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Abstract

This paper introduces the problem of identifying vertices of a graph using paths. An identifying path cover
of a graph G is a set P of paths such that each vertex belongs to a path of P , and for each pair u, v of
vertices, there is a path of P which includes exactly one of u, v. This new notion is related to a large
number of other identification problems in graphs and hypergraphs. We study the identifying path cover
problem under both combinatorial and algorithmic points of view. In particular, we derive the optimal size
of an identifying path cover for paths, cycles and hypercubes, and give upper bounds for trees. We give
lower and upper bounds on the minimum size of an identifying path cover for general graphs, and discuss
their tightness. In particular, we show that any connected graph G has an identifying path cover of size at

most
⌈

2|V (G)|
3

⌉

+ 5. We then study the computational complexity of the associated optimization problem,

in particular we show that when the length of the paths is asked to be of bounded value, the problem is
APX-complete.

Keywords: Test cover, Identification, Paths, Approximation.

1. Introduction

This paper aims to study the new optimization problem of identifying the vertices of a graph by means
of paths, which we call the identifying path cover problem. We first relate this problem to a large number of
other problems and review a part of the associated literature, before giving its definition.

1.1. Test covers and the identification problem

Identification problems have been addressed many times in the last decades under different denomina-
tions and in different contexts. We present two general problems from the literature which have almost
the same definition, and which we herein call the minimum test cover problem and the minimum identi-
fication problem. Instances of these problems are set systems, i.e. pairs consisting of a set I of elements
(“individuals”) and a set A of subsets of I (“attributes”).

Among these two problems, the minimum test cover problem, in short MIN-TC, seems to have been
studied first and is probably better known. Given a set system of individuals and attributes, the MIN-TC
problem asks for a minimum subset C of A such that for each pair I, I ′ of I, there is an element C of C such
that exactly one of I, I ′ is covered by C, that is, belongs to C (we say that C separates I from I ′). The
MIN-TC problem appears in a large number of papers under different denominations (minimum test cover

✩A shorter version of this paper appeared under the name On graph identification problems and the special case of identifying

vertices using paths in the Proceedings of the International Workshop on Combinatorial Algorithms, IWOCA 2012 [11]. The
present paper contains additional results, mainly Theorems 8, 10 and 20, and a corrected version of Theorems 17 and 18, which
contained some mistakes in the short version.
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problem [8], minimum test collection problem [14], minimum test set problem [21]). In fact, a well-celebrated
theorem of J. A. Bondy on induced subsets [3] can be seen as the first study of this problem.

In this paper and as in a large portion of the literature dealing with special cases of this kind of problems,
we are interested in a slight modification of MIN-TC, where not only each pair of individuals has to be
separated, but also, each individual has to be covered. We call this problem the minimum identification
problem, MIN-ID for short (note that it has been studied under the denomination of discriminating code
problem in [4], but we use our terminology in order to fit to special cases described later). MIN-TC and
MIN-ID are very close to each other, since for any solution to one of them, there is a solution to the other
one whose size differs by at most 1: any solution to MIN-ID is also one for MIN-TC, and, given a solution
C to MIN-TC which is not a valid solution to MIN-ID, at most one individual I may not be covered by C.
It is then sufficient to add an arbitrary attribute A covering I to C to get a valid solution to MIN-ID.

Both MIN-TC and MIN-ID can be seen as special cases of the well-known minimum set cover problem [14,
16], MIN-SC for short, where, given a base set X and a set S of subsets of X , it is asked to find a minimum
subset C of S covering all elements of X [8]. MIN-TC and MIN-ID enjoy the same computational complexity.
It is known that both problems are O(ln(|I|))-approximable (where I denotes the set of individuals of the
input) using a reduction to MIN-SC [21]. On the other hand, both problems are not only NP-hard [4, 14]
but have also been shown to be NP-hard to approximate within a factor of o(ln(|I|)) by reduction from
MIN-SC [2, 8].

A natural restriction of MIN-ID is, given some integer k, the one where the sets of A all have exactly k
elements. We will call this problem MIN-ID-k.

1.2. Related problems

In this paper, we study a special case of MIN-ID. Just as some particular cases of MIN-SC arising from
specific structures have gained a lot of interest (consider for example all variants of the minimum dominating
set problem, or the minimum vertex cover problem), it is of interest to investigate special cases of the MIN-ID
problem having a particular structure. In this line of research, many specific cases arising from graph theory
are of particular interest since graphs model networks of all kinds and are found in real world applications.
For example, in the identifying code problem [9, 13, 18], one wants to identify each vertex v using vertices
at distance at most 1 from v. This problem can be seen as MIN-ID where I = V (G) and A is the family
of the balls around each vertex. This problem has been generalized to digraphs [6, 12], and to the case
where also sets of at most ℓ vertices are to be separated and where vertices can identify at some prescribed
distance r ≥ 1 [13]. One may also ask to identify the edges of G using edges, i.e. I = E(G) and A is the
set of all edge-balls around each edge of G [10]. Rather than considering full balls, also partial balls may
be considered, as in the case of watching systems [1], where I = V (G), and A is the family of all subgraphs
of stars in G. Finally, the case where I = V (G) and A is the set of all cycles in G has been considered
in [15, 23].

1.3. The identifying path cover problem

Given a graph G, a path is an ordered set of distinct vertices such that any two consecutive vertices in
the ordering are adjacent. A path containing k vertices is a k-path; a 1-path is just a single vertex. We will
consider the path graph Pk, consisting of a single path on k vertices; similarly, Ck denotes the cycle on k
vertices.

In this paper, we study MIN-ID when I = V (G) and A is the set of all paths of G. We call it minimum
identifying path cover problem, MIN-IDPC for short and it studies the following notion:

Definition 1. Given a graph G, a set P of paths of G is an identifying path cover if each vertex of G
belongs to a path of P (it is covered) and if for each pair u, v of vertices, there is a path of P which contains
exactly one of u, v (u, v are separated).

We point out that the covering condition is not implied by the separation condition, since even when
all pairs are separated, one vertex of the graph may remain uncovered. We denote by pID(G) the minimum
number of paths required in any identifying path cover of G. Then, MIN-IDPC is the problem, given a
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graph G, of determining the value of pID(G). An example of an identifying path cover P of the cube H3 is
given in Figure 1, where the four thick paths belong to P (the full, the densely dotted, the loosely dotted
and the dashed-dotted path). Note that an identifying path cover of G always exists: consider the set of all
1-paths of G, that is, P = V (G).

Figure 1: An (optimal) identifying path cover of the hypercube H3: pID(H3) = 4.

