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Abstract

To identify or equalize wireless transmission channels, or alternatively to evaluate the performance of many wireless
communication algorithms, coefficients or statistical properties of the used transmission channels are often assumed
to be known or can be estimated at the receiver end. For most of the proposed algorithms, the knowledge of
transmission channel statistical properties is essential to detect signals and retrieve data. To the best of our
knowledge, most proposed approaches assume that transmission channels are static and can be modeled by
stationary random variables (uniform, Gaussian, exponential, Weilbul, Rayleigh, etc.). In the majority of sensor networks
or cellular systems applications, transmitters and/or receivers are in motion. Therefore, the validity of static
transmission channels and the underlying assumptions may not be valid. In this case, coefficients and statistical
properties change and therefore the stationary model falls short of making an accurate representation. In order to
estimate the statistical properties (represented by the high-order statistics and probability density function, PDF) of
dynamic channels, we firstly assume that the dynamic channels can be modeled by short-term stationary but long-term
non-stationary random variable (RV), i.e., the RVs are stationary within unknown successive periods but they may
suddenly change their statistical properties between two successive periods. Therefore, this manuscript proposes an
algorithm to detect the transition phases of non-stationary random variables and introduces an indicator based on
high-order statistics for non-stationary transmission which can be used to alter channel properties and initiate the
estimation process. Additionally, PDF estimators based on kernel functions are also developed. The first part of the
manuscript provides a brief introduction for unbiased estimators of the second and fourth-order cumulants. Then, the
non-stationary indicators are formulated. Finally, simulation results are presented and conclusions are derived.

Keywords: Wireless communication; Dynamic transmission channel; Higher-order statistics; Cumulants; Cumulative
distribution function; Kernel density estimators; Hermite basis set; Spline functions; Characteristic functions;
Non-stationary signals

1 Introduction
Unlike discrete transmission channels which have limited
practical value, continuous random transmission chan-
nels are widely accepted and used to illustrate practical
concepts [1]. In numerous proposed algorithms, statis-
tical properties or probability density function (PDF)
of transmission channels are assumed to be perfectly
known or already estimated [2-6]. To analyze the perfor-
mance of various wireless transmission schemes, Simon
and Alouini in [7] have used channel statistical models
and PDF properties. It is widely believed that wireless
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transmission channels can be modeled using stationary
random variables [1,8,9]. We should highlight the fact
that various PDFs have been used in the context of
wireless communications, such as Gausssian, Rayleigh,
log-normal, exponential, one-sided Gaussian distribution,
Hoyt, Weibull, Rice, Nakagami-m, α − μ, and η − κ (see
[10-21] and the references therein). It is worth pointing
out that parametrical estimation methods can be used
if the channel model (or a PDF for the real random
variable (RV)) is selected or identified. Additionally, non-
parametrical estimation methods can also be found in
the literature [22-27]. However, these methods are hard
to be implemented and mostly time consuming and they
strongly relate to the proposed models and applications.
For this main reason, a generic method and few required
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assumptions about the transmission channel are proposed
and discussed in this manuscript.
The recent spread of cellular systems (smart sen-

sors, mobile phones, base stations, satellites, surveillance
devices, traffic radars, etc.) has increased the complexity
of processing algorithms as well as the model of transmis-
sion channels. In fact, in various applications, transceiver
units are in motion. For such systems, the transmission
channels can no longer be considered as static chan-
nels, i.e., they cannot be modeled by stationary random
variables. To overcome this difficulty, most researchers
assume that the transmission channels are static during
the processing timea [28-30].
In this manuscript, the proposed models are improved

by considering that transmission channels are dynamic
channels that can be modeled as non-stationary vari-
ables. It is worth mentioning that for antennas mounted
on moving vehicles or drones, the transmission channels
can be approximated by almost static or slowly evolution-
ary dynamic channels over certain periods. The transition
among these periods can be very fast. In addition, dur-
ing two adjacent periods, transmission channels can have
completely different statistical properties and/or PDFs.
This scenario illustrates a typical scenario of a mobile
phone used in a moving car which is moving among big
buildings in a modern city. It can represent as well the sce-
nario of a drone flying at low altitude in a mountainous
area.
In what follows, we consider that transmission chan-

nels can be modeled as short-term stationary signals
and long-term non-stationary signals (many natural and
physical signals belong to this category, such as speech
signals [31,32]). Herein, we develop an algorithm to accu-
rately estimate the transition times. The algorithm is
based on high-order statistics (HOS). In several study
cases, HOS are shown to be more promising than the
second-order stochastic methods, namely, power, vari-
ance, covariance, and spectra. In fact, HOS have been
used to solve many recent and important telecommuni-
cation problems [33,34], such as blind identification or
equalization, blind separation of sources, and time delay
estimation [35-38]. It is worth mentioning that most of
these HOS algorithms are only based on the second- and
the fourth-order statistics [39]. Once the transition times
are estimated, we should be able to estimate the PDF of the
local stationary random variable (i.e., during a short-term
period).
It is well known that any random variable can be com-

pletely described by its PDF [40]. In many cases, an
accurate estimation of the PDF of physical parameters
of interest (which are random variables) is essential to
achieve our goals. This is while an accurate estimation
of PDFs is still challenging to researchers. The estima-
tion of PDFs is a relatively old problem that has been

