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Abstract

Model-based clustering from finite mixtures of generalized linear models is
a challenging issue which has undergone many recent developments (Hen-
nig and Liao (2013), Hannah, Blei, and Powell (2011), Aitkin (1999)). In
practice, the model selection step is usually performed by using AIC or BIC
penalized criteria. Though, simulations show that they tend to overesti-
mate the actual dimension of the model. These evidence led us to consider
a new criterion close to ICL, firstly introduced in Baudry (2009). Its defi-
nition requires to introduce a contrast embedding an entropic term: using
concentration inequalities, we derive key properties about the convergence
of the associated M-estimator. The consistency of the corresponding classi-
fication criterion then follows depending on some classical requirements on
the penalty term. Finally a simulation study enables to corroborate our the-
oretical results, and shows the effectiveness of the method in a clustering
perspective.

Keywords: Conditional classification likelihood, GLM, Model selection.

1. Introduction

The use of mixture modeling has boomed since the publication of Demp-
ster, N.M., and D.B. (1977), who provided with how to estimate the pa-
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rameters of a finite mixture model thanks to the EM algorithm. Applica-
tions involving finite mixtures are usually focused on dividing explicitly the
population structure into subpopulations, given that we originally do not
know to which subpopulation each individual belongs. This is what is com-
monly called an incomplete data problem, where the crucial point lies in
determining the right number of subpopulations (or components) in order to
perform a model-based clustering at the end. Meanwhile, generalized linear
models (GLM) have undergone vigorous development since the early 1980’s.
Their great popularity may be due to their high flexibility and ability to con-
sider both categorical and continuous risk factors (see McCullagh and Nelder
(1989) and references therein). In many situations, finite mixtures of GLM
can be very useful to deal with a large heterogeneity concerning the impact
of those risk factors on some phenomenon in the population under study.
This could be interpreted as complex interactions between a response and
some covariates.

We focus in this paper on the topic of selecting the “best” GLM mixture;
where “best” should be understood as the best trade-off between the fit and
the clustering confidence (this notion will be more detailed further). In this
view, we study a criterion which was originally proposed by Baudry (2009).
We derive general exponential bounds for this type of criterion, and show
how these results can be applied to the selection of the order (number of
components) of GLM mixtures. Selecting one model within a collection is
an important statistical problem that has undergone vigorous developments
in the literature. In the mixture framework, a universal solution has failed
to emerge to answer the question of selecting the right order. Many articles
have been dedicated to the implementation of algorithmic mixture calibra-
tion techniques. Nevertheless, they often suffer from a lack of theoretical
justification with respect to their convergence properties.
Based on the information theory, Oliviera-Brochado and Vitorino Martins
(2005) point that there are basically two main approaches to infer the order
of a mixture: hypothesis tests, and information and classification criteria.
Garel (2007) highlights the difficulty of establishing multimodality by means
of the generalized likelihood ratio test in the first approach, because the clas-
sical result according to which the test statistic is χ2-distributed is generally
not applicable where mixtures are concerned. Azais, Gassiat, and Mercadier
(2006) and Azais, Gassiat, and Mercadier (2009), building on Gassiat (2002),
offer a detailed solution to overcome this issue. When using information cri-
teria, most authors (McLachlan and Peel (2000), Fraley and Raftery (1998))

2



agree that the BIC criterion gives better results than AIC since it seeks
to minimize the Kullback-Leibler (KL) divergence to the true distribution
(Raftery (1994), Ripley (1995)). For example, the convergence of BIC to esti-
mate the order of gaussian mixtures has been proved in Keribin (1999). More
generally, Gassiat and Van Handen (2013) unrolls the convergence properties
(towards the theoretical model) of a model selected by a likelihood-penalized
criterion (where the penalty linearly depends on the model dimension) in the
context of mixtures. In practice, it is a well known fact that these two cri-
teria tend to overestimate the theoretical number of components, especially
when the model is misspecified (Baudry (2009)). This statement is not re-
ally surprising: AIC, BIC and their variations were originally proposed for
model selection problems in regular statistical models, and thus their usage
is not well-supported or motivated for model selection in non-standard mod-
els such as mixtures. Celeux and Soromenho (1996) and Biernacki (2000)
were the firsts to introduce a classification criterion to avoid this overesti-
mation, namely the ICL criterion. However, ICL consistency has not been
proved in the context of maximum likelihood theory. Baudry (2009) recently
demonstrated the consistency of a slightly modified version of ICL under the
gaussian mixture framework; but no such property has been established in
the context of GLM mixtures.

The aim of this paper is two-fold: obtaining new theoretical results con-
cerning the classification criterion introduced by Baudry (2009), and develop-
ing its application in the context of GLM mixtures. In section 2, we consider
a general mixture framework and define the conditional classification likeli-
hood. By maximizing this contrast, we obtain an estimator of the mixture
parameters which differs from the maximum likelihood estimator. Indeed,
its purpose is to find a compromise between a small classification error and
a good fit to data. We obtain a general bound for the estimation error based
on concentration inequalities. In section 3, general penalized criteria are con-
sidered to select the order of the mixture, and we determine conditions for
the consistency of such procedures. The application of these results to GLM
mixtures follows in section 4. The practical behavior of this approach is then
investigated through simulation studies in section 5.
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2. The maximum conditional classification likelihood estimator

2.1. Context of mixtures

Let (Y ,F) be a measurable space and let (fθ)θ∈Θ be a parametric family
of densities on Y . The parameter θ is assumed to range over a set Θ ∈ B(Rd);
where B(.) denotes the Borel sets and d ≥ 1. For any probability measure ν
on (Θ,B(Θ)), the mixture density fν is defined on Y by

fν(y) =

∫

Θ

fθ(y) ν(dθ) =

∫

Θ

f(y; θ) ν(dθ).

ν is the mixing distribution and (fθ) is called the mixands. If ν has finite
support, fν is a finite mixture density. In the present paper, our interest lies
in discrete mixtures: for any y ∈ Y , the density fν is assumed to belong to
a collection of densities Mg defined as

Mg =
{

f(y;ψg) =

ng∑

i=1

πi fi(y; θi) | ψg = (π1, ..., πng
, θ1, ..., θng

) ∈ Ψg

}

, (1)

where Ψg =
(
Πng

×Θng
)
, with Πng

⊂
{
(π1, ..., πng

) :
∑ng

i=1 πi = 1 and πi ≥ 0
}

and Θng = (θ1, ..., θng
).

We will denote Kg the dimension of the parameter set Ψg. Based on i.i.d.
observations Y = (Y1, . . . , Yn), the corresponding likelihood is given by

∀ψg ∈ Ψg, L(ψg;Y1, ..., Yn) = L(ψg) =
n∏

j=1

ng∑

i=1

πi fi(Yj; θi). (2)

Let us note that the true density function, f 0(y), may not belong to any Mg

in a misspecified case. The maximum likelihood estimator (MLE) ψ̂MLE
g is

defined as the maximizer of L(ψg) over Ψg (in full generality, it may not be

unique). Under some regularity conditions, ψ̂MLE
g converges towards ψMLE

g ,
which is the true parameter when the model is correctly specified.

2.2. A new contrast: the conditional classification likelihood

To figure out in what the optimization by conditional classification likeli-
hood consists, we first have to define the conditional classification likelihood
itself. This function is derived from the general principle of the EM algorithm
and approximates the jth individual likelihood of the complete data (Yj, δj),
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where δj = (δij)i∈J1,ngK is the latent component indicator (more precisely δij
equals 1 if observation j belongs to component i, 0 otherwise).
Several authors have attempted to exploit the link between the likelihood of
the observed data and the likelihood of the complete data (Celeux and Gov-
aert (1992)), originally noted by Hathaway (1986). A specific term appears
while writing the likelihood relatively to the complete data (Y, δ), hereafter
named the classification likelihood: ∀ψg ∈ Ψg,

lnLc(ψg; Y, δ) =
n∑

j=1

ng∑

i=1

δij ln (πi fi(Yj ; θi))

=
n∑

j=1

ng∑

i=1

δij ln
( πifi(Yj ; θi)
∑ng

k=1 πkfk(Yj ; θk)
︸ ︷︷ ︸

τi(Yj ;ψg)

)

+
n∑

j=1

=1
︷ ︸︸ ︷
ng∑

i=1

δij ln

( ng∑

k=1

πkfk(Yj ; θk)

)

︸ ︷︷ ︸

lnL(ψg ;Y)

=
n∑

j=1

ng∑

i=1

δij ln
(

τi(Yj ;ψg)
)

+ lnL(ψg;Y) (3)

τi(Yj;ψg) is the a posteriori probability that observation j belongs to com-
ponent i. The term that binds the two likelihoods is very close to what is
commonly called the entropy:

∀ψg ∈ Ψg, ∀yj ∈ Rd, Ent(ψg; yj) = −
ng∑

i=1

τi(yj;ψg) ln
(

τi(yj;ψg)
)

.