Given a fixed integer k ≥ 1, we will also discuss the natural variant MIN-IDPC-k of MIN-IDPC, where
one wants to find a minimum identifying k-path cover of G, that is, a set of paths of exactly k vertices
forming an identifying path cover of G. We denote by pID

k (G) the size of a minimum identifying k-path cover
of G. Unlike for the general MIN-IDPC problem, not all graphs admit an identifying k-path cover. We call
a graph admitting an identifying k-path cover, k-path identifiable. This is the case if, first of all, each vertex
of G lies on a k-path, and if for each pair u, v of vertices, there is a k-path covering exactly one of u, v. For
example, the path graphs Pk−1 and P2k−2 are not k-path identifiable. Observe that these two conditions are
also sufficient: if both are fulfilled, taking all k-paths of G gives a valid identifying k-path cover of G. For
fixed k, being k-path identifiable is polynomial-time checkable since there are at most

(

n
k

)

= O(nk) k-paths
in G.

1.4. Applications

Problems MIN-TC and MIN-ID have a broad variety of applications, for example in the diagnosis of
faults or diseases, biological identification, pattern recognition [8, 21]. When the instance of the problem
arises from substructures of a graph, the main applications are routing in networks [20] and the location of
threats in facilities or networks using sensors [18]: vertices are the “individuals”, sensors are the “attributes”.
Sensors may monitor closed neighbourhoods (identifying codes) or sub-neighbourhoods (watching systems).
If sensors are capable of monitoring the vertices lying on a path, we have the situation of an identifying
path cover. One can for example imagine sensors in the form of laser detectors, or mobile detecting devices
patrolling back and forth along their path.

1.5. Outline of the paper

We start by giving some preliminary results in Section 2, in the form of bounds from the literature
valid for the general MIN-ID problem (which we apply to MIN-IDPC) and some observations valid only
for MIN-IDPC. We continue by studying MIN-IDPC in some basic families of graphs in Section 3: we give
exact values for parameter pID for paths, cycles and upper bounds for trees in general. The latter bound is
proved using a procedure for constructing an identifying path cover. We also use it to provide the upper
bound pID(G) ≤

⌈

2n
3

⌉

+ 5 for any connected graph. Finally, we show in Section 4 that MIN-IDPC-k is
APX-complete for any k ≥ 3 by means of an L-reduction from the minimum vertex cover problem. We
conclude with some open questions in Section 5.

3



2. Bounds and preliminary observations

The following lower bound was observed in [18] in the context of identifying codes but we refer to [4] for
the general statement.

Theorem 2 ([4, 18]). Let (I,A) be an instance of MIN-ID, and let C be a solution to it. Then |C| ≥
log2(|I|+ 1).

The following upper bound can be seen as a direct corollary of Bondy’s theorem [3]. We refer to [4] for
a formal proof in this context.

Theorem 3 ([3, 4]). Let (I,A) be an instance of MIN-ID, and let C be an inclusion-wise minimal solution
to it. Then |C| ≤ |I|.

Consider an instance of MIN-ID-k. Then, another lower bound holds. This bound was (to our knowledge)
first observed in the context of identifying codes in [18], but the proof works in the more general context of
MIN-ID-k. We give a general proof for completeness.

Theorem 4 ([18]). Let k ≥ 1 and (I,A) be an instance of MIN-ID-k. Then for any solution C, |C| ≥ 2|I|
k+1 .

Proof. Let c = |C|. Denote by i1 the number of individuals covered by a unique attribute of C, and i2, the
number of individuals covered by at least two attributes. We have i1 ≤ c and i2 ≤ ck−i1

2 since each attribute

covers at most k individuals. Hence, |I| = i1 + i2 ≤ c+ ck
2 − c

2 = c(k+1)
2 and we get the claimed bound.

Applying theorems 2, 3 and 4 to the case of identifying path covers, we get:

Theorem 5. Let G be a graph on n vertices and k ≥ 1 an integer. Then log2(n + 1) ≤ pID(G) ≤ n and
max{log2(n+ 1), 2n

k+1} ≤ pID

k (G) ≤ n.

It is easily observed that in the complete graph Kn, since we have full freedom to choose the paths in
the identifying path cover, pID(Kn) = ⌈log2(n+ 1)⌉. In fact, much sparser graphs also fulfill this bound,
such as the hypercubes: one can easily come up with a solution with ⌈log2(n+ 1)⌉ paths. A similar problem
of identification using cycles is addressed in [15, 23]; we refer to these papers for the construction. Since
removing an edge from a cycle yields a path, their construction is also valid in our case:

Theorem 6 ([15, 23]). Let Hd be the hypercube of dimension d with n = 2d vertices. Then pID(Hd) =
⌈log2(n+ 1)⌉.

In fact, we can describe a construction for all graphs G reaching the bound.

Construction 7. Let V (G) be a set of n vertices, and P a set of ⌈log2(n+ 1)⌉ elements.

• Assign a distinct nonempty subset Pv of P to each vertex v of V (G).

• For each element p of P, consider the set Vp of vertices {v : p ∈ Pv}.

• Add edges such that the vertices of Vp induce a path.

• Add any arbitrary set of edges.

It is easy to check that the following theorem holds:

Theorem 8. In the bound pID(G) ≥ ⌈log2(n+1)⌉ of Theorem 2 and for the special case of identifying path
covers of graphs, equality holds if and only if the graph can be constructed using Construction 7.

We now consider the lower bound of Theorem 4 and show that it is tight for the MIN-IDPC-k problem.

Construction 9. Let k ≥ 1 and p ≥ k be a pair of integers such that p(k − 1) is even.

• Consider a collection P of p vertex-disjoint paths of k vertices.
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• For each path, select a vertex to be the one which will be covered only by this path.

• Consider a perfect matching M between all remaining vertices,1 such that:

– No two vertices belonging to the same path are matched.

– For each pair of paths, at most one pair of their vertices is matched.

– Each pair of M belongs to a distinct pair of paths.

• Contract each edge of M (identify both vertices).

• Add arbitrarily many edges (so as to make the graph connected).

Theorem 10. In the bound pID

k (G) ≥ 2|V (G)|
k+1 of Theorem 4, equality holds for infinitely many connected

graphs for any k ≥ 1 and p ≥ k paths in the optimal solution.

Proof. Let G be a graph constructed using Construction 9, where the identifying k-path cover P is the set
of p paths from the first step of the construction. It is clear that each vertex is identified: for each path P
of P , one vertex is covered only by P , and the remaining vertices are all covered by a distinct pair of paths

of P . The number of vertices of the resulting graph is |V (G)| = p+ p(k−1)
2 = p(k+1)

2 and hence p = 2|V (G)|
k+1 .

Note that connectivity can be achieved without the addition of edges if and only if k ≥ 3, by choosing a
matching which makes the structure connected.

We remark that in order to identify all vertices covered by two paths, we need p(k−1)
2 ≤

(

p
2

)

, that is,
p ≥ k and therefore this condition is necessary in Construction 9 and Theorem 10.

Since the set of paths of a graph G is a superset of the set of paths of a subgraph H of G, if H is spanning
the vertices of G, any identifying path cover of H will also be one for G. We get the following proposition:

Proposition 11. Let G be a graph and H a spanning subgraph of G. Then pID(G) ≤ pID(H).