considered since the beginning of the last century with
the rise and the development of new and modern com-
plex systems (radars, sonar, and wireless communication
systems). However, in late 1950s, systematic mathemati-
cal approaches have been proposed.One of the pioneering
work in this field is the work presented by Rosenblatt
in [41]. Parzen in [42] formulated the estimation of
PDFs using kernel approaches. Later on, new approaches
emerged to overcome the specification of diverse appli-
cations such as the sum of Gamma densities in Risk
Theory [43] or the sum of exponential random variables
in wireless communication [44]. Other researchers have
focused on the choice of the kernel and smoothing func-
tions [45,46]. The estimation of PDFs using orthogonal
series has been introduced by Schwartz in [47]. In more
recent work, wavelets have been used as a non-parametric
estimation of PDFs [48]. Similar to previous work, Engel
used Haar’s series to estimate PDFs [49]. Using autore-
gressive (AR) models, Kay in [50] proved that PDFs can
be estimated by appealing the theory of power spectral
density (PSD).More recent work reintroduced the estima-
tion of PDF using a windowed Fourier transform [51] or
Hermite’s orthonormal basis set [52]. We should mention
that all the abovementioned work assume that the random
variables are stationary. In countless applications, the sta-
tionarity assumption may be invalid [53]. To the best of
our knowledge, there is no such PDF estimator for non-
stationary random variables. Hence, it is the aim of this
paper to propose a PDF estimator based on a smooth ker-
nel PDF estimator that assumes known transition times.

2 Mathematical model and background
In this paper, we consider the case of real non-stationary
random variablesb. We also assume (1.1 in Appendix 1)
that random variables consisting of transmission chan-
nels are stationary by part [54,55]. While this assump-
tion is less strict than the most widely used assumption
of stationary transmission channels, its consideration is
justified in the case of moving receivers or transmitters.
Hereinafter, Pr(A) stands for the probability of the

event A. Let x1, . . . , xn stand for n independent realiza-
tion of a continuous RV X. In addition, let us denote by
fX(x), FX(x), f̂X(x), and F̂X(x) respectively as the PDF, the
cumulative distribution function (CDF) of X, and their
estimated functions:

FX(x) = Pr(X ≤ x) =
∫ x

−∞
fX(x)dx. (1)

In the following, k(x) denotes a kernel function of x, and
the mathematical expectation (i.e., the mean) of a real RV
X is denoted by

mX = E{X} =
∫
R

x fX(x)dx, (2)
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where E stands for the mathematical expectation. By defi-
nition [56], the qth-ordermomentμq of a stochastic signal
X is

μq = E(Xq) =
∫
R

xqfX(x)dx. (3)

We mentioned earlier that a real random variable X is
completely described by its PDF fX(x). In addition, a ran-
dom variable can also be described by its first �X(u) or
second �X(u) characteristic functions as follows:

�X(u) = E{e jXu} =
∫
R

e jxufX(x)dx. (4)

�X(u) = ln(�X(u)), (5)

where j2 = −1. While the second characteristic function
can be directly obtained from the first one, the first one
is considered as the inverse Fourier transform of the PDF.
Theoretically, PDFs may be obtained by the Fourier trans-
form of �X(u). The Taylor series of the two characteristic
functions yield other important statistical functions which
are the moments and the cumulants [56]:

mk(X) = E{Xk} = (−j)k ∂k�X(u)

∂xk

∣∣∣∣∣
u=0

, (6)

Cumk(X) = (−j)k ∂k�X(u)

∂xk

∣∣∣∣∣
u=0

. (7)

According to the theorem of Leonov-Shiryayev [56],
the rth-order cumulant of X can be calculated from its
moments, using the following formulac [53,57]:

Cumr[X] = Cum[X, . . . ,X]

=
∑

(−1)k−1(k − 1)! E[Xv1] E[Xv2] . . .E[Xvp ].

(8)

Using this relationship, we can evaluate the fourth-order
cumulant of X as

Cum4[X] = E[X4]−4E[X] E[X3]−3E2[X2]+12E2[X]E[X2]

− 6E4[X] .
(9)

For a zero-mean stochastic signal (please see [58] and
the cited references therein),d the second-order cumulant
is equal to the second-order moment and therefore the
fourth-order cumulant becomes

Cum4[X]= E[X4]−3E2[X2] . (10)

The HOS are much easier to be estimated than PDF, as
will be shown in the next section. For this reason, our non-
stationary transition indicator is based on the second-

and fourth-order statistics. In fact, the transition of non-
stationary random variable can generate discontinuity in
its HOS. As the variance of any signal should be different
than zero, then it can be used to identify the existence of
signals. On the other hand, normalized signals have the
same unit variance. Therefore, the variance is not enough
to identify the transition in a general case. Besides that,
the fourth-order cumulants of Gaussian signals are zeros.
For these reasons, we developed a non-stationary transi-
tion indicator based on the variance and the fourth-order
cumulant.

3 Unbiased and adaptive HOS estimators
Let X be a zero-mean stochastic signal where xi is an event
(or a signal sample) ofX (1 ≤ i ≤ N). The classic estimator
of the rth-order moment of X is given by

μ̂r = 1
N

N∑
i=1

xri . (11)

It is easy to verify that (11) is an unbiased estimator
of the rth-order moment of X (i.e., E[μ̂r]= μr). To esti-
mate the fourth-order cumulant of X, we can derive an
estimator from the Leonov-Shiryayev formula (8):

̂Cum4[X]= μ̂4 − 3μ̂2
2. (12)

It is established [59,60] that the estimator in (12) is
a biased estimator and the estimation error decreases
proportional to 1

N . In fact, using (11) and (12) we canwrite

̂Cum4[X] = μ̂4 − 3μ̂2
2 = 1

N

N∑
i=1

x4i − 3
N2

N∑
i,j=1

x2i x2j , (13)

and the estimator expectation becomes

E[̂Cum4[X]] = μ4 − 3
N

(
μ4 + (N − 1)μ2

2
)

= Cum4[X]− 3
N

(
Cum4[X]+2μ2

2
)
.

