh in spinorbitals is
specified, followed by the list of the corresponding holes:

nh, (h(i),i=1, nh)

The same is done for the spinorbitals in the V class where the number of particles np
is specified, followed by the list of particles:

np, (p(i),i=1,np)

Utilities

A number of utilities have been set up to facilitate the use of the Q5Cost library and
data format.  The utilities  are  addressed  to  the library  developers  or  to the library
installers; some of the utilities are for the use of the final users, the programmers that
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need  to  include calls  to  the routines  in  their  programs and manage the  data  files
produced by a QC calculation.

The user interface to the data format is in Fortran 90, because of a great flexibility
of  this  language and  its  large  use for  chemical  programming.  Nevertheless,  other
interfaces  are  available  for  those  programmers  which  prefer  Fortran  77  or  other
languages.  A  Python  script  reads  the  library  code  and  builds  automatically  an
interface for calling Q5Cost functions in Fortran 77 codes, which exposes the library
functionalities to Fortran77 and C programmers. The same script builds also a C++
interface for the use of the library in a C++ environment which is very common in
visualization software. In turn, starting from the C++ interface and using SWIG [6],
another  interface  is  built  for  the  Python  programming  language,  a  well  suited
environment for writing wrappers.

In the previous releases, we remarked that the users had some difficulties to link all
the  necessary  libraries  (HDF5,  HDF5-fortran,  libz,  libm,  Q5Cost)  in  their  codes,
because the linking process needs a specific order of the libraries in the command
line. To simplify the linking of the codes, we chose to put all the needed libraries into
one big static library, containing also the Fortran77 and the C++ interfaces. Now, only
one file needs to be added in the linking process.

The  user  documentation  is  automatically  extracted  from  the  source  code  by  a
Python tool that can generate by choice a standard HTML file or a text file. This tool
is designed in a modular way in order to make it possible to include new formats
when needed.

As  far  as  the  installation  of  the  library  on  personal  systems  is  concerned,  an
automatic configuration script is now available to prepare the library makefile. It takes
into account the specificity of the computing platform, like the compilers, the location
of the libraries,  and verifies if the needed underlying HDF5 layer  is  present.  This
configuration  script  is  based  on  autoconf ,  an  extensible  package  of  macros  that
produces shell scripts to automatically configure software source code packages and
guarantees  the  portability  on  different  architectures;  autoconf has  been  developed
within the GNU project [7]

Two useful utilities for the final user are available to inspect the q5 file without
writing an ad-hoc program. As HDF5 is a binary format, one can argue that the 'small
data' such as the molecular geometry, the basis set or the molecular orbitals can't be
read easily by humans. On the contrary, since it is based on HDF5, it contains its own
description  and  it  is  quite  easy,  using  standard  HDF5  instruments,  to  extract  a
complete description in a human readable form.

− q5dump is a simple tool that reports the content of a Q5Cost file, listing the data
and the metadata contained in it.

− q5edit is  a  more  complete  and  attractive  tool.  Using  this  Python  interactive
program, the user can navigate through the file, listing the content and modifying
the data using his favorite text editor,  defined by an environment variable.  The
Python interface to Q5Cost is used to access the file, and the "ncurses" library [8]
is used for the interaction of the user with the program. 



 

Wrappers

The Q5Cost library, as a tool for helping data exchange among different chemistry
programs,  has  been  used  to  build  specific  translation  programs  [3]  to/from  the
proprietary data format of each of the involved programs. These translation programs,
also called “wrappers”, are small programs that, using both the program specific I/O
library and the Q5Cost library, take care of converting the proprietary data format into
the Q5Cost data format and vice versa. 

Several QC codes have been wrapped up to now, both general purpose and more
specific “home-made” ones  usually written and  maintained by the partners  of  the
project. In the first class we recall for instance Dalton [9], Molcas [10] and GAMESS
US [11,12], in the second class the Bologna FCI [13, 14] code and the Toulouse chain
[15, 16] among others. In many cases the wrappers have been written in collaboration
with research groups outside the authors of this paper. Here we are simply giving a
brief summary, while a more exhaustive and detailed description will be the subject of
a forthcoming future paper.

Wrappers  are,  anyway,  normally  written  and  maintained  by  the  author  of  the
chemistry  programs.  They  are  external  programs  that  take  care  to  translate  the
proprietary data to the Q5Cost format (output wrapper) and the common format to the
proprietary format (input wrapper). In other cases, the authors liked better to include
the Q5Cost routines in the code itself,  so to allow the program to read and write
“natively” the Q5Cost format. This strategy was used, for example, for the FCI code
and for the GAMESS US package: it is more simple and direct of the previous one
but  it  requires  a  greater  involvement  of  the authors  of  the  codes and  it  could  be
difficult in the case of large commercial packages.