The following proposition will be useful. The bound will be shown to be tight for the star (see Theo-
rem 16).

Proposition 12. If G is a graph having ℓ vertices of degree 1, pID(G) ≥
⌈

2ℓ
3

⌉

.

Proof. Let P be an identifying path cover of G. Note that for every vertex v of degree 1, there is a path of P
ending at v (otherwise v is not covered). Moreover, if the two ends x, y of a given path both have degree 1,
then these two ends are not identified unless another path starts at x or at y.

We now assign to each degree 1-vertex a weight of value 1: we have total weight ℓ in G. If a vertex
of degree 1 is covered by k paths of P , it distributes weight 1

k to each of these paths. By the previous

paragraph, each path of P receives at most weight 1 + 1
2 , hence ℓ ≤ 3|P|

2 .

3. Identifying path covers for cycles, paths, trees and applications to all connected graphs

In this section, we give bounds for path identification of cycles, paths, trees and apply the bounds on
trees to all connected graphs.

1One possible way to find M is to consider a (k− 1)-regular graph H on p vertices: it has
p(k−1)

2
edges (such graphs always

exist, for example circulant graphs with well-chosen chord lengths). Assign a path of P to each vertex of H: M is built using
the edge set of H.
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3.1. Paths and cycles

We first investigate identifying path covers in simple graphs such as paths and cycles. We start with a
lower bound for these graphs.

Proposition 13. Let G be a connected graph of maximum degree 2 having m edges and ℓ vertices of degree
one. Then pID(G) ≥

⌈

m+ℓ
2

⌉

.

Proof. Let u,v be two adjacent vertices of G. In any identifying path cover P of G, there must be a path P
that either ends in u and does not contain v, or ends in v and does not contain u (let us say that P cuts the
edge uv). Moreover, for any vertex of degree 1, there is a path of P that ends in it. Since one single path
can at most cut or cover two edges/degree 1 vertices, the result follows.

Theorem 14. For any n ≥ 1, pID(Pn) =
⌈

n+1
2

⌉

.

Proof. The lower bound comes from Proposition 13. For the upper bound, let V (Pn) = {v0, . . . , vn−1} and
P = {vi, . . . , vi+⌈n

2
⌉ | i ∈ {0, . . . , ⌈n

2 ⌉ − 1}} be a set of ⌈n
2 ⌉ paths. If n is odd, P is an identifying path cover

of cardinality ⌈n
2 ⌉ = ⌈n+1

2 ⌉. If n is even, P separates all pairs of vertices, and covers all vertices but vn−1.
Hence, P ∪ {v0, . . . , vn−1} is an identifying path cover of cardinality ⌈n+1

2 ⌉.

Theorem 15. It holds that pID(C3) = 2, pID(C4) = 3 and for any n ≥ 5, pID(Cn) =
⌈

n
2

⌉

.

Proof. For n 6= 4, the lower bounds come from Proposition 13, and from Theorem 2 for n = 4. We give
constructions for the upper bounds. Let V (Cn) = {v0, . . . , vn−1}. One can check that {v0v1, v1v2} and
{v0v1, v1v2, v2v3} are valid identifying path covers of C3 and C4. For n ≥ 5, let P = {vivi+1vi+2 | i even, i <
n − 1}. If n is even, P is a identifying path cover of Cn of cardinality

⌈

n
2

⌉

. Otherwise, the pairs v0, v1
and vn−2, vn−1 are covered but not separated. Then P ∪ {vn−1v0} is an identifying path cover of Cn of
cardinality

⌈

n
2

⌉

.

3.2. Trees

We start by giving the value of parameter pID for the star on n vertices, denoted K1,n−1. The provided
construction and bound will prove useful in what follows.

Theorem 16. It holds that pID(K1,3) = 3. For any integer n ≥ 3 and n 6= 4, pID(K1,n−1) =
⌈

2(n−1)
3

⌉

.

Proof. It is easily checked that pID(K1,2) = 2 and pID(K1,3) = 3. Let n ≥ 5 be an integer. The lower bound
follows from Proposition 12.

For the upper bound, the main idea is to use two paths of the solution to identify three leaves of the
star. Let v0, . . . , vn−2 be the leaves of K1,n−1 and c, its central vertex. Let P be the following set of paths:
P = {{vi, c, vi+1 mod (n−1)} | i 6= 2 mod 3}. The construction is illustrated in Figure 2, where the paths of
P are marked with dotted and dashed lines.

Assume first that n− 1 = 0 mod 3, i.e. n− 1 = 3k for some k ≥ 1. Then, |P| = 2k = 2(n−1)
3 . Vertex c

is the only vertex to belong to all paths of P , whereas each leaf vi is covered by {vi, c, vi+1} if i = 0 mod 3,
by {vi, c, vi+1} and {vi−1, c, vi} if i = 1 mod 3, and by {vi−1, c, vi} if i = 2 mod 3. Since n ≥ 5, vertex c is
covered by at least four paths and P is an identifying path cover of K1,n−1.

If n − 1 = 1 mod 3, i.e. n − 1 = 3k + 1 for some k ≥ 1, then |P| = 2k + 1 =
⌈

2(n−1)
3

⌉

. Similarly,

if n − 1 = 1 mod 3, i.e. n − 1 = 3k + 2 for some k ≥ 1, |P| = 2k + 2 =
⌈

2(n−1)
3

⌉

. For these cases, the

argument to show that P is an identifying path cover of K1,n−1 is similar to the first case, except that v0 is
now covered by two paths.

A tree is topologically irreducible if it has no vertex of degree 2. We call a maximal degree-2-path, a path
on at least three vertices where all vertices except the endpoints have degree 2.

Theorem 17. Let T be a tree with ℓ leaves. Then,
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vn−2

v0
v1

v2

v3
v4

. . .

Figure 2: An identifying path cover of K1,n−1, with n 6= 0 mod 3.

(i) if T is topologically irreducible, then
⌈

2ℓ
3

⌉

≤ pID(T ) ≤
⌈

2ℓ
3

⌉

+ 2;

(ii) if T has t vertices of degree two and ke maximal degree-2-paths of even order at least 6, then
⌈

2ℓ
3

⌉

≤

pID(T ) ≤
⌈

2ℓ
3

⌉

+ t+ke

2 + 4 ≤
⌈

2ℓ
3

⌉

+ 5t
8 + 4.

Proof. For both cases, the lower bound follows from Proposition 12. Let T be a tree with ℓ leaves and t
vertices of degree two.

Case 1: t = 0, i.e. T is topologically irreducible.

First, let C be the center of T (that is, the set of vertices of minimum largest distance to any other
vertex of T ). By Jordan’s theorem [17], the center of a tree consists of either a single vertex or a pair of
adjacent vertices.