This function results from the expectation (w.r.t.δ) taken in the first member
of the right-hand term in (3), hence the “conditional classification likelihood”
denoted further by Lcc:

lnLcc(ψg;Y) = Eδ [lnLc(ψg;Y, δ)] = lnL(ψg;Y) +
n∑

j=1

ng∑

i=1

Eδ[δij |Yj ] ln
(
τi(Yj ;ψg)

)

= lnL(ψg;Y)− Ent(ψg;Y), (4)

where Ent(ψg;Y) =
∑n

j=1Ent(ψg;Yj).

The entropy is maximum in case of equiprobability (τ1(Yj;ψg) = ... = τng
(Yj;ψg));

and minimum when one of the a posteriori probabilities is worth 1. As high-
lighted by equation (4), this term can be seen as a penalization of the observed
likelihood: the bigger the lack of confidence when making the a posteriori
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classification (via the Bayes rule), the greater the penalization (and vice
versa). In fact, the entropy has a zero limit when τi tends to 0 or 1.
However, it is not differentiable at 0: consider the function h(τi) = τi ln τi,
then we have limτi→0+ h

′

(τi) = −∞. This will be a key point in the definition
of the parameters space that is acceptable to ensure the convergence of the
estimator based on the conditional classification likelihood. We must there-
fore avoid the a posteriori proportions of the mixture tending to zero. Also
essential is to keep in mind that the mixture model should be identifiable,
see McLachlan and Peel (2000) (p.26) for a further discussion on this issue.
More generally, the Lcc expression enables to deduce additional constraints
to be imposed on the parameters space (so that Lcc does not diverge) by
studying its limits. Most of time, this suggests that critical situations corre-
spond mainly to parameters that would not be bounded (Baudry (2009)).
Define the maximum conditional classification likelihood estimator (MLccE)

ψ̂MLccE
g = argmax

ψg∈Ψg

1

n

n∑

j=1

lnLcc(ψg; yj). (5)

It should converge towards ψMLccE
g = argmaxψg∈Ψg

Ef0 [lnLcc(ψg, Y )].
Baudry (2009) provides us with the following example so as to catch in what
ψMLccE
g differs from ψMLE

g . Recall that the latter aims at minimizing the KL
divergence between f(.; ψg) and the theoretical distribution f 0(.).

Example. f 0 is the normal density N (0, 1). Consider the model

M =

{
1

2
fN (.; −µ, σ2) +

1

2
fN (.; µ, σ2) ; µ ∈ R, σ2 ∈ R+∗

}

,

where no further condition is imposed. There is no closed-form expression for
ψMLccE
g in this example (even when σ2 is fixed!). However one can compute it

numerically: (µMLccE, σMLccE) = (0.83,
√
0.31). This means that there exists

a unique maximizer of Ef0 [lnLcc(µ, σ
2)] in Ψg (up to a label switch), which

is obviously different from ψMLE
g . Indeed, ψMLE

g = (µMLE, σMLE) = (0, 1),
which leads to nothing else than the theoretical distribution itself.

It shows that theMLccE does not aim at recovering the theoretical distri-
bution, even when contained in the model under consideration. Here, MLE
has no rule to designate two suitable classes (components) for this model:
it would therefore construct the same two exactly superimposed fN (.; 0, 1).
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The allocation of observations to one or any of these components would then
be completely arbitrary (with probability 0.5, hence maximum entropy). In
contrast, the compromise sought by the MLccE, which penalizes such exces-
sive entropy, leads to find another estimator resulting in greater confidence
in the assignment of observations to mixture components.

2.3. Exponential bound for the MLccE

To shorten the notation, let ψbg = ψMLccE
g and ψ̂g = ψ̂MLccE

g . Define
φ(ψg; y) = lnLcc(ψg; y)− lnLcc(ψ

b
g; y), and d(ψg, ψ

b
g) = −E [φ(ψg;Y )].

If the model is correctly specified, that is if f 0(·) = f(·;ψbg), the function
d is the Kullback-Leibler divergence between f(·;ψg) and f(·;ψbg). In full
generality, this quantity will be different from the Kullback-Leibler, but will
express some pseudo-distance between the parameters ψg and ψbg. Let us
observe that, by definition of ψbg, d(ψg, ψ

b
g) ≥ 0 for all ψg ∈ Ψg.

The main result of this section is to provide an exponential bound for
the deviation probability of the Lcc contrast, centered by its expectation
in the case where lnLcc is bounded. If the contrast is unbounded, up to
some additional moment condition, the exponential bound is perturbed by
a polynomial term multiplied by a constant which is a decreasing function
of the sample size. As a corollary, we deduce bounds for d(ψ̂g, ψ

b
g). Let

us note that, in view of applying our result to GLM inference, we require
to have a result which is adapted to unbounded contrasts lnLcc (for many
GLM distributions, the logarithm of the response density is unbounded).

To obtain the exponential bound, we first require an assumption which
ensures a domination of the components fi as well as of their derivatives.

Assumption 1. Assume that Θ is a compact subset of Rd. Denote by
∇θfi(y; θi) (resp. ∇2

θfi(y; θi)) the vector (resp. the matrix) of partial deriva-
tives of fi with respect to each component of θi. Assume that, for all i =
1, ..., ng and all θ ∈ Θ,

fi(y; θ) ≤ Λ̃0(y) <∞,

fi(y; θ) ≥ Λ̃−(y) > 0,

‖∇θfi(y; θ)‖∞ ≤ Λ̃1(y),

‖∇2
θfi(y; θ)‖∞ ≤ Λ̃2(y),

with supl=0,1,2 Λ̃j(y)Λ̃−(y)
−1 ≤ Ã(y).
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In the case where the functions fi are not bounded, we require some mo-
ment assumptions on both Ã(y) defined in Assumption 1 and some functions
related to the contrast evaluated at the true parameter.

Assumption 2. Using the notations of Assumption 1, assume that there
exists m > 0 such that

E[Ã(Y )m] + E[|∇ψg
ln f(Y ;ψbg)|m] + E[ sup

i=1,...,ng

|gi,ψb
g
(Y )|m] <∞,

where the gi,ψ(y) corresponds to the notations of Lemma B1.

We now state the main result of this section.

Theorem 1. Let

P (x; g) = P

(

sup
ψg∈Ψg

∣
∣
∣
∣
∣

n∑

j=1

{
lnLcc(ψg;Yj)− lnLcc(ψ

b
g;Yj) + d(ψg, ψ

b
g)
}

‖ψg − ψbg‖

∣
∣
∣
∣
∣
> x

)

,

where Ψg is a set of parameters such that, for all ψg = (π1, ..., πng
, θ1, ..., θng

) ∈
Ψg, for all 1 ≤ i ≤ ng, πi ≥ π− > 0. Assume that ψbg is an interior point of
Ψg. Under Assumptions 1 and 2 with m− ε ≥ 2 for some ε ≥ 0, there exists
four constants A3, A4, A5 and A6 (depending on the parameter space Θ and
on the functions fi only) such that

P (x; g) ≤ 4

{

exp

(

−A3 x
2

n

)

+ exp

(

− A4 x

n1/2−ε

)}

+
A5

x(m−ε)/2
,

for x > A6 n
1/2 [lnn]1/2.

Proof. Let φψg
(y) =

{lnLcc(ψg ;y)−lnLcc(ψb
g ;y)}

‖ψg−ψb
g‖

.

We can decompose φψg
(y) = φ1ψg

(y)− φ2ψg
(y), where

φ1ψg
(y) =

{
ln f(y;ψg)− ln f(y;ψbg)

}

‖ψg − ψbg‖
, φ2ψg

(y) =
Ent(ψg, y)− Ent(ψbg, y)

‖ψg − ψbg‖
.

The proof consists of applying the concentration inequality of Proposition A1,
along with Proposition A2 to the classes of functions Fl = {φlψg

: ψg ∈ Ψg}
for l = 1, 2. To apply Proposition A2, we have to check that polynomial
bounds on the covering numbers of these two classes hold (condition (i) in
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Proposition A2). This is done in the first step of the proof. Nevertheless,
Proposition A1 and A2 require the boundedness of the class of functions that
one considers. Therefore it can only be obtained for a truncated version of
these two classes, that is Fl1Fl(y)≤M for some M going to infinity at some
reasonable rate, and some appropriate function Fl. The application of the
concentration inequality to the truncated version is performed in the second
step of the proof. In a third step, the difference between the truncated version
and the remainder term is considered. Finally, in a fourth step of the proof,
all the results are gathered.

Step 1: covering numbers requirements.

Let Ai = {π fi(y; θ) : θ ∈ Θ, π ∈ [π−, 1]} . Due to Assumption 1, a first
order Taylor expansion shows that

∣
∣
∣
∣
∣

ln f(y;ψg)− ln f(y;ψbg)

‖ψg − ψbg‖

∣
∣
∣
∣
∣
≤ ng dΛ̃1(y)

Λ̃−(y)
,

where we recall that d is the dimension of Θ. So the class F1 admits the en-
velope F1(y) = ∇ψg

ln f(y;ψbg)+ng dÃ(y)diam(Ψg), where diam(Ψg) denotes
the diameter of Ψg with respect to ‖ · ‖. Observe that, from Assumption 1,
it follows from a second order Taylor expansion and Lemma 2.13 in Pakes
and Pollard (1989) that NF1(ε,Ai) ≤ C1ε

−V1 , for some constants C1 > 0 and
V1 > 0. Since F1 =

∑ng

i=1 Ai, Lemma 16 in Nolan and Pollard (1987) applies,

so that NF1(ε,F1) ≤ C1n
ngV1
g ε−ngV1 .