(14)

Using the Leonov-Shiryayev formula, one can develop
an unbiased estimator for the cumulant ase

̂Cum4[X]= N + 2
N(N − 1)

N∑
i=1

x4i − 3
N(N − 1)

N∑
i, j=1

x2i x2j .

(15)

It is worthmentioning that the above estimators are only
unbiased for stationary signals. In case of non-stationary
signals, adaptive estimators should be developed.
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Let μ̂r{k} be the estimator of the rth-order moment
at the kth iteration, and we can develop the following
adaptive estimators for the second- and the fourth-order
statistics:

μ̂2{k} = (k − 1)μ̂2{k − 1} + x2k
k ,

μ̂4{k} = (k − 1)μ̂4{k − 1} + x4k
k , (16)

̂Cum4[X] {k} = k + 2
k − 1

μ̂4{k} − 3k
k − 1

(μ̂2{k})2,

for 1 < k ≤ N . This algorithm is simple and converges
quickly in the case of stationary signals. Another
adaptive estimator of a fourth-order cross-cumulant
(Cum13(X,Y )) which is more suitable for non-stationary
signals is given by

CN = N − 2
N γCN−1 + 1

N γμ13(X,Y ) + N + 2
N(N − 1)

γ xNy3N

−3γ xNyNμ02(X,Y )−3γ y2Nμ11(X,Y )+(1 − γ )xNy3N

−3(1 − γ )xNyNμ2
02,

(17)

where 0 < γ < 1 is another forgetting factor.

4 PDF estimators
To get an accurate estimation of fX(x), one should use
available observations or measurements (i.e., x1, . . . , xn).
Using Fubini’s theorem [61]f, Rosenblatt in [41] proved
that any estimator f̂X(x) of fX(x) based on the set of xi,
{i = 1, · · ·n}, is biased. However, Parzen in [42] proved
that the Fn(x) is an unbiased estimator F̂X(x) of the CDF,
i.e., E{Fn(x)} = FX(x):

Fn(x) = 1
nCard(xi ≤ x),

where Card denotes the cardinal of a σ -algebra set. Using
the fact that fX(x) = dFX(x)

dx , Parzen proposed an asymptot-
ically unbiased estimator of the PDF as the sum of scaled
and shifted kernel functions:

fn(x) =
∫ ∞

−∞
1
hk

(x − y
h

)
dFn(y) ≈ 1

nh

n∑
i=1

k
(x − xi

h

)
,

given that limn→∞ h(n) = 0 and the kernel k(x) and xk(x)
are Borel’s functions [62]g in L1 function space, which
satisfy few conditions such as [41,47]∫

R

k(x) = 1.

In [42], Parzen suggests few kernel functions including
histograms which are kernel estimators when

k(x) = u(x + 1) − u(x − 1)
2

,

with u(x) being the Heaviside step function.
Using the definition in (4), the PDF fX(x) can be approx-

imated by using the Fourier transform of an estimated
characteristic function [53]. In fact, the average over a
set of realization is an unbiased estimator of the mathe-
matical expectation of a RV. Therefore, the first charac-
teristic function can be approximated using the following
equation:

�̂X(u) = 1
n

n∑
i=1

ej2πuxi . (18)

In [51], the authors mentioned that the Fourier trans-
form of the last equation cannot converge. However, it is
possible to obtain the Fourier transform of the product
between �̂X(u) and a weighting window w(x). In this case
the PDF estimator is given by

f̂X(x) =
∫
R

�̂X(u)w(u)e−j2πuxidu ≈ 1
n

n∑
i=1

w(x − xi).

The above equation can be considered as a kernel esti-
mator. Window length and parameters are the key factors
which can affect the performance of the estimator [51].
To avoid the problem of this approach and apply the
well-established theory of power spectral density, Kay in
[50] proposed an AR model of order p to estimate the
PDF. Parameters of his AR model are estimated using
Yule-Walker equations and Levinson recursion.
Using Gram-Charlier series to expand the PDF in terms

of the normal density and its derivatives, Bowers in [43]
approximated a risk theoretic distribution by the sum of
Gamma RVs. In his expansion, the polynomials which
multiply the PDF of a zero-mean normalized normal PDF
are the Hermite polynomials (see Appendix 2). This study
was generalized by Schwartz in [47].
According to Vannucci [24], there are different types of

non-parametric density estimators: delta sequence esti-
mators (such as kernel, histogram, and orthogonal series
estimators) and penalized maximum likelihood estima-
tors such as spline estimators. She also proved that scaling
functions give a good approximation of smooth functions,
while waveletsh can deal with functions which have local
fluctuations. In order to practically apply wavelet estima-
tors, a truncation should be made [24]. Therefore, the
overall performance depends on the truncation order. An
optimal choice of such order can be determined by min-
imizing the integrated square error or the intergraded
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mean square error. In real-world applications, another
problem can arise related to the evaluation of the scal-
ing and the mother functions at arbitrary points [24]. In
[49], Engel used Haar’s functions to estimate the PDF and
shows that his estimator is equivalent to a histogram on
certain dyadic intervals.
Recently, the authors of [51,52] have compared their

approaches to the abovementioned ones. In fact, Xie and
Wang in [51] showed that an estimator based on the
Fourier transform of the characteristic function gives sim-
ilar results to the AR model PDF estimator proposed
earlier by Kay in [50]. They also showed that in certain
cases, histograms can provide similar overall performance
to previously mentioned estimators. However, Howard in
[52] showed that the Hermite basis estimator can slightly
achieve better results than the estimator based on the
Fourier transform of the characteristic function proposed
in [51]. For these reasons, we only consider the histogram,
theHermite basis estimator and the smooth kernel density
estimator proposed by Bowan in [45,46]. Our simulations
have shown that smooth kernel density has slightly bet-
ter performance than the previous mentioned ones (see
Section 7).
Finally, two useful error measures are proposed to

evaluate the overall performance of various estimators
[41,47,51,52]:

- The integrated error

ε1 = E{| fX(x) − f̂X(x) |}

- The root of the mean-squared error

ε2 =
√
E{| fX(x) − f̂X(x) |2}

5 Representation of non-stationary PDF
Real-world signals can be modeled by wide or quasi non-
stationary random variables [39,63]. In this case, the PDF
is a time-dependent function fX(x, t)where t can be a vec-
tor representing discrete time instants. Let us consider for
example awireless transmission channel h(t)which can be
modeled by a quasi stationary RV [1]. Let us assume now
that h(t) has a Weibull PDF for the first period, a uniform
PDF for the second period, then a Gaussian RV in its last
parts. In this case, it becomes clear that the PDF of h(t)
cannot be represented by simple curve as function of t or
X. Hence, the PDF of non-stationary RV should be plotted
as a function of a RV X and t (see Figure 1).
In fact, classic PDF estimators cannot provide an accu-

rate estimation of the non-stationary signal PDF. By
applying a smooth kernel density estimator over 10,000
independent realization of h(t), a bimodal PDF was
obtained (see Figure 1b). It is clear that the obtained PDF
cannot correctly represent the PDF shown in Figure 1a.

6 Non-stationary transition indicator
In order to estimate the PDF parts of quasi non-stationary
RV, one can easily use the estimator developed in the pre-
vious section to detect the number and the size of the
stationary parts. Once these parts are well identified and
their sizes are relatively enough to estimate a PDF, we
can apply any classic PDF estimator. To make this esti-
mation more robust, cumulants of different order (mainly
the second and the fourth order) can be used to iden-
tify such parts. In fact, Gaussian signals are characterized
by their zero fourth-order cumulant (see Appendix 1). In
these case, the fourth order cannot separate two adjacent
Gaussian parts. However, if these two parts represent two
normal RVs with different means or variances, then the
second or the first moment can be used to identify these
parts. If the two Gaussian parts have the same mean and
variance then they can describe the same RV due to the
basic assumptions about the whiteness of the samples (i.e.,
the realization of X).
Hereinafter, we consider that the non-stationary RV is

formed by successive segments of stationary RV. In order
to estimate the PDF of the non-stationary signal, an esti-
mator of the transition times should be developed. In
order to simplify our discussion and gain insight, a generic
case is considered. Let us consider a zero-mean non-
stationary signal X(t) made by four parts of stationary
random variables as shown in Figure 2:

1. The first part contains 8,000 samples of uniform
random variable included in [−1, 1].

2. The second part is made of 6,000 samples of
zero-mean and unite variance Gaussian signal.

3. The 10,000 samples of a uniform random variable in
[−2, 2] formed the third part.

4. The fourth part is a zero-mean Gaussian signal with
a standard deviation of

√
2.

The fourth-order statistics of the uniform parts are
given as follows:

E[X2] = A2

3
,

E[X4] = A4

5
,

Cum4[X] = −2A4

15
, (19)

where A is the maximum amplitude of X. Figure 3
shows that the proposed adaptive estimators can yield
a good estimation of the HOS. However, these estima-
tors are not quite enough to estimate the HOS and the
transition times with a wide accuracy range. In fact,
the estimators shown in Figure 3 can be considered as



Mansour et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:21 Page 6 of 18
http://asp.eurasipjournals.com/content/2014/1/21

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

f X
(x

,t)

(b)(a)
Figure 1 Theoretical and estimated PDF of non-stationary RV. The estimation is done using smooth kernel density estimators. (a) Theoretical
PDF. (b) Estimated PDF.

noisy signals. To reduce the noise level, we adopted two
steps:

1. First, the obtained signals are filtered using the
smoothing polynomial regression filter proposed by
Savitzky-Golay [64-66]. The main idea of the
Savitzky-Golay filter is to apply a FIR filter such that
its coefficients minimize the mean-squared
approximation error. This filter is used to filter
biomedical signals such as EEG signals (see Figure 4).

2. Second, the noise in the filtered signals are slightly
reduced using a Walsh-Hadamard transform which
is a generalization of discrete Fourier transform [67].
This transformation is also used in biomedical signals
to filter and compress ECG signals (see Figure 5).

In order to smooth the HOS estimator and achieve bet-
ter detection of the transition times, the signal of the
HOS estimator was firstly filtered using a Savitzky-Golay
filter then a Walsh-Hadamard transform truncation fil-
tering techniques is applied. Experimental results showed

that the filtered signals are much more smooth and useful
to reach our goal (see Figure 6).
While the filtered signals are much better smoothed

than the raw signals, they are still relatively noisy to obtain
an accurate estimate of transition time. In fact, Figure 6
shows that the obtained filtered estimators are still suf-
fering from the previously mentioned drawbacks, i.e., the
inaccuracy in the estimation of the HOS and the transition
times.
To address the previously mentioned problems, we

developed the following algorithm:

- First, the PDF of the filtered HOS estimators are
obtained using the kernel PDF estimator (see
Figure 7). Then the maximum values of the obtained
PDF are recorded as the coefficients of a vector called
maxHOS.

- The coefficients of the vector maxHOS are
introduced as the center of clusters. By minimizing
Euclidean distance among the samples of the filtered
HOS estimator, all samples of filtered estimated

0 0.5 1 1.5 2 2.5 3 3.5
x 104

−8

−6

−4

−2

0

2

4

6
Non−Stationary Signal

Figure 2 The considered non-stationary signal.
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Figure 3 Theoretical and estimated values of variances and fourth-order cumulants of non-stationary signals.

cumulants are clustered in rectangular signals which
represent theoretical values of the HOS (see Figure 8).