Starting from C, decompose the vertex set of T into layers labelled 0, . . . , h, where h is the largest distance
between the center and a vertex of T . The labels correspond to the distance to C. For i ∈ {0, . . . , h}, let
T≤i be the sub-tree of T induced by layers 0, . . . , i, and let ℓi be the number of leaves in T≤i.

For i ∈ {1, . . . , h}, we will inductively construct an almost-identifying path cover of T≤i, i.e. a set Pi of
paths of T≤i having the following properties.

1. All pairs of vertices of T≤i are separated by Pi, except possibly (i) the pairs containing a vertex of C,
and (ii) a special pair s1, s2 of leaves of T≤i that are not leaves of T , and that are both covered by the
same set of two paths.

2. We have |Pi| =
⌈

2ℓi
3

⌉

.

3. For each edge e = xy (x, y /∈ C) of T≤i with x being the closest vertex to center C, e is contained in a
path of Pi, and there is at least one path covering x which does not cover e.2

4. The two ends of each path of Pi are leaves of T≤i.

5. Almost every leaf of T≤i is covered by at most two paths, and for almost every path P ∈ Pi, there is
a leaf of T≤i that is covered only by P . The only exceptional cases are the following ones.

• If ℓi = 1 mod 3, there is a unique path P0 of Pi such that if i < h, one of its ends (called xi) is a
non-leaf of T , and which satisfies:

(i) the two ends of P0 are covered by two paths, or

(ii) i < h and xi is covered by two or three paths, xi would be separated from all other vertices
even without P0, and the other end of P0 is covered only by P0.

• If ℓi = 2 mod 3, there are two paths P0, P1 of Pi whose two ends are covered by two paths, and
P0, P1 have an end in common that is not a leaf of T (call it xi).

2This property will be used in Case 2 of the proof.
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It is clear that the set of paths Ph ∪ {{c}, c ∈ C} would be an identifying path cover of T of size at most
⌈

2ℓ
3

⌉

+ 2 since |C| ≤ 2. Next, we show how to construct Ph.

Base step. Let us construct P1, the identifying path cover of T≤1. The tree T≤1 consists of C and the
neighbours of vertices of C: if |C| = 1, T≤1 is isomorphic to a star; if |C| = 2, T≤1 has two adjacent vertices
of degree at least 3, and all other vertices of degree 1. Let v0, . . . , vℓ1−1 be the leaves of T≤1 such that (if
h > 1) v0 is not a leaf of T (since h > 1 such a vertex exists). Let P1 = {vi − v(i+1) mod ℓ1 | i 6= 2 mod 3},
where vi − v(i+1) mod ℓ1 denotes the unique path from vi to v(i+1) mod ℓ1 . This is the same set of paths as in
the proof of Theorem 16, and all desired properties are fulfilled: this is clear for Properties 1 to 4. Property 5
is also clear if ℓi = 0 mod 3. If ℓi = 1 mod 3, P0 = v0 − v1 and its non-leaf end x1 is v0 (we are in Case (i)
of the first exception in Property 5). If ℓi = 2 mod 3, P0 = vℓ1−1 − v0 and P1 = v0 − v1, and their non-leaf
common end x1 is v0.

Inductive step. For i ∈ {2, . . . , h} we now describe how to extend the almost-identifying path cover
Pi−1 of T≤i−1 to the one for T≤i. First, let Pi = Pi−1. We will extend the existing paths, and add new ones
to the construction.

a. Prolonging existing paths. Let X,Y = ∅ be two subsets of vertices of layer i that will need to be
covered by new paths. More precisely, set X will contain those leaves of T≤i that will not yet be covered
after we prolong the existing paths, and Y will contain at most one leaf of T≤i that will be already covered,
but needs to be covered again in order to be identified. In Step b, we will cover and identify the vertices of
X ∪ Y .

Now, for each vertex v that is a leaf in T≤i−1 but not a leaf of T , we will prolong the paths in Pi−1

ending at v. Since T has no degree 2 vertices, v has at least two children in T≤i, say c1, . . . , ck with k ≥ 2.
Moreover we assume that if v has a child that is also a leaf of T , then c1 is such a child (this choice will be
useful later in the proof).

First, assume v is one of the special vertices s1, s2 from Property 1 (without loss of generality, v = s1).
Vertex v = s1 is covered by two paths P, P ′, has some children, and is not separated from s2. We distinguish
two cases. First, assume there is a non-leaf vertex s /∈ {s1, s2} of layer i − 1. Let c′1, c

′
2 be the children of

s, and extend P to c1, delete P ′ and instead, add a path c2 − c′2. Also add a path c1 − c′2. It is clear that
c1, c2, c

′
2, s1, s2 are identified. We will identify c′1 in another step. Otherwise, the only non-leaf vertices of

layer i − 1 are s1, s2. In that case we remove paths P, P ′ and instead we compute a solution similar to the
base case. While doing this, we make sure that the path c1 − c2 belongs to the cover (in order to separate
s1 from s2), and that we have a path going from a child of s1 to a child of s2 (in order to cover all edges as
required by Property 3). This is possible by a good choice of ordering of the leaves. All vertices, including
s1, s2, are now identified, which completes this case.

If v is neither the special vertex xi−1 nor s1, prolong the path(s) covering v up to c1. Note that v now
needs to be separated from c1. Moreover, all other children of v still need to be covered and identified (except
if v is s, the vertex of the previous paragraph: then c2 is already identified and covered). Add c2, . . . , ck
(c3, . . . , ck if v = s) to X .

Now, we consider the case v = xi−1 (which occurs if ℓi−1 6= 0 mod 3).
If ℓi−1 = 1 mod 3 and we are in Case (i) of the first exception of Property 5, prolong P0 up to child c1,

and prolong the other path P that cover v up to child c2. Now, v, c1, c2 are separated from each other and
c1 is the unique vertex covered only by P0. However, child c2 needs to be covered by an additional path in
order to be separated from the other end of P : add c2 to Y . Finally, if they exist, add all vertices c3, . . . , ck
to set X .

If ℓi−1 = 1 mod 3 and we are in Case (ii) of the first exception of Property 5, prolong P0 up to child
c2, and prolong the other path(s) P (or P, P ′) that cover v up to child c1. Again, v, c1, c2 are separated
from each other, but now c2 is not the only vertex covered only by P0: add c2 to Y , and if they exist, add
c3, . . . , ck to X .

If ℓi−1 = 2 mod 3, prolong path P0 to c1 and path P1 to c2. Observe that v, c1, c2 are separated from
each other. Moreover, c1, c2 are the unique vertices covered only by P0 and P1, respectively, and v is still
the unique vertex covered only by both P0, P1. Again, if they exist, vertices c3, . . . , ck need to be covered:
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add them to the set X .

b. Covering the vertices of X and Y . Now, we need to cover and identify all vertices of X (note that
X 6= ∅, indeed, there are at least two non-leaves in each layer 0 < i < h; in particular, in layer i − 1, and
by our construction, for at least one of them, at least one child belongs to X). If it exists, the vertex of Y
needs to be covered by a new path. Furthermore, the leaves where existing paths have been prolonged need
to be separated from their parent.