For the class F2, the bound on the covering number is a consequence
of Lemma B2. The assumptions of Lemma B1, required to obtain Lemma
B2, clearly hold from Assumption 1, with Λ−(y) = Λ̃(y), Λ0(y) = Λ̃0(y),
Λ1(y) = dΛ̃1(y) + Λ̃0(y), Λ2(y) = 2−1d2Λ̃2(y). The envelope of F2 is F2(y) =
ng[Λ3(y)diam(Ψg) + supi=1,...,ng

|gi,ψ0(y)|], with Λ3(y) = CA(y)3.

Step 2: concentration inequality for truncated classes.

Introduce a constant Mn > 0, and consider the classes FMn

l = Fl1Fl(y)≤Mn

for l = 1, 2, where the functions Fl are the envelope functions defined in Step
1. Observe that the covering number of FMn

l can be bounded using the same
bound as in Step 1, since truncation does not alter this bound (this can be
seen as a consequence of Lemma A.1 in Einmahl and Mason (2000)). Let

P
(l)
1 (x; g) = P

(

sup
ψg∈Ψg

n∑

j=1

{φlψg
(Yj)− E[φlψg

(Y )]}1Fl(Yj)≤Mn
> x

)

.
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To bound this probability, we combine Proposition A1 and Proposition A2.
The requirements (ii) and (iii) of Proposition A2 hold with M = Mn, σ

2 =
E[Fl(Y )2], while the requirement (i) follows from Step 1. Observe that Mn

can be taken large enough so that Mn ≥ σ (in Step 4 of the proof, we
will make Mn tend to infinity). Following the notations of Proposition A2,
introducing a sequence of Rademacher variables (εj)1≤j≤n independent from
(Yj)1≤j≤n, we get

E

[

sup
ψg∈Ψg

∣
∣
∣
∣
∣

n∑

j=1

εjφlψg
(Yj)1Fl(Yj)≤Mn

∣
∣
∣
∣
∣

]

≤ Cg n
1/2[log(Mn)]

1/2, (6)

where Cg is a constant depending on Kg, the dimension of the model.
Taking u = x(2A1)

−1 in Proposition A1, we get, for x > 2A1Cgn
1/2[logMn]

1/2,

that the probability P
(l)
1 (x; g) is bounded by

P

(

sup
ψg∈Ψg

∣
∣
∣
∣
∣

n∑

j=1

{φMn

lψg
(Yj)− E[φMn

lψg
(Y )]}

∣
∣
∣
∣
∣
> A1

(

E

[

sup
ψ∈Ψg

∣
∣
∣
∣
∣

n∑

j=1

εjφlψg
(Yj)1Fl(Yj)≤Mn

∣
∣
∣
∣
∣

]

+ u

))

,

where φMn

lψg
(y) = φlψg

(y)1Fl(y)≤Mn
. Hence, from Proposition A1 with σ2

FM
l

=

σ2, we get

P
(l)
1 (x; g) ≤ 2

{

exp

(

−C2x
2

n

)

+ exp

(

−C3x

Mn

)}

,

with C2 = A2[4A
2
1σ

2]−1, and C3 = A2[2A1]
−1.

Step 3: remainder term.

Define φ
Mc

n

lψg
(y) = φlψg

(y)1Fl(y)>Mn
. We have

∣
∣
∣
∣
∣

n∑

j=1

φ
Mc

n

lψg
(Yj)

∣
∣
∣
∣
∣
≤

n∑

j=1

Fl(Yj)1Fl(Yj)>Mn
=: Sl,Mn

.

Hence, from Markov’s inequality, P(Sl,Mn
> x) ≤ nk

xk
E[Fl(Y )k1Fl(Y )>Mn

].
Next, from Cauchy-Schwarz inequality,

E[Fl(Y )k1Fl(Y )>Mn
] ≤ E[Fl(Y )2k]1/2P(Fl(Y ) > Mn)

1/2.

Again, from Markov’s inequality, P(Fl(Y ) > Mn) ≤ E[Fl(Y )k
′

]

Mk′
n

.

This finally leads to

P(Sl,Mn
> x) ≤ nk

xkM
k′/2
n

E[Fl(Y )k
′

]1/2E[Fl(Y )2k]1/2. (7)
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Take Mn = n1/2−ε. Then nkM
k′/2
n is equal to 1 provided that k′ = 2k+ ε. We

take k′ = m, which corresponds to k = m/2− ε/2. Next,
∣
∣
∣E[φ

Mc
n

lψg
(Y )]

∣
∣
∣ ≤ E

[
Fl(Y )2

]1/2
P(Fl(Y ) > Mn)

1/2

≤ E[Fl(Y )m]1/2

M
m/2
n

E[Fl(Y )2]1/2.

Therefore, since (m− ε) ≥ 2,
∣
∣
∣
∣
∣

n∑

j=1

E[φ
Mc

n

lψg
(Y )]

∣
∣
∣
∣
∣
≤ E[Fl(Y )4k]1/2 E[Fl(Y )2]1/2 =: C5.

Hence, for x > C5,

P

(

sup
ψg∈Ψg

∣
∣
∣
∣
∣

n∑

j=1

E[φ
Mc

n

lψg
(Y )]

∣
∣
∣
∣
∣
> x

)

= 0. (8)

Let

P
(l)
2 (x; g) = P

(

sup
ψg∈Ψg

∣
∣
∣
∣
∣

n∑

j=1

{φMc
n

lψg
(Yj)− E[φ

Mc
n

lψg
(Y )]}

∣
∣
∣
∣
∣
> x

)

.

It follows from (7) and (8) that

P
(l)
2 (x; g) ≤ P(Sl,Mn

> x/2) + P

(

sup
ψg∈Ψg

∣
∣
∣
∣
∣

n∑

j=1

E[φ
Mc

n

lψg
(Y )]

∣
∣
∣
∣
∣
> x/2

)

≤ C6

x(m−ε)/2
,

for x > C5.

Step 4: summary.

We have

P (x; g) ≤
2∑

l=1

P
(l)
1 (x/4; g) + P

(l)
2 (x/4; g).

From Step 2 and 3, we deduce that

P (x; g) ≤ 4

{

exp

(

−C2x
2

16n

)

+ exp

(

− C3x

4Mn

)}

+
C7

x(m−ε)/2
,

for x > max(C5, 2A1Cgn
1/2 logMn). The result follows from the fact that we

can impose Cg large enough so that C5 ≤ 2A1Cgn
1/2 logMn, and from the

fact that we imposed Mn = n1/2−ε/2 at Step 3.
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Remark 1: in the bound of P (x; g), two terms decrease exponentially, while
a third one decreases in a polynomial way. This additional term is the price
to pay for considering potentially unbounded variables Y (see Gassiat (2002)
and Gassiat and Van Handen (2013) for related bounds in the bounded case).
If we increase the assumptions on Y, by assuming the existence of an expo-
nential moment for Ã(y) instead of a finite mth moment for m large enough
in Assumption 2, a better bound can be obtained. This will especially be
the case when one considers bounded variables Y, which lead to a bounded
function Ã(y). In appendix Appendix C, we show how this bound can be
obtained under this more restrictive assumption.

Remark 2: it is easy to see, from the proof of Theorem 1, that a similar
bound holds if lnLcc is replaced by the log-likelihood, and ψbg is the limit of
the MLE. Indeed, the proof is divided into proving bounds for the classical
log-likelihood, and for the entropy term. In this last situation, note that the
restriction of the probabilities πi to values larger than π− is not required.
This restriction in Theorem 1 was imposed by the behavior of the derivative
of the entropy near 0, which could explode otherwise. This problem does not
appear when one only considers the log-likelihood.

2.4. Almost sure rates for the MLccE

Corollary 1. Assume that lnLcc is twice differentiable with respect to ψg,
and denote by Hψg

the Hessian matrix of E[lnLcc(ψg;Y )] evaluated at ψg.
Assume that, for some c > 0, ψTg Hψg

ψg > c‖ψg‖22 for all ψg ∈ Ψg, where
‖ · ‖2 denotes the L2−norm. Then, under the assumptions of Theorem 1, for
m ≥ 2 in Assumption 2 and for the norm ‖ · ‖2, we have

‖ψ̂g − ψbg‖2 = OP

(
1

n1/2

)

.

If m > 4,

‖ψ̂g − ψbg‖2 = Oa.s.

(
[lnn]1/2

n1/2

)

.

Proof. Observe that, from a second order Taylor expansion, d(ψ̂g, ψ
b
g) ≥

c‖ψ̂g − ψbg‖22. By definition of ψ̂g, we have

n∑

j=1

lnLcc(ψ̂g;Yj)− lnLcc(ψ
b
g;Yj)

‖ψ̂g − ψbg‖2
≥ 0.