The  programs  that  can  now  use  the  Q5Cost  data  format  are  reported  in  the
following list. In some cases the implementation is still  experimental,  and has not
been released yet in the official versions.

− Dalton [9]

− GAMESS US [11, 12]

− Molcas [10]

− Columbus/ACES II [17, 18]

− Molekel [19]

− Toulouse Chain [15, 16]

− Ferrara 4-indices transformation [20]

− Paris 4-indices transformation [21]

− Bologna FCI code [13, 14]

− QMC=Chem



 

For the Bologna FCI code [13, 14], the Q5Cost format is now the native data format.
Thanks to the integration of FCI with the other codes it was possible to face new
scientific problems: the study of the basis set superposition error  on the Ne dimer
[22], the metal insulator transition [23] and the behavior of small alkali metal clusters
[24].  The  large  systems  treated  involved  a  FCI  space  larger  than  1  billion
determinants  and  were  good  benchmark  for  the  Q5Cost  data  format  and  library,
which proved to be effective, usable and flexible. The performance outcome, both in
terms of disk occupation and access time to I/O, was acceptable too, confirming the
previous tests [4].

The  Toulouse  chain  [15,  16]  has  been  only  partially  integrated.  The  complete
support is however strongly required because it will open the way to the integration of
an  effective  4-indices  transformation,  like  the  one  developed  in  Paris  [21].  The
performance  of  the  integral  transformation  is  of  crucial  importance  when  local
approaches are involved. GAMESS US [11, 12] is being integrated in collaboration
with  the  authors,  by  including  the  Q5Cost  routines  directly  in  the  program  I/O
interface.  The  Dalton  [9]  package  was  originally  integrated  by  using  an  external
wrapper, at the moment we are working on the inclusion of the Q5Cost routines in the
package itself. 

Another  activity  in  place  regards  Molekel  [19],  a  free  access  molecular
visualization program being developed by the Swiss National Supercomputing Centre
(CSCS).  The  inclusion  of  a  visualization  program  is  valuable  since  many of  the
programs in the set do not have any graphical interface. For including Molekel in the
workflow the  strategy  was  to  write  a  converted  to  the  OpenBabel  format  [25],  a
format  that  allows an immediate connection not only to Molekel but with several
other environments that are already integrated. The Molcas [10] wrapper is in good
shape: at the moment, everything can be translated in Q5Cost format but the wave
function expansion which will be the next improvement. A wrapper was also written
for the QMC=Chem program, which is a Quantum Monte Carlo program developed
at LCPQ, Toulouse.

Conclusion

The design and development of the new 1.0 version of the Q5Cost data format and
library has been presented. The format and the library have been designed to facilitate
the  exchange  of  information  between  different  Quantum  Chemistry  codes,  thus
strongly enhancing interoperability between codes. The ultimate goal of the reported
activity is the construction of a grid-based distributed meta-laboratory, where multiple
QC codes can be used together in a workflow finalized to solve a chemical problem.

The new features of the version 1.0 of the library have been presented: Geometry,
Basis  set  and  Wave  Function  storage,  in  addition  to  new  tools  in  support  of
developers and end users,  such as the binding to programming languages different
than Fortran 90. A brief analysis of the wrappers  and the codes which have been
interfaced up to now has been presented too. The data format and the library appear as
valuable  tools  to  make  the  inter  code  communication  possible  and  easy;  some



 

preliminary applications proved them to be effective, usable and also efficient, with
respect to other Input/Output technologies. 

The inclusion of  the  new features,  in  particular  the Wave  Function storage,  is
expected to allow a more widespread diffusion of Q5Cost, with the possibility to face
new original scientific problems.

Glossary

− CAS = Complete Active Space

− RAS = Restricted Active Space

− CAS-SCF = Complete Active Space Self-Consistent Field

− SCF = Self-Consistent Field

− HF = Hartree-Fock

− WF = Wave Function

− CI = Configuration Interaction

− SR = Single Reference

− MR = Multi Reference

− FCI = Full Configuration Interaction

− O = Occupied Orbitals

− V = Virtual Orbitals

− A = Active Orbitals

− I = Inactive Orbitals

− CC = Coupled Cluster 

− C-CI = Contracted Configuration Interaction

− DMRG = Density-Matrix Renormalization Group
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