- Various simulations have been conducted. Our
simulations showed that sometimes the rectangular
clustered signals suffer from local narrow spurious
error windows (see Figure 8). These spurious error
windows are normally very narrow. Hence, by
supposing that the channel is not a highly dynamic
one, i.e., any channel parameter cannot change more
than one time in a short period (for example, the
short period can be the symbol duration). In this case,
one can easily eliminate these windows. In order to
clean out the clustered rectangular signals and
achieve an accurate non-stationary indicator, the
derivative of these signals is evaluated (see Figure 9).

- Let us assume 1.2 in Appendix 1 that the stationary
parts of the channels have more than 1,000 samples
(in many cases, 500 samples were enough to obtain

0 500 1000 1500 2000 2500 3000 3500 4000
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Noisy, in blue, and Filterd using Sgolay filter, in red, ECG signal

Sequency index

M
ag

ni
tu
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Figure 4 A fifth-order Savitzky-Golay filter applied on real EEG
signals.

good results). In this case, each of local narrow
spurious error windows generates two Dirac delta
functions with equal values and opposite signs. Based
on 1.2 in Appendix 1, the two delta functions should
be close to each other within 1,000 samples. Using
this fact, we developed and implemented a recursive
filtering procedure called continuity process (CP) to
eliminate these spurious windows (see Figure 10).
The Matlab code is given in Appendix 3.

- Figure 10 shows that the impact of the local narrow
spurious error windows is completely eliminated.
However, our non-stationary indicator still suffers
from two-step transition problem, i.e., the transition
between two valid states of the cluster rectangular
signals is not immediate (this case can be shown in
Figure 8 around the 14,000th and 24,000th samples).
Using 1.2 in Appendix 1 and the fact that the
two-step transition problem generates two Dirac
delta functions with different values but sharing the
same sign, we developed another process called
two-step transition process to deal with this problem
(see Appendix 3).

- Finally, a clear and accurate non-stationary indicator
is obtained. Our final indicator is the output of an
‘OR’ gate applied on the non-stationary indicator of
various HOS (in our case, we used two HOS, i.e., the
second and the fourth cumulants). The final indicator
is shown in Figure 11. In Figure 12, the synoptic of
our proposed algorithm using smoothing filters and
nearest-neighbor clustering algorithm is presented.

7 PDF estimator for non-stationary signals
In the previous section, the transition between two sta-
tionary parts has been well identified. Hereinafter, we
assumed that the different stationary segments of the
signal are already known and just the PDF of the non-
stationary signal should be estimated. To evaluate their
algorithms, the authors of [50-52] generate a RV X with
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its PDF as a moderated sum of PDF of two uncorrelated
normal RVs:

fX(x) =
2∑

i=1

pi√
2πσi

exp

(
− (x − mi)2

2σ 2
i

)
(20)

where mi and σi are, respectively, the mean and the stan-
dard deviation of the normal RV Xi and p1 + p2 = 1 are
weighting parameters. It was mentioned in [52] without
any proof that the previous PDF shown in equation (20) ‘is
consistent with a random sum of independent RVs’:

X =
M∑
i=1

Xi (21)

where, for example, M ∈ 1, 2, and Pr[M = 1]= p2. We
proved (see Appendix 4) that the sum should be just over
two independent RV and we give the statistical properties
of the newly obtained RV.
It is well known that the overall performance of a his-

togram depends on the number of samples as well as the
theoretical PDF. Performances can deteriorate if the num-
ber of samples is not large enough. On the other hand, if

realization can be repeated many times, then an accurate
estimation of the PDF can be obtained as the average of
all obtained histograms (in Figure 13b, the average is done
using ten iterations). For a large number of samples, the
histogram performs quite well (see Figure 13c).
Our simulations show that the Hermite basis set estima-

tor suffers from two major inconveniences:

1. It depends on the value of ks,
2. It can generate a negative function, see Figure 14.

The smooth kernel estimator proposed in [46] seems
to overcome the previous two mentioned drawbacks (see
Figure 15).

8 Conclusions
In this manuscript, a transition indicator for non-
stationary signals is presented. The new indicator is based
on HOS of quasi non-stationary variables (the random
variables are considered stationary by parts). To estimate
the HOS, unbiased adaptive exponential estimators are
presented.
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Figure 8 Clustering algorithm applied on estimated variances filtered by a Savitzky-Golay filter. Adaptive variance filtered by classification
(left). Adaptive cumulant filtered by classification (right).



Mansour et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:21 Page 10 of 18
http://asp.eurasipjournals.com/content/2014/1/21

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−30

−20

−10

0

10

20

30
Derivative of Filtered adaptive Cumulant 

Figure 9 Derivative of filtered cumulant adaptive estimator.

To reduce the noise level of theHOS estimators, we used
a cascade filtering procedure based on Savitzky-Golay fil-
ters and a truncation of its Walsh Hadamard transform.
Then rectangular signals representing the theoretical val-
ues of HOS are obtained by using clustering algorithm
using the maxima of kernel PDF estimator and minimiz-
ing Euclidean distances.
Simulation studies show that the obtained rectangu-

lar signals can suffer from local narrow spurious error
windows which can be eliminated using a continuity
assumption 1.2 in Appendix 1 and a continuity clean-
ing procedure called continuity process. In addition to
these local narrow spurious error windows, estimated sig-
nals suffer another artifact called the two-step transition
problem. After solving this problem using assumption 1.2
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Figure 10 Indicator of non-stationary transition with continuity
process.
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Figure 11 Indicator of non-stationary transition with continuity
and two-step transition processes.

in Appendix 1 and a continuity procedure, an accurate
transition indicator of non-stationary signals is achieved.
Simulation studies corroborate the performance of our
proposed algorithm and the accuracy of our non-
stationary transition indicator.
Finally, a survey of major PDF estimators is done. A

comparative study is also presented and discussed. The
advantages and drawbacks of major methods are high-
lighted and a theoretical study is provided. Simulation
results show a slight advantage of smooth kernel estima-
tor methods. It is worth mentioning that the histogram
with a large number of samples is still one of the simplest
and efficient estimators. The case of non-stationary pro-
cess was considered and a PDF estimation approach was
discussed.