Assume X = {v0, . . . , v|X|−1}, and, if i < h, v0 is not a leaf of T (v0 exists by our choice of ordering the
children of each non-leaf vertex of layer i− 1 in part a of the inductive step). Assume |X | ≥ 3. If Y = ∅, as
in the base step, we add the set of paths {vj − v(j+1) mod |X| | j 6= 2 mod 3} to Pi, where vj − v(j+1) mod |X|

denotes the unique path from vj to v(j+1) mod |X|. If Y 6= ∅, we have Y = {y}: add the set of paths
{v0 − y} ∪ {vj − v(j+1) mod |X| | j 6= 0 mod 3}.

Assume now that 1 ≤ |X | ≤ 2: X = {vi, 0 ≤ i ≤ |X | − 1}. Assume first Y = {y} 6= ∅. If |X | = 1, add
path y − v0 to the solution. If |X | = 2, add paths y − v0 and v0 − v1 to the solution.

If Y = ∅ and i = h, we are in the last step; we add |X | paths to cover the elements of X . If i < h
and |X | = 1, let z be another vertex of layer i that is a non-leaf of T : z exists since there are at least two
non-leaves in this layer. Add path v0 − z to the solution: z is the special vertex xi of Property 5, and v0 − z
is path P0 in the first exception of Property 5.

If |X | = 2, add two copies of path v0 − v1 to the solution, and mark v0, v1 as the special vertices s1, s2
of Property 1.

It is clear that all leaves of (X ∪Y )\{s1, s2} are now covered and identified. All vertices of T≤i−1 remain
identified. Moreover, each non-leaf v of T≤i−1 is now separated from all its children c1, . . . , ck: there is at
least one path going through v but not c1, and the paths of Pi−1 going through v cover c1 but none of
c2, . . . , ck. This proves Property 1. Moreover, Properties 2 to 4 are clear from the construction. Finally, for
Property 5, the proof is the same as for the base step.

Case 2: t > 0. First, contract all maximal degree-2-paths into an edge as to obtain the topologically
irreducible tree T ′. Denote by C′ the center of T ′. Now, find a solution P ′ for T ′ as in Case 1 (recall that
it is obtained from an almost-identifying path cover of T by adding a 0-path {c} for each vertex c of C′).
Expand T ′ and the paths of P ′ to obtain T and P .

Let S1, . . . , Sk (k ≤ n− t − 1) be the vertex sets of all k maximal degree-2-paths in T . In other words,
each set Si induces a path si1, . . . , s

i
|Si|

, where we let si1 be the vertex of Si that is closest to the center C′

of T ′, and si1, s
i
|Si|

are of degree different from 2. Note that |Si| ≥ 3.

By Property 1 of P ′ stated in the proof of Case 1, all vertices of degree different from 2 are identified
by P , except possibly those from the center C′; each vertex c of C′ is identified by path {c}. Moreover, by
Property 3 and by the existence of paths {c} (c ∈ C′) in P ′, for each path Si, all vertices of Si are covered
and separated from si1. Hence, it remains to identify the vertices of degree 2 from Si and, possibly, vertex
si|Si|

.

To do this, we will pair the sets S1, . . . , Sk and, roughly speaking, for two sets Si, Sj , add about
|Si|+|Sj|

2
paths to P . We also do an additional special pairing for degree 2 paths of four vertices. Let us describe the
process.

For every i = 1 mod 2, 1 ≤ i ≤ k− 1, we pair Si with Si+1. If k is even, all sets Si are paired, otherwise,
the last set is not. For a set Sj , we let p(Sj) denote its paired path.

Moreover, let {T1, . . . , Tk2
} ⊆ {S1, . . . , Sk} be the set of k2 ≤ k paths having exactly four vertices (i.e.

two degree 2-vertices vertices and two non-degree 2-vertices). We assume that sets {T1, . . . , Tk2
} are ordered

following the same order as {S1, . . . , Sk}. Each set Tj is also paired with another set q(Tj) in such a way that,
if possible, pairings p and q are different. This can be done as follows: for every i = 1 mod 2, 1 ≤ i ≤ k2− 3,
we pair Ti with Ti+3; if k2 is even, T2 is paired with Tk2−1, otherwise T2 is paired with Tk2

but Tk2−2 is not
paired at all. Note that unless k2 ≤ 2 and k ≤ 3, each Ti has p(Ti) 6= q(Ti).

Now, for each pair of paired sets Si, p(Si) and Tj , q(Tj), we will construct the new paths of P depending
on the parity of each |Si| and the relative position of Si, p(Si) and Tj, q(Tj) in T . For each Si, there will be
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a set Pi of paths within Si. For each pair Si, p(Si), there will be a single path going from a specific vertex
xi of Si to a vertex xi′ of p(Si) = Si′ . Similarly, for each pair Tj, q(Tj), there will be a single path going
from a specific vertex yj of Tj to a vertex yj′ of q(Tj) = Tj′ . We describe how to determine Pi, xi (and yi
if |Si| = 4) for each Si:

(a) If |Si| is odd and the unique path from Si to p(Si) goes through si1, then Pi = {sij − sij+⌈|Si|/2⌉−1 | 2 ≤

j ≤ ⌈|Si|/2⌉ − 1}, and xi = si⌈|Si|/2⌉
.

(b) If |Si| is odd and the unique path from Si to p(Si) goes through si|Si|
, as in the previous case Pi =

{sij − sij+⌈|Si|/2⌉−1 | 2 ≤ j ≤ ⌈|Si|/2⌉ − 1}, but xi = si⌈|Si|/2⌉−1.

(c) If |Si| is even but |Si| 6= 4 and the unique path from Si to p(Si) goes through si1, then Pi = {sij −

sij+(|Si|−2)/2 | 2 ≤ j ≤ |Si|/2}, and xi = si|Si|−1.

(d) If |Si| is even but |Si| 6= 4 and the unique path from Si to p(Si) goes through si|Si|
, as in the previous

case Pi = {sij − sij+(|Si|−2)/2 | 2 ≤ j ≤ |Si|/2}, but xi = si1.

(e) If |Si| = 4 and the paths from Si to p(Si) and q(Si) go through si1 and si4 (or vice-versa), then xi = si2
and yi = si4.

(f) If |Si| = 4 and and the paths from Si to p(Si) and q(Si) both go through si1, then xi = si2 and yi = si3.

(g) If |Si| = 4 and and the paths from Si to p(Si) and q(Si) both go through si4, then xi = si3 and yi = si4.