12



Therefore,

n∑

j=1

{lnLcc(ψ̂g;Yj)− lnLcc(ψ
b
g;Yj)}

‖ψ̂g − ψbg‖2
+
nd(ψ̂g, ψ

b
g)

‖ψ̂g − ψbg‖2
≥ nd(ψ̂g, ψ

b
g)

‖ψ̂g − ψbg‖2
≥ cn‖ψ̂g−ψbg‖2.

Applying Theorem 1, we get, for x > A6n
1/2[lnn]1/2,

P

(

cn‖ψ̂g − ψbg‖2 > x
)

≤ P (x; g) ≤ 4

{

exp

(

−A3x
2

n

)

+ exp

(

− A4x

n1/2−ε

)}

+
A5

x(m−ε)/2
.

Define En(u) = P(n1/2‖ψ̂g − ψbg‖2 > u[lnn]1/2). We have P(En(u)) ≤ P (x; g)

with x = ucn1/2[lnn]1/2, if u > A6. Proving the almost sure rate of Corollary
1 is done by applying the Borel-Cantelli Lemma to the sets {En(u)}n∈N,
for some u large enough. We need to show that for some u large enough,
∑

n≥1 P(En(u)) <∞.
We have, for u > A6,

∞∑

n=1

P(En(u)) ≤
∞∑

n=1

4

nA3u2
+

∞∑

n=1

4 exp
(
−A4n

ε[lnn]1/2u
)
+

∞∑

n=1

A5

um/4cm/2n(m−ε)/2[lnn](m−ε)/2
.

We see that the first sum in the right-hand side is finite provided that u >
A

−1/2
3 . The second sum is finite if ε > 0. The third is finite if m > 4 and ε

taken sufficiently small.
To prove the OP−rate of Corollary 1, we need to show that pn(u) =

P(En(u/[lnn]
1/2)) tends to zero when u tends to infinity. Using the same

arguments as before, for m ≥ 2,

pn(u) ≤ 4 exp(−A3u
2) + 4 exp(−A4[lnn]

1/2u) + 24mA5c
−m/2u−m/2,

where the right-hand side tends to zero when u tends to infinity.

Remark 3: it also follows the proof of Corollary 1 the stronger result

1

n

n∑

j=1

{lnLcc(ψ̂g;Yj)− lnLcc(ψ
b
g;Yj)}

‖ψ̂g − ψbg‖
+

d(ψ̂g, ψ
b
g)

‖ψ̂g − ψbg‖
= Oa.s.

(
[lnn]1/2n−1/2

)
.

This implies

1

n

n∑

j=1

{lnLcc(ψ̂g;Yj)− lnLcc(ψ
b
g;Yj)}+ d(ψ̂g, ψ

b
g) = Oa.s.

(
[lnn]n−1

)
. (9)
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3. A new penalized selection criterion: ICL
∗

As mentioned before, a crucial issue in clustering and mixture analysis is
to determine the appropriate order of the mixture to correctly describe the
data. Biernacki (2000) tried to circumvent the challenge faced by BIC as for
selecting the right number of classes, especially in the case of a misspecified
mixture model. He wanted to emulate the BIC approach by replacing the
observed likelihood by the classification likelihood, and eliminate the prob-
lem of overestimating the order in the mixture. This way, he expected to find
a criterion that allows achieving a better compromise between the classifica-
tion quality and the fit to data. This criterion, called ICL, is henceforth well
suited to issues of population clustering. But a particular attention should
be paid to the definition of the penalty: early works used to consider en-
tropy as part of the penalty. Unfortunately no theoretical result could be
demonstrated from this viewpoint, despite promising results in practical ap-
plications (Biernacki et al. (2006)). Baudry (2009) then proposed to redefine
the ICL criterion by combining it to the Lcc contrast. The penalty thus be-
comes identical to that of BIC, and the estimator (MLccE) used to express
the “new” ICL criterion differs from the maximum likelihood estimator. In
this regard, we have in the previous section shown the strong convergence of
this estimator towards the theoretical parameter of the underlying distribu-
tion under particular regularity conditions. We now focus on the selection
process from a finite collection of nested models Mg, g = {1, ..., G}.

3.1. Previous works on ICL criteria

The ICL criterion was defined on the same basis as the BIC criterion:
Biernacki (2000) suggests to select in the collection the model satisfying

M ICL = argmin
Mg∈{M1,...,MG}

(

− max
ψg∈Ψg

lnLc(ψg;Y, δ) +
Kg

2
lnn
)

.

In practice, one approximates argmaxψg
Lc(ψg;Y, δ) by ψ̂

MLE
g when n gets

large, which is clearly questionable since the contrast is different from the
classical likelihood. Besides, the label vector δ is not observed, so that the
Bayes rule is used on a posteriori probabilities to assign observations to each
mixture component: the predicted label is denoted δ̂B and also depends on
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the MLE. This leads to consider the following procedure:

M ICLa = argmin
Mg∈{M1,...,MG}

(

− lnLc(ψ̂
MLE
g ; Y, δ̂B) +

Kg

2
lnn

)

= argmin
Mg∈{M1,...,MG}

(

− lnL(ψ̂MLE
g ; Y)−

n∑

j=1

ng∑

i=1

δ̂Bij ln τi(Yj ; ψ̂
MLE
g ) +

Kg

2
lnn

)

.

McLachlan and Peel (2000) suggest to use the a posteriori probabilities
τi(y; ψ̂

MLE
g ) instead of δ̂B:

M ICLb = argmin
Mg∈{M1,...,MG}

(

− lnLc(ψ̂
MLE
g ;Y, τ(ψ̂MLE

g )) +
Kg

2
lnn
)

= argmin
Mg∈{M1,...,MG}

(

− lnL(ψ̂MLE
g ; Y) + Ent(ψ̂MLE

g ) +
Kg

2
lnn

︸ ︷︷ ︸

penICLb (Kg)

)

.

In fact, ICLa and ICLb are really different in practice only if ∀i, τi(Yj; ψ̂MLE
g ) ≃

1/ng. Some basic algebra shows that ICLa ≥ ICLb: this means that ICLa
penalizes to a greater extent a model whose observations allocation is un-
certain than does ICLb. Biernacki (2000) and McLachlan and Peel (2000)
have shown, through various simulated and real-life examples, that the ICL
criterion is more robust than the BIC criterion when the model is misspeci-
fied (which is often the case in reality). Granted, BIC and ICL have similar
behaviors when the mixture components are distinctly separated; but ICL
severely penalizes the likelihood in the reverse case, still taking into account
its complexity. However, there is no clear relationship between the maxi-
mum likelihood theory and the entropy. In addition, the criterion defined as
such is not fully satisfactory from a theoretical viewpoint. Indeed, its prop-
erties have not been proved yet: for instance it is not consistent in the sense
that BIC is, because its penalty does not satisfy Nishii’s conditions (Nishii
(1988)). In particular, it is not negligible in front of n:

1

n
Ent(ψg; Y)

P−→
n→∞

Ef0 [Ent(ψg; Y )] > 0

It follows that Ent(ψg; Y) = O(n). Until very recently, there was therefore
clearly a gap between the practical interest aroused by ICL and its theoretical
justification. This was partly plugged by Baudry (2009) who introduced a

15



new version of ICL integrating a “BIC-type penalty”:

M ICL∗

= argmin
Mg∈{M1,...,MG}

(

− lnLcc(ψ̂
MLccE
g ) +

Kg

2
lnn
)

.

In the context of gaussian mixtures, Baudry (2009) has rigorously shown
that the number of components selected using this criterion converges weakly
towards the theoretical one, but only in the bounded case.

3.2. Consistency of selection criteria
Still in the mixture modelling framework, let Mg∗ denote the model with

smallest dimension Kg∗ such that E[lnLcc(ψ
b
g∗)] = maxg=1,...,G E[lnLcc(ψ

b
g)].

The following theorem provides consistency properties of a class of penalized
estimators. Related results can be found in Baudry (2009).

Theorem 2. Consider a collection of models (M1, ...,MG) satisfying the as-
sumptions of Theorem 1.Consider a penalty function pen(Mg) = Kgun, and

ĝ = argmax
g=1,...,G

(

1

n

n∑

j=1

lnLcc(ψ
b
g;Yj)− pen(Mg)

)

.

Then, if m > 2 in Assumption 2 and if nun → ∞, we get ∀g 6= g∗

P(ĝ = g) = o(1).

If m > 4 in Assumption 2, there exists some constant C such that, if nun >
C lnn, almost surely, ĝ 6= g for n large enough and for all g 6= g∗.

Proof. Let
εg = E

[
lnLcc(ψ

b
g∗ ;Y )

]
− E

[
lnLcc(ψ

b
g;Y )

]
.

Decompose

1

n

n∑

j=1

lnLcc(ψ̂g∗ ;Yj)− lnLcc(ψ̂g;Yj) =εg +
1

n

n∑

j=1

{

lnLcc(ψ
b
g∗ ;Yj)− E[lnLcc(ψ

b
g∗ ;Y )]

}

− 1

n

n∑

j=1

{

lnLcc(ψ
b
g;Yj)− E[lnLcc(ψ

b
g;Y )]

}

+
1

n

n∑

j=1

{

lnLcc(ψ̂g∗ ;Yj)− lnLcc(ψ
b
g∗ ;Yj) + d(ψ̂g∗ , ψ

b
g∗)
}

− 1

n

n∑

j=1

{

lnLcc(ψ̂g;Yj)− lnLcc(ψ
b
g;Yj) + d(ψ̂g, ψ

b
g)
}

.