Endnotes
aHowever, the processing time is not standardized. In

fact, different authors claim that the parameters of the
channel should remain constant during one frame
duration, few hundred symbols, or during the
convergence time of their adaptive algorithms.

bThe fact that the channel is considered as a real
channel is not limiting our approach, as a complex
Gaussian channel could be represented by its modulus as
a Rayleigh channel.

cThe original formula shows the relationship among
the cumulant of r stochastic signals Xi (i = 1, . . . , r) and
their moments of order p, p ≤ r:

Cum[X1, . . . ,Xr] =
∑

(−1)k−1(k − 1)!

× E

⎡⎣∏
i∈v2

Xi

⎤⎦E

⎡⎣∏
j∈v2

Xj

⎤⎦ . . .E

⎡⎣∏
k∈vp

Xk

⎤⎦,

(22)
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Figure 12 Synoptic of our algorithm.

where the addition operation is over all the set of vi (1 ≤
i ≤ p ≤ r) and vi constitutes a partition of {1, . . . , r}, [40].

dIn many applications, the stochastic signal X is a
zero-mean signal. This assumption is not a major one
and it has been used in many studies (please see [58] and
the cited references therein). In fact, by considering this
assumption, the mathematical notations can be
simplified. However, all the proposed steps can be
straightforwardly derived in the case of a non-zero mean
transmission channel. Besides that, the mean can be
estimated and canceled out from the other equations.

eFurther details are given in Appendix 1.
fAccording to Fubini’s theorem [61], a double integral

defined over two measure spacesDa,Db of a measurable
function f (x, y) can be computed using iterated integrals:∫∫

D�,D	
f (x, y)d(x, y) =

∫
D	

(∫
D�

f (x, y)dx
)
dy

=
∫
D�

(∫
D	

f (x, y)dy
)
dx.

gA function f (x) is called Borel’s function if ∀y ∈ A is
an open set, the inverse of f (x), and x = f −1(y) is an
element of a Borel’s set, i.e., Lebesgue measurable set [62].

hWavelets are basis functions which have quite
interesting properties such as their localization in space
and frequency [24].

Appendix 1: high-order statistics estimators
In this section, HOS estimators are developed. Generally,
HOS estimators can be divided into main families: the
arithmetic and the exponential estimators.

1.1 Arithmetic estimators
Let X to be a zero-mean stochastic ergodic signal where
xi is an event (or a signal sample) of X (1 < i < N). In this
case, the arithmetic estimator of the qth-order moment is
given by

μ̂q = 1
N

N∑
i=1

xrq. (23)
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Figure 13 PDF estimators using histograms (theoretical PDF in continuous curve). (a) One iteration and 151 samples; (b) 151 samples
regenerated using ten iterations; (c) 10,000 samples during one iteration.
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Figure 14 PDF estimators using Hermite’s polynomial functions with various values of Ks. Theoretical PDF are in continuous curves. (a)
Ks = 4.5 without correction. (b) Ks = 4.5 with correction. (c) Ks = 7.5 without correction.

This estimator assumes that the signal X is stationary
over N samples. This estimator is a non-biased estimator
(i.e., E(μ̂q) = μq) and its variance is given by

Var(μ̂q) = μ2q − μ2
q

N .

Clearly, it is a consistent estimator; hence for stationary
signals, its variance decreases with an increased num-
ber of samples. An arithmetic estimator of the qth-order
cumulant can be developed from Equation 8:

̂Cumq(X) =
∑

(−1)k−1(k − 1)!μv1μv2 . . . μvp . (24)

It is proved [59,60] that the estimator in (24) is a biased
consistent estimator where the estimation error decreases
proportional to 1

N :

E
(
̂Cumq(X)

)
=

∑q
p=1

(−1)p

Np−1 (p − 1)

×

⎛⎜⎜⎜⎜⎜⎝
μq

+(N − 1)μv1μv1
...

+(N − 1)p−1μv1 · · ·μvp

⎞⎟⎟⎟⎟⎟⎠ .

A non-biased cumulant estimator can be deduced from
the last equation:

̂Cumq(X) =
q∑

p=1
cp(−1)p(p − 1)μv1μv2 . . . μvp , (25)
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Figure 15 Smooth kernel density estimator.
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where the parameters cp depend on the partitions of the
indices vi. These parameters can be estimated as the solu-
tion of q linear equations. Let us consider the fourth-order
cumulant:

̂Cum4(X) = aμ̂4 − 4bμ̂1μ̂3 − 3cμ̂2
2 + 12dμ̂1

2μ̂2 − 6eμ̂1
4.

(26)

In order to make the last estimator unbiased, one should
solve a linear system of equations obtained by compar-
ing term-to-term the expectation of Equation 26 and the
theoretical value given by (9)

a = N3+N2−24N+24
(N−1)(N−2)(N−3) b = N(2N2−10N+9)

2(N−1)(N−2)(N−3)

c = N(N2−N−6)
(N−1)(N−2)(N−3) d = N2(2N−5)

2(N−1)(N−2)(N−3)

e = N3

(N−1)(N−2)(N−3)

(27)

For zero-mean signals, we can easily prove that

E(̂Cum4(X)) = μ4 − 3
N

(
μ4 + (N − 1)μ2

2
)

= Cum4(X) − 3
N

(
Cum4(X) + 2μ2

2
)
.