The construction is illustrated in Figure 3.

si1

si2

si3

si4 = xi

si5

si6

si7

(a)

si1

si2 = xi

si3

si4

si5

si6

(b)

si1

si2

si3

si4

si5 = xi

si6

si7

(c)

si1

si2

si3

si4

si5

si6 = xi

(d)

si1

si2 = xi

si3

si4 = yi

(e)

si1

si2 = xi

si3 = yi

si4

(f)

si1

si2

si3 = xi

si4 = yi

(g)

Figure 3: Illustration of the four cases for the additional paths in Case 2 of the proof of Theorem 17, for |Si| ∈ {4, 6, 7}. Circled
vertices have degree different from 2. The paths of Pi are marked with dotted and dashed lines.

Now, for each pair Si, p(Si) = Si′ , we add the path xi − xi′ , and for each pair Tj, q(Tj′ ), we add the
path yj − yj′ . Observe that if p(Si) = q(Si), we need to separate two vertices from Si, p(Si): we add one

path to do so. Furthermore, if k is odd, Sk is not paired, and we let Pk be a set of at most |Sk|+1
2 paths
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within Sk that can easily constructed using similar techniques. If k2 is odd, Tk2−2 is not paired (note that
Sk 6= Tk2−2) two vertices of Tk2−2 need to be separated, and we add one additional path to do this.

Observe that the construction is similar to the construction for paths in Theorem 14, and all vertices are
now identified.

Note that whenever Si was paired and |Si| 6= 4 is even, Si has contributed to exactly |S1|−1
2 additional

paths in the solution. Similarly, if |Si| = 4 and Si was paired twice using p and q and p(Si) 6= (Si), Si has

contributed to two half-paths, that is, a total of 1 = |Si|−2
2 . If |Si| = 4 but p(Si) = q(Si), Si has contributed

to three half-paths, that is, a total of 2 = |Si|
2 (however by our previous remarks this can happen only once

in the entire construction). If Si was paired and |Si| is odd, Si has contributed to exactly |S1|−2
2 additional

paths. If k is odd and Sk is not paired, Sk has contributed to at most |Sk|−1
2 paths. If k2 is odd and Tk2−2

was not paired using pairing q, Tk2−2 has contributed to 3
2 =

|Tk2−2|−2+1

2 paths.

Let ke be the number of sets Si of even size, at least 6. Then, we have added at most t+ke+4
2 paths to

P ′ to obtain P , proving the second inequality of part (ii) of the statement.
Observing that a set Si of even size (at least 6) has at least four degree 2-vertices, ke ≤

t
4 , and we obtain

the last inequality of part (ii) of the statement.

Though there are small trees which do not match the lower bounds of Theorem 17 (such as K1,3), we do
not know whether the upper bounds are tight. We suspect that they both could be improved.

3.3. An application to all connected graphs

We get the following improvement of Theorem 3 for identifying path covers of connected graphs.

Theorem 18. For any connected graph G on n vertices, pID(G) ≤
⌈

2n
3

⌉

+ 5.

Proof. Consider a spanning tree T of G. By Proposition 11, an identifying path cover of T is also one
for G. Assume that T has ℓ leaves and t vertices of degree 2. Since ℓ + t ≤ n and 5x

8 ≤ 2x
3 , we have

⌈

2ℓ
3

⌉

+ 5t
8 ≤

⌈

2n
3

⌉

+ 1.

By Theorem 17(ii), T has an identifying path cover of size at most
⌈

2ℓ
3

⌉

+ 5t
8 + 4 ≤

⌈

2n
3

⌉

+ 5.

Unlike for many other variants of identification problems (such as identifying codes, see [9]), Theorem 18
shows that one needs much less sensors than n in order to identify connected graphs, which may prove
useful in practice. We remark that the similar upper bound w(G) ≤ 2n

3 holds for the size w(G) of a smallest
watching system (i.e. an “identifying star cover”) in any connected graph G on n vertices [1].

3.4. Bounds using domination parameters

The bound of Theorem 18 can be refined in the following way. Let γC(G) denote the connected dom-
ination number of a graph G (that is, the minimum size of a dominating set of G inducing a connected
subgraph) and let L(G) denote the maximum number of leaves in a spanning tree of G. One can observe
that for a connected graph G on n vertices, we have n = γC(G) + L(G). Hence using Proposition 11 and
Theorem 17 we get the following upper bound.

Theorem 19. For any connected graph G on n vertices, it holds that pID(G) ≤
⌈

2(n−γC(G))
3

⌉

+ 5γC(G)
8 + 4.

For any value k, one can construct a tree T on n vertices with γC(T ) = k and pID(G) ≥
⌈

2(n−k)
3

⌉

+
⌈

k−1
2

⌉

:

build T from a star with n−k leaves by subdividing one edge of this star k−1 times. We now have γC(T ) = k
and the only minimum connected dominating set includes all vertices but the leaves of T . One can now

check that pID(G) ≥
⌈

2(n−k)
3

⌉

+
⌈

k−1
2

⌉

.

Using the (usual) domination number of a graph G, γ(G), we can obtain a new bound as follows:

Theorem 20. Let G be a graph on n vertices with maximum degree ∆ ≥ 4. Then pID(G) ≤ γ(G)
⌈

2∆
3

⌉

.
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Proof. Consider an optimal dominating set D of size γ(G). For each vertex v of D, build a set of paths that
identifies all vertices of N(v), such as done for the star K1,n−1 (n ≥ 5) in the proof of Theorem 16. This

solution has size
∑

v∈D

⌈

2N(v)
3

⌉

≤ γ(G)
⌈

2∆
3

⌉

.

This bound is tight e.g. for stars, which have domination number 1. Moreover, consider a caterpillar
graph C∆

k built from a path on k vertices with ∆− 2 pendant vertices attached to each vertex of the path;

C∆
k has domination number γ(C∆

k ) = k. By Proposition 12, pID(C∆
k ) ≥

⌈

k·2(∆−2)
3

⌉

, and the bound of

Theorem 20 is almost tight for any pair of values of γ and ∆.

4. On the complexity of MIN-IDPC-k

In this section, we discuss the computational complexity of MIN-IDPC-k, that is, we deal with k-paths
only (recall that a k-path has k vertices). It is shown in [8] that MIN-IDPC-k is approximable within a
factor of O(ln(k)) for any k ≥ 1. In fact, when k = 1, we are allowed only paths of length 0 (that is,
vertices) and MIN-IDPC-1 is trivial: the only solution consists of the whole set of vertices. When k = 2,
we want to identify the vertices using paths of two vertices, i.e. edges. This problem is equivalent to MIN-
ID-2, where each attribute is common to exactly two individuals. Indeed, an edge can precisely be seen as
such an attribute. This case has already been studied in [8], where a strong link between MIN-ID-2 and
the maximum P3-packing problem was established; the authors give a 7

6 -approximation for MIN-ID-2 and
show that it is APX-hard by reduction from the maximum 3-dimensional matching problem. Moreover, we
note that results of [8] combined with a later 4

3 -approximation for max-P3-P in subcubic graphs without
degree 1-vertices [19] implies the existence of a 9

8 -approximation algorithm for MIN-IDPC-2 in this class of
graphs.