(10)
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It follows from the remark following Corollary 1 that the last two terms in
(10) are Oa.s.([lnn]n

−1) (or OP (n
−1)). We now distinguish two cases: ǫg > 0

and ǫg = 0.

Step 1: ǫg > 0.
It follows from the law of iterated logarithm that
∣
∣
∣
∣
∣

1

n

n∑

j=1

{
lnLcc(ψ

b
g∗ ;Yj)− E[lnLcc(ψ

b
g∗ ;Y )]

}

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1

n

n∑

j=1

{
lnLcc(ψ

b
g;Yj)− E[lnLcc(ψ

b
g;Y )]

}

∣
∣
∣
∣
∣

= Oa.s.([ln lnn]
1/2n−1/2).

Note that these two terms are OP (n
−1/2) if we only focus on OP−rates.

If ĝ = g, we have

1

n

n∑

j=1

lnLcc(ψ̂g∗ ;Yj)− lnLcc(ψ̂g;Yj)− pen(g∗) + pen(g) < 0. (11)

However, due to the previous remarks, if we take un = o(1), the left-hand
side in (11) converges almost surely towards εg (in probability rates, is equal
to εg+ oP (1)). This ensures that Mg is almost surely not selected for n large
enough (in probability rates, P(ĝ = g) = o(1)).

Step 2: ǫg = 0.
Since ψbg = ψbg∗ ,

1

n

n∑

j=1

{
lnLcc(ψ

b
g∗ ;Yj)− E[lnLcc(ψ

b
g∗ ;Y )]

}
=

1

n

n∑

j=1

{
lnLcc(ψ

b
g;Yj)− E[lnLcc(ψ

b
g;Y )]

}
,

and εg = 0, which shows that the first three terms in (10) are zero. This
leads to

1

n

n∑

j=1

lnLcc(ψ̂g∗ ;Yj)− lnLcc(ψ̂g;Yj)−pen(g∗)+pen(g) ≥
{
un +Oa.s.

(
lnn
n

)

un +OP

(
1
n

)
,

since Kg − Kg∗ > 1. This shows that there exists a constant C > 0 such
that, if nun > C lnn, Mg is almost surely not selected when n tends to
infinity. To obtain that P(ĝ = g) = o(1), it is sufficient to have nun tending
to infinity.
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4. Application to the selection of GLM mixture models

4.1. Description of the GLM framework

GLM are a common way to integrate specific risk factors; and notably
include analysis-of-variance models, logit and probit models for quantal re-
sponses, log-linear models and multinomial response models for counts, but
also classical models for survival data. Due to this flexibility, the topic of
GLM has undergone vigorous development in the 1980’s and these models are
nowadays used in many fields among which marketing, economics, medicine,
astronomy. For example, it has become a standard tool in insurance pricing
(Ohlson and Johansson (2010)). GLM have been introduced as an extension
of classical linear models where the response variable is assumed to be the
realization of a random variable belonging to the exponential family. Among
many others, Young and Hunter (2010), Gruen and Leisch (2007) and Leisch
(2008) are currently interested in GLM mixtures. However, no theoretical
development exists about selection criteria that satisfy classifying objectives
in the context of GLM mixtures: this section thus aims at giving the suitable
convergence conditions using the ICL∗ criterion.

To be in line with the previous notations, consider i.i.d. replications
(Yj)1≤j≤n with Yj = (Zj, Xj). Zj is the random response for the jth individ-
ual, and XT

j = (1, Xj1, ..., Xjp) its vector of covariates (we use superscript
T to denote the matrix transpose). Introduce an invertible link function l
such that l(E[Zj]) = XT

j β, with β
T = (β0, ..., βp).

Moreover we assume that the conditional distribution of Zj given Xj belongs
to an exponential family, that is

fZ|X(zj;α, φ) = exp

(
zjα− b(α)

a(φ)
+ c(zj, φ)

)

, (12)

where a(.), b(.) and c(.) are specific functions depending on the model un-
der study, and α and φ are the parameters to be estimated. This is similar
to the vector θ in section 2 if θ = (α1a(φ)

−1, ..., αda(φ)
−1, φ) = (θ̃T , φ).

Hence, it is easy to check that Assumptions 1 and 2 hold with Ã(y) =
z2 exp(z supθ∈Θ |θ̃Tx|). As a matter of fact, the choice of the response dis-
tribution determines how we explicit the relation between α, φ and the pa-
rameters of the outcome distribution itself. The interested reader can learn
more about GLM in the seminal book by McCullagh and Nelder (1989).
Apart from the model selection issue, potential difficulties in GLM mixtures
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concern the identifiability due to the existence of the covariates. Further de-
tails can be found in McLachlan and Peel (2000) (p.146) and Wang (1994),
and special cases about the Poisson regression model as well as the bino-
mial regression model are available in Wang et al. (1996) and Follmann and
Lambert (1991) respectively.

4.2. Lcc likelihoods for two members of the GLM family

We focus here on discrete support mixtures with components all belonging
to the same GLM family, which is actually the type of model resorted to in
practice. One thus considers the set Mg of density functions given by
{

f(.;ψg) =
∑ng

i=1 πi fi(.;αi, φi) | ψg = (π1, ..., πng , α1, ..., αng , φ1, ..., φng) ∈ Ψg

}

,

where fi(.;αi, φi) follows (12).
Our goal is to study deeply the characteristics of the Lcc contrast for most
famous distributions of the GLM family. We would like to formulate the
constraints to impose on the parameters space for each density function, as
well as on auxiliary functions (a(), b() and c()). To simplify, our results are
expressed for a one-dimensional outcome Y but remain valid when Y is k-
dimensional (k > 1). For the sake of conciseness, we focus more intensively
on the two families that will be considered in the simulation study.

Mixture of linear regression models. The gaussian distribution N (µ, σ2) be-
longs to the exponential family, and is thus a potential choice to model the
error in a GLM mixture. The density of this random variable can be writ-
ten in the exponential form (12) by operating the following transformations:
α = µ (hence α ∈ R), b(α) = µ2/2 (so that b(α) ∈ R+), φ = a(φ) = σ2

(hence φ ∈ R+∗), and c(y;φ) = −1/2 (y2/σ2 + ln 2πσ2) (so that c(y;φ) ∈ R).

Considering an identity link and a gaussian error in the GLM mixture model,
we fall back on gaussian mixtures to which shall be added some dependence in
function of observed covariates. Following (4), the conditional classification
likelihood for a single observation yj reads

lnLcc(ψg; yj) = ln







ng∑

i=1

πi
√

2πσ2i

e
−
1

2

(yj −Xjβi)
2

σ2i







+

ng∑

i=1

τi(yj ;ψg) ln τi(yj ;ψg),

where τi(yj;ψg) =
πi

√

2πσ2
i

e
− 1

2

(yj−Xjβi)
2

σ2
i

(
ng∑

k=1

πk
√

2πσ2
k

e
− 1

2

(yj−Xjβk)2

σ2
k

)−1

.
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Clearly, the same constraints as those on gaussian mixtures should be im-
posed: constraints on µi and σ

2
i are to be passed onto βi and σ

2
i , and therefore

also onto αi and φi. One should work in a properly selected compact space to
ensure the bounded nature of the Lcc log-likelihood as well as its derivative.
To summarize, the study of these limits shows that:

i) σ2
i has to be upper-bounded, so that φi should be bounded;

ii) σ2
i should not tend to 0, hence the same constraint on φi;

iii) regression coefficients must remain bounded (∀i ∈ J1, ngK, |βi| 6= ∞).
Given that αi = µi = Xβi, we deduce that αi should also be bounded.

Mixture of Poisson regression models. When dealing with counting data, an-
other option for modeling the error might be a Poisson law P(µ). Table 1
provides the correspondence between µ and the parameters of the exponen-
tial family. The individual likelihood in such a mixture follows (after some
computations): ∀ψg ∈ Ψg,

L(ψg; yj) =

ng∑

i=1

πi e
−eXjβi

[
eXjβi

]yj

yj!
.

From (4), the conditional classification likelihood is thus given by

lnLcc(ψg; yj) = ln

( ng∑

i=1

πie
−eXjβi

[
eXjβi

]yj

yj !

)

+

ng∑

i=1

τi(yj ;ψg) ln τi(yj ;ψg),

where τi(yj;ψg) = πi e
−eXjβi

[
eXjβi

]yj

yj!

(
ng∑

k=1

πk e
−eXjβk

[
eXjβk

]yj

yj!

)−1

.

Let us make the parameter µi tend towards the bounds of its domain
and study the limits of the Lcc likelihood. We obtain, after some tedious
computations, the following constraint: βi coefficients must remain bounded
(∀i ∈ J1, ngK, |βi| 6= ∞), which means the same constraint for parameters αi.