This means that the following estimator is an unbiased
estimator for the fourth-order cumulant of a zero-mean
stationary signal X:

̂Cum4(X) = N + 2
N − 1

μ̂4 − 3
N − 1

μ̂2
2. (28)

For real-time applications, the estimators should be adap-
tive ones. The estimator (23) is not an adaptive one, but it
is easy to derive an adaptive version:

μ̂q{k} = 1
k

k∑
i=1

xqi = (k − 1)μ̂q{k − 1} + xqk
k , (29)

where μ̂r{k} is the estimator of the rth order moment at
the kth iteration.

1.2 Exponential estimators
Exponential estimators are defined as

μ̂q = (1 − λq)
N∑
i=1

λN−i
q xqi , (30)

where 0 < λq < 1 represents a forgotting factor. This
estimator can be calculated easily in an adaptive way:

μ̂q{k} = λqμ̂q{k − 1} + (1 − λq)xqk . (31)

The latest estimator is biased (E
(
μ̂q

) = (1 − λNq )μq ),
but it is asymptotically non-biased. The main interest in

such estimator resides on the fact that it can give bet-
ter estimation for the moments of non-stationary signals.
Thus, the closest λ to 1, the more past samples are taking
into account. A non-biased exponential estimator can be
written as

μ̂q = 1 − λq
1 − λNq

N∑
i=1

λN−i
q xqi . (32)

Estimator (32) can be also modified to an adaptive version:

μ̂q{k} = 1
1−λNq

(
λq

(
1 − λk−1

q
)

μ̂q{k−1}+(1−λq)xqk
)
.

(33)

An adaptive non-biased estimator of the cumulants could
be derived using (22) and (33). To simplify our discussion,
the fourth-order cumulant unbiased estimator for zero-
mean signals could be developed as

̂Cumq(X){k} = ̂Cumq(X){k − 1} + (1 − γ )Hk

×
(
̂Cumq(X){k − 1}

)
where γ is a forgetting factor and

Hk
(
̂Cumq(X){k−1}

)
= x4k−4x3k μ̂1{k − 1}−3x2kμ̂2{k−1}

+12x2k μ̂1
2{k − 1} − 6μ̂1

4 {k−1}
− ̂Cumq(X){k − 1}

1.3 Adaptive unbiased estimators of the fourth-order
cumulants
A non-biased estimator of fourth-order cross-cumulants
can be obtained from the definition of the cross-
cumulants [68]. In fact let us consider K22 an estimator of
Cum22(X,Y ) defined as

K22 = a
N

∑
i
x2i y2i − b

N2

∑
ij

x2i y2j − 2c
N2

∑
ij

xixjyiyj,

where a, b, and c should be set in order to make K22
a non-biased and consistent estimator. When samples xi
and yi are independent, one can use similar estimators to
these proposed in [69,70]. In the following, we assume that
the samples are independent and identically distributed
(iid) over time but spatially correlated. In this case, one
can prove that K22 become a non-biased and consistent
estimator:

E(K22) = aE
(
X2Y 2)− b

N2

(
NE

(
X2Y 2)− 2c

N2
(
NE

(
X2Y 2)

+N(N−1)E
(
X2)E (

Y 2))+N(N−1)E(XY )2
)
,
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when a = N+2
N−1 and b = c = N

N−1 . Similarly, one can
develop other estimators:

K13 = ̂Cum13(X,Y ) (34)

= N + 2
N(N − 1)

∑
i
xiy3i − 3

N(N − 1)
∑
ij

xiyiy2j

K31 = ̂Cum31(X,Y ) (35)

= N + 2
N(N − 1)

∑
i
x3i yi −

3
N(N − 1)

∑
ij

xiyix2j .

To obtain these estimators, signals are assumed sta-
tionary. The last assumption cannot be satisfied in our
application. Therefore, some modifications should be
considered. Let C13(N) = K13(X,Y ) be the adaptive esti-
mator of the cumulant 3 × 1 using N samples, AN =∑N

i xiy3i and BN = ∑N
ij xiyiy2j . In this case, Equation 35

can be written as

N(N − 1)C13(N) = (N + 2)AN − 3BN . (36)

Hence, we can prove that

N(N + 1)CN+1 = (N + 3)
(
AN + xN+1y3N+1

)
− 3

⎛⎝BN+xN+1yN+1

N+1∑
j=1

y2j + y2N+1

N+1∑
i=1

xiyi

⎞⎠
= N(N − 1)CN + AN + (N + 3)xN+1y3N+1

− 3xN+1yN+1

N∑
j=1

y2j − 3y2N+1

N∑
i=1

xiyi.

Finally, the last equation can be modified to

CN = N − 2
N CN−1 + 1

N μ13(X,Y ) + N + 2
N(N − 1)

xNy3N

−3xNyNμ02(X,Y ) − 3y2Nμ11(X,Y ),

where μnm(X,Y ) = 1
N−1

∑N−1
i=1 xni ymi is the estimator

of E(XnYm) using N − 1 samples. Using the last two
equations, we can derive the final form of our adaptive
fourth-order cumulant estimator:

C31(N) = N − 2
N C31(N − 1)+ 1

N μ31(X,Y ) + N + 2
N(N − 1)

x3NyN

− 3xNyNμ20(X,Y ) − 3x2Nμ11(X,Y ).