We next prove that MIN-IDPC-k is APX-hard for all k ≥ 3, i.e. that there exists a constant c (depending
on k) for which MIN-IDPC-k is not c-approximable. We use the framework of L-reductions. We recall the
definition of an L-reduction between two optimization problems P and Q in Definition 21. It is known that
if such a reduction exists and P is APX-hard, then Q is APX-hard as well. For more details, see [22]. Given
an optimization problem P and a solution s to an instance x of P , we denote by costP (x, s), the value of s,
and by optP (x), the value of an optimal solution to x.

Definition 21. Let P and Q be two optimization problems. An L-reduction from P to Q is a four-tuple
(f, g, α, β) where f and g are polynomial time computable functions and α, β are positive constants with the
following properties:

1. Function f maps instances of P to instances of Q and for every instance x of P, optQ(f(x)) ≤
α · optP (x).

2. For every instance x of P and every solution y of f(x), g maps the pair (f(x), y) to a solution y′ of x
such that |optP (x) − costP (x, g(f(x), y

′))| ≤ β · |optQ(f(x)) − costQ(f(x), y
′)|.

The problem minimum vertex cover in cubic graphs, MIN-VC-3 for short, given a cubic graph, is to find
a minimum set of vertices such that each edge is covered by a vertex of the set. MIN-VC-3 is APX-hard [7].

Theorem 22. Let k ≥ 3. There is an L-reduction (with parameters α = 40k2 − 116k+47 and β = 1) from
MIN-VC-3 to MIN-IDPC-k in graphs of maximum degree 4. Hence MIN-IDPC-k is APX-complete, even in
this class of graphs.

Before giving the proof of Theorem 22, we first provide two useful gadgets and exhibit some of their
properties. Given k ≥ 3, we call these gadgets k-gadget of type A (see Figure 4 for an example when
k = 3 and Figure 5 when k = 4, and Figure 6 for their succinct representation) and k-gadget of type B (see
Figure 7). Both gadgets include an attachment vertex which will be merged with a vertex of the rest of
the graph in our constructions. The k-gadget of type A is the basis for the construction of the k-gadget
of type B, which includes k − 3 copies of the k-gadget of type A. The k-gadget of type B is described in
Figure 7, but we define the k-gadget of type A more formally. Using these two gadgets, we construct a
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vertex k-gadget and an edge k-gadget which will be needed in the reduction (see Figure 8). The idea of
the k-gadget of type A is to attach it at a vertex and make sure that this vertex can be easily covered and
identified by a locally optimal solution; the idea of the k-gadget of type B is to force a k-path from outside
the gadget to go through the attached vertex.

vA

dc

b1

a1

b2

a2

G

Figure 4: The 3-gadget of type A.

v33

v32

v31v30P3

v23

v22

v21v20P2

v13

v12

v11v10P1

v63

v62

v61 v60 P6

v53

v52

v51 v50 P5

v43

v42

v41 v40 P4

P1 P2 P3

P4 P5 P6

vA

Figure 5: Construction of the 4-gadget of type A.

In order to construct the k-gadget of type A, we use a construction of an extremal graph for the lower
bound 2n

k+1 ≤ pID

k (G) (Theorem 5). This construction is detailed in Definition 23.

Definition 23. Let k ≥ 3 be an integer. If k = 3, the k-gadget of type A with attachment vertex vA is the
graph of Figure 4. When k ≥ 4, the k-gadget of type A is constructed as follows (see Figure 5):

• Let P1, . . . , P2(k−1) be 2(k−1) vertex-disjoint k-paths, where for i ∈ {1, . . . , 2(k−1)}, Pi = {vi0, . . . , v
i
k−1}.

• Consider the complete bipartite graph B whose vertices are P1, . . . , P2(k−1). It is (k − 1)-regular.

• Select a (k − 1)-edge-colouring of B with colours from {1, . . . , k − 1} (or equivalently, find a partition
of the edges of B into k − 1 perfect matchings).

• If k is even or c /∈ {⌊k
2 ⌋, ⌈

k
2⌉}, for each edge {Pi, Pj} (assume i ≤ j) of B coloured with colour c,

identify vertices vic and vjc . If k is odd and c = ⌊k/2⌋ (resp. c = ⌈k/2⌉), identify vertices vi⌊k/2⌋ and

vj⌈k/2⌉ (resp. vi⌈k/2⌉ and vj⌊k/2⌋).

• Let the attachment vertex vA be vertex vik−1 for some arbitrary i ∈ {1, . . . , 2(k − 1)}.
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v

G

A

Figure 6: Representing a k-gadget of type A.
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Figure 7: The k-gadget of type B and its succinct representation.
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Let xA = 2(k − 1). Note that when k ≥ 4, xA is the number of degree 1 vertices in a k-gadget of type A.

Let G be a cubic graph on n vertices and m = 3n
2 edges. We construct the graph f(G) by replacing every

vertex v by a copy of vertex gadget Gv and each edge e by a copy of edge gadget Ge (see Figure 8). Given
a vertex v incident to edges e1, e2, e3 in G, the vertices x1, x2, x3 of Gv are identified each with either one
of the vertices a1, a2 of Ge1 , Ge2 , Ge3 in f(G). It is easily noticed that since G is cubic, f(G) has maximum
degree 4.
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(a) Edge k-gadget
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(b) Vertex k-gadget

Figure 8: Reduction k-gadgets for vertices and edges.

The first main idea of the reduction is to simulate the covering of an edge e by the separation of vertices
b and c in Ge by a k-path going through b. The second main idea is, given a vertex v, to encode the fact
that v is part of a vertex cover of G, by having the k-path y1 . . . y3 inside the path cover of f(G) (which
enables us to “cover” the three edge-gadgets corresponding to the three edges incident to v in G). The proof
of the validity of the reduction uses the following Claims 24, 25 and 26 about the gadgets of type A and B.

Claim 24. Let A be a k-gadget of type A (k ≥ 4). Then, for each pair v, v′ of the xA vertices of degree 1 in
A, there is no k-path between v and v′. Moreover, vertex vA is at distance at least k−1 of any degree 1-vertex
in A.

Proof. If k is even, then A is bipartite with all degree 1 vertices in the same part. Hence all paths between
two degree 1 vertices have even length, but k − 1 is odd. If k is odd, by contradiction consider a path P
between two degree 1 vertices of A. If for any i, there is no vertex of the form vi⌊k/2⌋ or vi⌈k/2⌉ in P , then P
cannot be of length k − 1 because there is no such path of length more than k − 3. Hence P contains some
vertex vi⌊k/2⌋ or vi⌈k/2⌉. But in either case, P must have at least k + 1 vertices, a contradiction. The second
part of the statement follows immediately from the choice of vertex vA in the construction of A.

In what follows, let G be a graph and P , an identifying k-path cover of G.