Summary of constraints on the parameter space. Table 1 compiles the overall
results for other classical distribution of the GLM family. It permits to recap
the constrained support of both α and φ parameters, which guarantees the
convergence results of the MLccE estimator and the ICL∗ criterion. Indeed,
it has become obvious that the GLM family members behave in the same
way regarding the constraints to be imposed upon the parameters of the
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Law: Normal Binomial Poisson Gamma Inverse Gaussian
N (µ, σ2) B(n, µ) P(µ) G(µ, ν) IN (µ, σ2)
y ∈ R y ∈ J0, nK y ∈ N y ∈ R+ y ∈ R+

Support µ ∈ R n ∈ N∗ µ ∈ R+ µ ∈ R+∗ µ ∈ R+∗

σ2 ∈ R+∗ µ ∈ [0, 1] ν ∈ R+∗ σ2 ∈ R+∗

α(µ) µ ln[µ/(1− µ)] lnµ −µ−1 −(2µ2)−1

Support α ∈ R α ∈ R α ∈ R α ∈ R−∗ α ∈ R−∗

φ σ2 1 1 ν−1 σ2

Support φ ∈ R+∗ φ ∈ R+∗ φ ∈ R+∗

b(α) α2/2 ln(1 + eα) eα − ln(−α) −(−2α)1/2

c(y, φ) −1

2

(
y2

φ
+ ln(2πφ)

)

ln(Cny
n ) − ln(y!) −1

2

(

ln(2πφy3) +
1

φy

)

µ(α) = E[Y ] α eα/(1 + eα) eα −1/α (−2α)−1/2

|α| < +∞ |α| < +∞ |α| < +∞ |α| < +∞ |α| < +∞
Constraints φ < +∞ φ < +∞ φ < +∞

φ9 0 φ9 0 φ9 0

Table 1: Constraints to be applied on the parameters of the exponential family (12).

exponential family. Provided the dispersion does not tend to 0 and once
the trend parameter and / or the dispersion are bounded, the conditional
classification log-likelihood as well as its derivative (including, particularly,
the entropy derivative) remains finite. These results confirm the necessity to
choose compact sets for the parameters space.

5. Simulation study

In this section, we perform a simulation study to check the previous theo-
retical results. One would like to validate the convergence properties of both
the MLccE and the ICL∗ criterion. By sampling observations coming from
finite mixtures (firstly mixtures of normal regressions, then mixtures of Pois-
son regressions), we show that i) the new estimator seems to tend towards the
true parameter (maximizing the expected log-contrast), ii) the selection cri-
terion looks consistent while being adapted for clustering purposes. Indeed,
the well-known tendency to overestimate the order of the mixture when us-
ing AIC or BIC tends to disappear, which is a very good news since ICL∗

was initially designed to this end. For practical considerations, the latter re-
sult is also interesting because it enables to lower the model dimension: this
should bring more robustness to the parameters estimation, probably leading
to more relevant predictions. Moreover we mecanically lower the probability
to make an error when assigning observations to mixands in less complex
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Table 2: Minimizers of the KL divergence between f0 and the Lcc contrast.

Model class: X True β1 True β2 Lcc minimizer β0
1 Lcc minimizer β0

2

Linear regression ∼ U(0, 1) 1 1.3 0.5 1.66
Poisson regression ∼ U(0, 1) 1.1 1.6 -0.16 1.75

mixture models, a nice and desired feature in a clustering perspective.
For the sake of simplicity, we consider two-component GLM mixtures

with no intercept and a unique covariate: the random design is generated
from a uniform distribution on some interval [a, b]. Thanks to the maximum
likelihood estimation properties, the theoretical maximizer of the classical
log-likelihood is obviously the theoretical parameter itself. On the contrary
and not surprisingly, it could be quite difficult to find the maximizer of the Lcc
contrast because of the entropic term. However, this is the first mandatory
step so as to check the convergence properties of the MLccE.

5.1. Empirical convergence of the MLccE

In the sequel, 10 000 uniformly-distributed observations Xj are sampled
to compute ψ0. In both applications mixture weights are set constant in the
optimization process to gain some computation time, as well as variances
in the normal regression case. We thus have π1 = π2 = 0.5, with stan-
dard deviations σ1 =

√
10, σ2 = 2 in the normal regression mixture setting.

Table 2 gives the theoretical parameters to be reached by our M-estimator,
and Figure 1 illustrates how the Kullback-Leibler divergence between the Lcc
contrast and the true distribution behaves at the MLE neighborhood. Notice
that the theoretical MLccE is not very close to the theoretical MLE (true
parameters), while still being comparable. Now we simulate random samples
of normal and Poisson regression mixtures (respectively with the same true
densities f 0 as previously, see Table 2), and see whether the MLccE tends
towards the Lcc minimizer. The idea is to repeat this procedure 100 times,
and then study the mean and the standard deviation of the estimator values.
This way, the MLccE empirical behaviour can be investigated adequately.
We expect that the mean of the euclidian distance between the MLccE and
the Lcc minimizer tends to 0, with a dispersion that narrows down when
the number of observation increases. Results are summarized in Figure 2,
which confirm this convergence whatever the random variables type. In-
deed, mixtures of linear regressions stand for the continuous case whereas
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Figure 1: KL divergence between the true distribution and the Lcc contrast. On the left:
normal regression mixture. On the right: poisson regression mixture.

mixtures of Poisson regressions represent the discrete case. Despite the high
number of observations, notice that the optimization can still lead to some
erroneous estimations (especially in the Poisson case): this could partly be
explained by the contrast complexity and some difficulties experienced in the
maximization algorithms.

5.2. Illustration of ICL∗ consistency

As Figure 2 suggests, we consider at least 2000 observations to ensure
reasonable convergence properties of the MLccE.
There are two interesting situations in which the consistency of ICL∗ should
be tested: the first one stands for the selection of a mixture density where
components are strongly overlapping, whereas the other one corresponds to
well-separated component densities. Theoretically speaking, the ICL selec-
tion criterion may not be too different from the BIC one in the latter case
because the entropic term must be negligible. In other words, these two cri-
teria should lead to similar results as they use the same estimator (MLE)
apart from that. On the contrary, although the penalty term is exactly alike
for ICL∗ and BIC, the ICL∗ selection process is based on the MLccE. This
is clearly censed to affect the model selection in a different manner, to be
identified in this case study. Of course, it is much more exciting to look at
what is happening with strongly overlapping components. The entropic term
is obviously not negligible in such a case and the selection criteria have no
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Figure 2: Boxplot (100 experiments) MLccE convergence towards the maximizer of the
expected log-contrast. From top to bottom: normal and poisson regression mixtures.
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Table 3: True parameters for the simulation of mixture models.

Mixture parameters: π1 π2 π3 β1 β2 β3 X
Normal regression

Well-separated case 1/3 1/3 1/3 0.5 20 40 ∼ U(1, 2)
Overlapping case 1/3 1/3 1/3 0.5 6 12 ∼ U(1, 2)

Poisson regression

Well-separated case 0.3 0.4 0.3 -0.5 2 4 ∼ U(1, 1.5)
Overlapping case 0.3 0.4 0.3 -1 0.2 0.5 ∼ U(1, 4)

reason to behave analogously. In particular, do we still observe the famous
issue of overestimating g? To overcome the problem of little confidence when
assigning observations to mixture components, the ICL∗ may strongly penal-
ize a mixture density embedding highly overlapping components: naturally,
this should result in a simpler model (which sometimes could even become
too simplistic). To check this, let us consider 30 experiments for which the
following steps are undertaken:

1. (Xj)1≤j≤2000 is sampled from the uniform distribution;

2. draw a 3-component mixture with user-defined parameters;

3. fit 4 different mixture models (from 2 to 5 components): for each one,

(a) find the MLE and MLccE corresponding to the empirical density,
(b) compute the values of the model selection criteria (AIC, BIC and

ICL from the MLE; and ICL∗ from the MLccE);

4. for each model selection criterion, the selected model corresponds to
the minimum over the 4 available criterion values.

This algorithm is performed for both normal regression mixtures and poisson
regression mixtures respectively. Concerning mixture parameters, they are
stored in Table 3 (except for the standard deviations in the normal regression
case which all equal to

√
3). These parameters were randomly chosen, and

we checked that this choice had no influence on our final results to guarantee
their robustness (by changing these values to other coherent ones).
Tables 4 and 5 offers an overview of ICL∗ performance by summarizing the
statistics over these 30 experiments for these two model classes: the goal
is to see whether using the ICL∗ criterion leads to select an appropriate
mixture model, knowing that the true model has only 3 components. In
most of cases, its performance looks satisfactory: it generally avoids the

25



Table 4: Consistency of ICL∗ in the case of mixtures of normal regressions.

Model complexity (# components): 2 3 4 5 % overestimation % right g
Distinct components

AIC 4 8 7 11 60% 27%
BIC 4 8 7 11 60% 27%
ICL 4 9 6 11 57% 30%
ICL∗ 0 21 3 6 30% 70%

Overlapping components

AIC 4 13 5 8 43% 43%
BIC 4 13 5 8 43% 43%
ICL 6 13 5 6 37% 43%
ICL∗ 7 23 0 0 0% 77%

Table 5: Consistency of ICL∗ in the case of mixtures of poisson regressions.