Appendix 2: Hermite’s polynomial functions
According to [71], Hermite polynomials are real orthog-
onal polynomials with respect to the weight function
w(x) = e−x2 . The nth-order Hermite polynomial is
defined as follows:

Hn(x) = (−1)nex2 d
ne−x2

dxn .

Two hermite polynomials of orders n and m satisfy the
following properties:

1
2pp√π

∫
R

Hn(x)Hm(x)e−x2dx = δnm

lim
N→∞

( N∑
n=0

Hn(x)
tn
n

)
= e−t2+2tx

Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0,

where δnm is Kronecker’s symbol. It is worth mentioning
that the above recurrence equation is widely used in prac-
tice to estimate the Hermite polynomials. In fact,H0(x) =
1, H1(x) = 2x so H2(x) = 4x2 − 2 and so on. In order
to use Hermite’s basis set, one should define the following
two functions:

bNi (x) =
Hi(x) exp

(−x2
2

)
√
2ii!√π

bi(x) = 1√
ks
bNi

( x
ks

)
,

where ks is the scaling factor, Hi(x) is the Hermite’s poly-
nomial of the ith order. Figure 16 shows the first eight
normalizedHermite polynomial functions, i.e., bi(x)when
ks = 1.

Appendix 3: continuity process algorithm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% DYcum = IntCont(Ycum,threscon)

%Parameters:

% 1- DYcum indicates the discontinuity of

square functions

% 2- Ycum is sum of noisy square functions

% 3- threscon is the threshold continuity

%Notes:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Author: A. Mansour

%Comments:

%Keywords: Cleaning a noisy square

% indication function

%Warnings:

%

%Discussion:

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% For any comment or bug report, please send

% an e-mail to mansour@ieee.org

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function DYcum = IntCont(Ycum,threscon)

DYcum = diff(Ycum);

ndy = find(DYcum ~= 0);%the indices of

non zero value of DYcum
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Figure 16 The first eight normalized Hermite polynomial functions.

VYcum = DYcum(ndy); % non zero values

of DYcum

Dndy = diff(ndy); % intervals of change

SInt = find(Dndy < threscon); %indices of

small intervals

for i = 1 : length(SInt)

if((VYcum(SInt(i))+VYcum(SInt(i)+1))==0)

%error estimated windows create two diracs

% of same values but different signs

DYcum(ndy(SInt(i))) = 0;

%if an error windows is found then the

% change in derivative should be eliminated

DYcum(ndy(SInt(i)+1)) = 0;

VYcum(SInt(i)) = 0;

VYcum(SInt(i)+1) = 0;

end

end

figure;plot(DYcum);

title(‘Output of IntCont using the

continuity process’);

%In some cases, the transition between two

%valid states of the Ycum shows two steps.

%This case could creates two diracs of the

%same sign and close to each other. The

%following code is to eliminate this case.

ndy = find(DYcum ~= 0);%the indices of non

zero value of the modified DYcum

VYcum = DYcum(ndy); % non zero values of

modified DYcum

Dndy = diff(ndy); % intervals of change

SInt = find(Dndy < threscon); %indices of

small intervals for i=1:length(SInt)

if((VYcum(SInt(i))* VYcum(SInt(i)+1))>0)

%transition error estimated windows create

%two diracs of different values but same

%signs

CorrectDirac = DYcum(ndy(SInt(i)))

+ DYcum(ndy(SInt(i)+1));

midledirac = floor((ndy(SInt(i))

+ ndy(SInt(i)+1) )/2);

%an integer index in the middle of

%the transitions

DYcum( midledirac) = CorrectDirac;

DYcum(ndy(SInt(i))) = 0;

%if an error windows is found then

%the change in derivative should be

%eliminated

DYcum(ndy(SInt(i)+1)) = 0;

VYcum(SInt(i)) = 0;

VYcum(SInt(i)+1) = 0;

end

end

figure;plot(DYcum);

title(‘Output of IntCont using continuity

and transition processes’);

Appendix 4
The PDF of a moderate sum of two uncorrelated RVs
Let us consider two independent RVs Xi, i = 1, 2. It is easy
to prove that the proposed random sum can be written as
follows:

X =
M∑
i=1

Xi = X1 + aX2,
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where, M ∈ 1, 2 is a modified Bernoulli RV, and a is a
Bernouilli RV with Pr(a = 1) = 1−Pr(a = 0) = ε. In this
case, one can write:

FX(x) = Pr(X1 + aX2 ≤ x)

= Pr(a = 0)Pr (X1 + aX2 ≤ x | a = 0)+Pr(a = 1)

× Pr (X1 + aX2 ≤ x | a = 1)

= (1 − ε)Pr (X1 ≤ x) + ε Pr (X1 + X2 ≤ x)

= (1 − ε)FX1(x) + εFX1+X2(x).

Using the previous equation, one can deduce [53] that

fX(x) = dFX(x)
dx = (1 − ε)fX1(x) + εfX1(x) ∗ fX2(x),

where * represents the convolution product. If X1
and X2 are two uncorrelated mutually Gaussian RVs,
then Z = X1 + X2 is another normal RV with

N
(
m1 + m2,

√
σ 2
1 + σ 2

2

)
, which proves the proposed

statement.
The mean of the new variable X is given by

m = E{X} = m1 + m2.

Using the definition of the variance and the properties
of a Bernouilli RV, the second moment of the new variable
X becomes

E{X2} = E{X2
1 } + E{a2}E{X2

2 } + 2E{aX1X2}
= σ 2

1 + m2
1 + ε

(
σ 2
2 + m2

2
) + 2εm1m2.

In this case the variance of X could be obtained as follows:

σ 2 = σ 2
1 + εσ 2

2 + 2ε(1 − ε)m2
2.
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