Claim 25. Let A be a k-gadget of type A (k ≥ 3) attached at vertex vA in G. Then, there is a set of at
least xA k-paths of P having an endpoint in A, and none of these k-paths can reach a vertex outside of A.
Moreover, there is a set of xA k-paths in A which can be used to cover and identify all vertices of A.

Proof. When k = 3, we note that we need at least three 3-paths in order to cover the three degree 1 vertices
of A. Doing so, we need an additional 3-path to separate either a1 from b1 or a2 from b2. Finally, the four
3-paths a1 . . . d, a2 . . . d, c . . . b1, b2 . . . vA fulfill the last part of the statement.
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If k ≥ 4, the first part of the statement follows easily from Claim 24: no k-path can be used to cover two
degree 1 vertices in A, and no k-path starting outside of A can cover a degree 1 vertex of A. Considering
the xA k-paths of the construction of A proves the second part of the statement.

Claim 26. Let B be a k-gadget of type B attached at some vertex v in G. Then, at least xB = xA(k−3)+2
k-paths of P are entirely contained in B. Moreover, if exactly xB k-paths of P are entirely contained in B,
then there is an additional k-path of P containing vertex v. Finally, there exists such a set of xB k-paths.

Proof. Following Claim 25, we need at least xA k-paths in each of the k − 3 copies of the k-gadget of type
A in B. In order to dominate vertices a and b, we need two additional k-paths Pa and Pb starting in a
and b, which completes the first part of the claim. For the second part, by Claim 25, among these k-paths,
only k-paths of type Pa or Pb can contain vertex v. If Pa or Pb or both Pa, Pb dominate v, then v is not
separated from either a, b or u, proving the second part. Taking the solution from Claim 25 for each copy
of the k-gadget of type A together with the k-paths a . . . v and b . . . v, we get the last part of the claim.

We are now ready to prove Theorem 22.

Proof of Theorem 22. We first prove that the first part of Definition 21 holds. Let C∗ be a minimum vertex
cover of G. We construct an identifying k-path cover P of f(G) as follows. For each copy of a gadget of
type A (resp. type B), take the solution of size xA described in the proof of Claim 25 (resp. of size xB of
Claim 26) into P . Now, for each edge e of G, add an arbitrary k-path starting in vertex c of Ge. For each
vertex v of G, add three arbitrary k-paths starting in vertices z1, z2 and z3, respectively. Let e1, e2, e3 be
the three edges incident to v in G, and b1, b2, b3, the three vertices labelled b in Ge1 , Ge2 , Ge3 . If v ∈ C∗,
add k-path y1 . . . y3 of Gv, as well as k-paths x2 . . . b1, x3 . . . b2 and x1 . . . b3 to P . If v /∈ C∗, add k-paths
x1 . . . y1, x2 . . . y2 and x3 . . . y3 to P .

The reader can check that P is an identifying k-path cover of f(G), and that:

|P| ≤ |C∗|+ (2(k − 2)xA + 1)m+ ((3(k − 2) + k − 3)xA + 3xB + 6)n (1)

Since G is cubic, each vertex of C∗ can cover at most three edges and we have |C∗| ≥ m
3 and hence m ≤ 3|C∗|

and n ≤ 2|C∗|. We get: pID

k (G) ≤ |P| ≤ (16 + (14k − 30)xA + 6xB)|C∗| and hence (1) of Definition 21 is
fulfilled with α = 16 + (14k − 30)xA + 6xB ≤ 40k2 − 116k + 47.

It remains to prove the second part of Definition 21. Let P be an identifying k-path cover of f(G).
We construct a vertex cover C using P . First of all, by Claim 25, each gadget of type A contains at
least xA k-paths of P , and by Claim 26, each gadget of type B contains at least xB = xA(k − 3) + 2
k-paths of P . Moreover, in each vertex gadget, at least three k-paths belong to P in order to cover vertices
z1, z2, z3. However, using the structure of the vertex- and edge-gadgets together with Claim 26, if there
are exactly that many k-paths, in each vertex-gadget, we are not able to separate vertices y1, y2, y3 from
their respective neighbours, as well as vertices x1, z1, x2, z2, and x3, z3 (similarly, vertices b and c in each
edge-gadget). Besides the k-paths of P that we already considered, in any vertex-gadget, at least three
k-paths are required in order to cover vertices x1, y1, x2, y2, x3, y3. If there are exactly three, then they
must be x1 . . . y1, x2 . . . y2, x3 . . . y3. We construct C as follows: for each vertex v of G, if there are at
least four such additional k-paths in Gv, we add v to C. Set C is a vertex cover of G: indeed, when
v ∈ C, the k-paths in the copies of the gadgets of type A and B in Gv could be replaced by the “standard”
solution given in Claims 25 and 26. Moreover, the (at least) four additional k-paths of P in Gv could
be replaced by y1 . . . y3 and three k-paths starting at x1, x2, x3 covering the three vertices labelled b in
the three edge-gadgets corresponding to the three edges incident to v in G. Hence these edges would be
covered. This procedure would give an easy constructable identifying k-path cover P ′ with P ′ ≤ P , and
since all vertices labelled b are covered by a k-path of P ′, C is a vertex cover of G. Furthermore, we have
|C| ≤ |P|−(2(k−2)xA+1)m−((3(k − 2) + k − 3)xA + 3xB + 6)n. Applying the construction to a minimum
identifying k-path cover, we get |C∗| ≤ |C| ≤ pID

k (G)−(2(k−2)xA+1)m−((3(k − 2) + k − 3)xA + 3xB + 6)n.
Together with Equation (1), this implies:

|C∗| = pID

k (G)− (2(k − 2)xA + 1)m− ((3(k − 2) + k − 3)xA + 3xB + 6)n (2)
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From Equations (1) and (2), we get |C|− |C∗| ≤ |P|−pID

k (G), which implies ||C∗|− |C|| ≤ |pID

k (G)−|P||;
hence (2) of Definition 21 is fulfilled with β = 1.

5. Conclusion and open problems

We conclude with some open problems.
We gave a formula for an almost-tight upper bound on pID for trees, and how to construct in polynomial

time a solution of this size. It would be interesting to determine the exact value and/or an exact algorithm
for trees.

Regarding MIN-IDPC-k, we mentioned that not all graphs admit an identifying k-path cover. Identifiable
graphs have been studied for some other identification problems [5]; it would be interesting to do so in our
context, i.e. studying k-path identifiable graphs.

Moreover, when k is not fixed but part of the input, it is not even clear whether one can check in
polynomial time whether a given graph is k-path identifiable. When k = n for example, such graph needs to
be Hamiltonian. This suggests that it might be NP-hard to decide if a given graph G is k-path identifiable
for some input value k = k(G).

We have settled the complexity of MIN-IDPC-k by showing that it is APX-complete. However, the
question of the complexity of the general MIN-IDPC problem remains open.

Finally, it would be a natural model to measure the quality of the solution using the sum of the lengths
of the paths of the identifying path cover, instead of their number.
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