Model complexity (# components): 2 3 4 5 % overestimation % right g
Distinct components

AIC 0 10 12 8 67% 33%
BIC 0 11 12 7 63% 37%
ICL 0 14 10 6 53% 47%
ICL∗ 4 17 3 6 30% 57%

Overlapping components

AIC 2 10 6 12 60% 33%

BIC 2 10 5 13 60% 33%

ICL 20 5 4 1 17% 17%
ICL∗ 11 8 9 0 30% 27%

problem of selecting too much complex mixtures (% overestimation) and
looks better than AIC, BIC and ICL when trying to recover the right number
of components. However, the case of overlapping components in poisson
regression mixtures is somehow problematic in the sense that the percentage
of right predictions for the number of components g is not really satisfying
(even if the probability to overestimate g is once again diminished). This is
certainly linked with what was observed on Figure 2: indeed there are still
come cases where the MLccE is far from the best possible estimator. In this
case, the selection process simply looses it efficiency because it is based on a
poor estimator, and its consistency deteriorates.
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Conclusion

In this paper, we developed a new approach in clustering population
from mixtures of generalized linear models. In this context this is a key
matter since most of model selection criteria such as AIC or BIC have a well-
known tendency to overestimate the order of the mixture. This means that
the actual impact of covariates over the response variable is not adequately
captured. Motivated by this, our technique is based on some theoretical ex-
tensions to the works by Baudry (2009): it embraces both the convergence
of a specific M-estimator (adapted to the clustering purpose) and the con-
sistency of the ICL∗ criterion (a derivative of ICL). The bounds that we
obtained through concentration inequalities hold even in a non-asymptotic
framework. Moreover, they are valid even when the considered density is
unbounded, a crucial feature when dealing with GLM mixtures. Concern-
ing the ICL∗ criterion, empirical studies on simulated gaussian mixtures in
Baudry (2009) reveal that the overestimation of the number of components
tends to disappear: this is also confirmed in our simulation study involving
different GLM members for mixture components. The position of ICL∗ for
segmentation purpose when observing large heterogeneity within the pop-
ulation under study is thus strengthened. For future research it would be
tempting to adapt this concept to other practical matters and seek the the-
oretical properties of such estimators: integrating specific quantities within
the contrast instead of considering them as part of the penalty is innovative,
and should lead to promising developments.

Appendix A. Concentration inequality

In this section, we present the concentration inequality that we use to
derive our exponential bounds. This inequality is due to Talagrand (1994).
We use a formulation of this inequality similar to the one used in Einmahl
and Mason (2005).

Proposition A1. Let F be a pointwise measurable class of functions bounded
by M. Let (εj)1≤j≤n denote an i.i.d. sequence of Rademacher variables in-
dependent from (Yj)1≤j≤n, that is P(εj = 1) = P(εj = −1) = 1/2. Then, we
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have for all u,

P

(

sup
f∈F

‖
n∑

j=1

f(Yj)− E[f(Y )]‖ > A1

{

E

[

sup
f∈F

∥
∥
∥
∥
∥

n∑

j=1

f(Yj)εj

∥
∥
∥
∥
∥

]

+ u

})

≤ 2

{

exp

(

−A2u
2

nσ2
F

)

+ exp

(

−A2u

M

)}

,

with σ2
F = supf∈F V ar(f(Y )), and where A1 and A2 are universal constants.

Proposition A1 introduces the expectation of the supremum of a sym-
metrized sum that can make this inequality difficult to handle in full gen-
erality. Einmahl and Mason (2005) proposed a simple result to bound this
expectation under generic conditions on the class of functions F . Before
stating their result, let us introduce the concept of covering numbers. For
a probability measure Q, define ‖ · ‖2,Q as the L2−norm associated to mea-
sure Q. For a class F with envelope F (that is such that, for all f ∈ F ,
‖f(y)‖ ≤ F (y)), define N(ε, ‖ · ‖2,Q) as the minimal number of balls (with
respect to the ‖ · ‖2,Q−metric) of radius ε required to cover F , and define

NF (ε,F) = sup
Q:Q(F 2)<∞

N(εQ(F 2), ‖ · ‖2,Q).

The proposition below, due to Einmahl and Mason (2005) is valid up to
some control on NF (ε,F) (which should not increase too fast when ε tends
to zero) and some condition on the second order moments in the class F .

Proposition A2. Let F be a pointwise measurable class of functions bounded
by M such that, for some constants C, ν ≥ 1, and 0 ≤ σ ≤M, we have

(i) NM(ε,F) ≤ Cε−ν , for 0 < ε < 1,

(ii) supf∈F E [f(Y,X)2] ≤ σ2,

(iii) M ≤ 1
4ν

√

nσ2/ log(C1M/σ), with C1 = max(e, C1/ν).

Then,

E

[

sup
f∈F

∥
∥
∥
∥
∥

n∑

j=1

f(Yj, Xj)εj

∥
∥
∥
∥
∥

]

≤ A
√

νnσ2 log(C1M/σ).
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Appendix B. Covering numbers

Lemma B1. Let ψbg = (π10, ..., π
b
ng0, θ

b
10, ..., θ

b
ng0), ψ1 = (π11, ..., πngg1, θ11, ..., θng1),

ψ2 = (π11, ..., πng1, θ11, ..., θng1), with
∑ng

i=1 πil = 1 for l = 0, 1, 2. Assume that,
for all i ∈ {1, ..., ng},

|πi1fi(y; θi1)− πi2fi(y; θi2)| ≤ Λ1(y)‖ψ1 − ψ2‖, (B.1)

∣
∣
∣
∣

πi1fi(y; θi1)− πi0fi(θi0; y)

‖ψ1 − ψbg‖
− πi2fi(y; θi2)− πi0fi(θi0; y)

‖ψ2 − ψbg‖

∣
∣
∣
∣

≤ Λ2(y)‖ψ1 − ψ2‖. (B.2)

Moreover, assume that for all θi ∈ Θ, 0 < Λ−(y) ≤ fi(y; θi) ≤ Λ0(y) < ∞,
with, for some function A(y) <∞,

sup
y,l=0,1,2

(
Λj(y)

Λ−(y)

)

≤ A(y). (B.3)

Consider the classes of functions

Gi =

{

y → gi,ψ(y) =
Ent(ψ, y)− Ent(ψbg, y)

‖ψ − ψbg‖
: ψ ∈ Ψg

}

,

with gi,ψ0(y) = limψ→ψb
g
gi,ψ(y). Then, assuming that, for all ψ ∈ Ψg, πl ≥

π− > 0 for all l = 1, ..., ng,

∀(ψ, ψ′) ∈ Ψg, |gi,ψ(y)− gi,ψ′(y)| ≤ Λ3(y)‖ψ − ψ′‖, (B.4)

for some function Λ3(y) ≤ CA(y)3 for some constant C > 0.

Proof. Define, for l = 0, 1, 2,

gl(y) = πilfi(y; θil) +

ng∑

j=1

1j 6=iπjlfj(y; θjl),

hl(y) =
πilfi(y; θil)

gl(y)
.

Write, for l = 0, 2,

h1(y)− hl(y) =
πi1fi(y; θi1)− πilfi(y; θil)

g1(y)

+

{
gl(y)− g1(y)

g1(y)gl(y)

}

πlfi(y; θil). (B.5)
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Observe that g1(y) ≥ Λ−(y), so using equation (B.1), we get

|h1(y)− h2(y)| ≤
Λ1(y)‖ψ1 − ψ2‖

Λ−(y)
+

Λ1(y)Λ0(y)‖ψ1 − ψ2‖
Λ−(y)2

.

Due to assumption (B.3),

|h1(y)− h2(y)| ≤ (A(y) + A(y)2)‖ψ1 − ψ2‖, (B.6)

for some constant A > 0. Next, observe that, again from (B.1),

|h2(y)− h0(y)|
‖ψ2 − ψbg‖

≤ Λ1(y)

Λ−(y)
≤ A(y), (B.7)

where we used again (B.3) and the fact that min(g2(y), g0(y)) ≥ Λ−(y). Using
again (B.5), but this time for l = 0, we get, according to (B.2),
∣
∣
∣
∣

h1(y)− h0(y)

‖ψ1 − ψbg‖
− h2(y)− h0(y)

‖ψ2 − ψbg‖

∣
∣
∣
∣

≤ Λ2(y)‖ψ1 − ψ2‖
Λ−(y)

+
Λ2(y)Λ0(y)‖ψ1 − ψ2‖

Λ−(y)2

≤ (A(y) + A(y)2)‖ψ1 − ψ2‖.

Moreover, note that

| log(h0(y))| ≤
1

h0(y)
, (B.8)

and that
h1(y)

min(h0(y), h1(y))
≤ A(y), (B.9)

from (B.3). Finally, again due to (B.3), note that, for l = 0, 1, 2,

1

hl(y)
≤ A(y)

π−
. (B.10)

Let H(x) = x ln(x). Observe that H(hl(y)) = Ent(ψl; y). Then
decompose
∣
∣
∣
∣

[H(h1(y))−H(h0(y))]

‖ψ1 − ψbg‖
− [H(h2(y))−H(h0(y))]

‖ψ2 − ψbg‖

∣
∣
∣
∣

≤
∣
∣
∣
∣

h1(y)− h0(y)

‖ψ1 − ψbg‖
− h2(y)− h0(y)

‖ψ2 − ψbg‖

∣
∣
∣
∣

×
(

| log(h0(y))|+
h1(y)

min(h0(y), h1(y))

)

+
|h2(y)− h0(y)| |h1(y)− h2(y)|

min(h0(y), h1(y), h2(y))‖ψ2 − ψbg‖
,
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where we used that | log(x/x′)| ≤ |x − x′|/min(x, x′). Combining this with
(B.6), (B.7), (B.8), (B.9) and (B.10) shows that
∣
∣
∣
∣

[H(h1(y))−H(h0(y))]

‖ψ1 − ψbg‖
− [H(h2(y))−H(h0(y))]

‖ψ2 − ψbg‖

∣
∣
∣
∣
≤ Λ3(y)‖ψ1 − ψ2‖,

where

Λ3(y) = (A(y)2 + A(y)3)

(
1

π−
+ 1

)

+
A(y)3

π−
.

Lemma B2. Using the notations of Lemma B1, let Gg =∑ng

i=1 Gi. Then Gg
is a class of functions bounded by G(y) = ng[Λ3(y) diam(Ψg) + gψ0(y)].

NG(ε,Gg) ≤ CnngV
g ε−ngV ,

for some constants C > 0 and V > 0.

Proof. Due to (B.4) in Lemma B1, for all g ∈ Gi, |g(y)| ≤ G̃(y) = Λ3(y) diam(Ψg)+
gψ0(y), where diam(Ψg) denotes the diameter of Ψg for the norm ‖ · ‖. Then,
Gg is bounded by G(y) = ng[Λ3(y) diam(Ψg) + gψ0(y)]. From Lemma 2.13
in Pakes and Pollard (1989), we get NG̃(ε,Gi) ≤ Cε−V , for some constants
C > 0 and V > 0. The result then follows from Lemma 16 in Nolan and
Pollard (1987).

Appendix C. Improvement of the bound of Theorem 1 under an

exponential moment assumption

Assumption 3. Using the notations of Assumption 1, assume that there
exists ρ > 0 such that

E[exp(2ρ[Ã(y) + |∇ψg
ln f(ψbg; y)|+ sup

i=1,...,g
|gi,ψ0(Y )|]) <∞,

where the gi,ψ(y) corresponds to the notations of Lemma B1.

Theorem C1. Using the notations and assumptions of Theorem 1, but with
Assumption 2 replaced by Assumption 3, we have

P (x; g) ≤ 4

{

exp

(

−A3x
2

n

)

+ exp

(

−A4x

lnn

)}

+ A7 exp(−ρx/2),

for x > A6n
1/2[ln lnn]1/2, and some constant A7 > 0.
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Proof. The proof is similar as the one of Theorem 1, but with Step 3 replaced
by:

Step 3’: remainder term using the exponential moments as-

sumption.

Using the same notations as in Step 3 of Theorem 1, from Chernoff’s
inequality

P(Sl,Mn
> x) ≤ exp(−ρx)(1 + E[exp(ρFl(Y ))1Fl(Y )>Mn

])n.

Next, from Cauchy-Schwarz inequality,

E[exp(ρFl(Y ))1Fl(Y )>Mn
] ≤ E[exp(2ρFl(Y ))]1/2P(Fl(Y ) > Mn)

1/2.

Again, from Chernoff’s inequality,

P(Fl(Y ) > Mn) ≤ E[exp(2ρFl(Y ))] exp(−2ρMn).

This finally leads to

P(Sl,Mn
> x) ≤ e−ρx (1 + E[exp(2ρFl(Y ))] exp(−ρMn))

n

≤ exp(−ρx) exp
(
ne−ρMnE[exp(2ρFl(Y ))]

)
.

Taking Mn = ρ−1 lnn leads to

P(Sl,Mn
> x) ≤ Cρ exp(−ρx). (C.1)

Next,
∣
∣
∣E[φ

Mc
n

lψg
(Y )]

∣
∣
∣ ≤ E

[
Fl(Y )2

]1/2
P(Fl(Y ) > Mn)

1/2

≤ E
[
Fl(Y )2

]1/2
E[exp(2ρFl(Y ))]1/2 exp(−ρMn).

Again, since Mn = ρ−1 lnn, we get n exp(−ρMn) = 1. Therefore,
∣
∣
∣
∣
∣

n∑

j=1

E[φ
Mc

n

lψg
(Y )]

∣
∣
∣
∣
∣
≤ E

[
Fl(Y )2

]1/2
E[exp(2ρFl(Y ))]1/2 =: C8.

Hence, for x > C8,

P

(

sup
ψg∈Ψg

∣
∣
∣
∣
∣

n∑

j=1

E[φ
Mc

n

lψg
(Y )]

∣
∣
∣
∣
∣
> x

)

= 0. (C.2)
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Let

P
(l)
2 (x; g) = P

(

sup
ψg∈Ψg

∣
∣
∣
∣
∣

n∑

j=1

{φMc
n

lψg
(Yj)− E[φ

Mc
n

lψg
(Y )]}

∣
∣
∣
∣
∣
> x

)

.

It follows from (C.1) and (C.2) that

P
(l)
2 (x; g) ≤ P(Sl,Mn

> x/2) + P

(

sup
ψg∈Ψg

∣
∣
∣
∣
∣

n∑

j=1

E[φ
Mc

n

lψg
(Y )]

∣
∣
∣
∣
∣
> x/2

)

≤ Cρ exp(−ρx/2),

for x > C8.
Combining the different steps similarly to Step 4 in the proof of Theorem

1 leads to the result.
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Université d’Evry, 1999.

Friderich Leisch. Modelling background noise in finite mixtures of generalized
linear regression models. Technical Report 37, Department of Statistics,
University of Munich, 2008.

P. McCullagh and J. A. Nelder. Generalized linear models, 2nd ed. Mono-
graphs on Statistics and Applied Probability. Chapman and Hall, London,
1989.

G. McLachlan and D. Peel. Finite Mixture Models. Wiley Series In Proba-
bility and Statistics. Wiley, New York, 2000.

R Nishii. Maximum likelihood principle and model selection when the true
model is unspecified. Journal of Multivariate Analysis, 27(2):392–403,
1988.

Deborah Nolan and David Pollard. U -processes: rates of convergence.
Ann. Statist., 15(2):780–799, 1987. ISSN 0090-5364. doi: 10.1214/aos/
1176350374. URL http://dx.doi.org/10.1214/aos/1176350374.

E. Ohlson and B. Johansson. Non-Life Insurance Pricing with Generalized
Linear Models. Springer, 2010.

A. Oliviera-Brochado and F. Vitorino Martins. Assessing the number of
components in mixture models: a review. Working Paper, November 2005.

Ariél Pakes and David Pollard. Simulation and the asymptotics of optimiza-
tion estimators. Econometrica, 57(5):1027–1057, 1989. ISSN 0012-9682.
doi: 10.2307/1913622. URL http://dx.doi.org/10.2307/1913622.

35

http://dx.doi.org/10.1214/aos/1176350374
http://dx.doi.org/10.2307/1913622


A.E. Raftery. Bayesian model selection in social research (with discussion).
Technical Report 94-12, Demography Center Working, University of Wash-
ington, 1994.

B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge Univer-
sity Press. Cambridge, 1995.

M. Talagrand. Sharper bounds for Gaussian and empirical pro-
cesses. Ann. Probab., 22(1):28–76, 1994. ISSN 0091-1798. URL
http://links.jstor.org/sici?sici=0091-1798(199401)22:1<28:

SBFGAE>2.0.CO;2-W&origin=MSN.

P. Wang. Mixed Regression Models for Discrete Data. PhD thesis, University
of British Columbia, Vancouver, 1994.

P. Wang, M.L. Puterman, I. Cockburn, and N.D. Le. Mixed poisson re-
gression models with covariate dependent rates. Biometrics, 52:381–400,
1996.

D.S. Young and D.R. Hunter. Mixtures of regressions with predictor-
dependent mixing proportions. Computational Statistics & Data Analysis,
54(10):2253–2266, 2010.

36

http://links.jstor.org/sici?sici=0091-1798(199401)22:1<28:SBFGAE>2.0.CO;2-W&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199401)22:1<28:SBFGAE>2.0.CO;2-W&origin=MSN

	Introduction
	The maximum conditional classification likelihood estimator
	Context of mixtures
	A new contrast: the conditional classification likelihood
	Exponential bound for the MLccE
	Almost sure rates for the MLccE

	A new penalized selection criterion: ICL*
	Previous works on ICL criteria
	Consistency of selection criteria

	Application to the selection of GLM mixture models
	Description of the GLM framework
	Lcc likelihoods for two members of the GLM family

	Simulation study
	Empirical convergence of the MLccE
	Illustration of ICL* consistency

	Concentration inequality
	Covering numbers
	Improvement of the bound of Theorem 1 under an exponential moment assumption

