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). In practice, the model selection step is usually performed by using AIC or BIC penalized criteria. Though, simulations show that they tend to overestimate the actual dimension of the model. These evidence led us to consider a new criterion close to ICL, firstly introduced in Baudry (2009). Its definition requires to introduce a contrast embedding an entropic term: using concentration inequalities, we derive key properties about the convergence of the associated M-estimator. The consistency of the corresponding classification criterion then follows depending on some classical requirements on the penalty term. Finally a simulation study enables to corroborate our theoretical results, and shows the effectiveness of the method in a clustering perspective.

Introduction

The use of mixture modeling has boomed since the publication of [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF], who provided with how to estimate the pa-rameters of a finite mixture model thanks to the EM algorithm. Applications involving finite mixtures are usually focused on dividing explicitly the population structure into subpopulations, given that we originally do not know to which subpopulation each individual belongs. This is what is commonly called an incomplete data problem, where the crucial point lies in determining the right number of subpopulations (or components) in order to perform a model-based clustering at the end. Meanwhile, generalized linear models (GLM) have undergone vigorous development since the early 1980's. Their great popularity may be due to their high flexibility and ability to consider both categorical and continuous risk factors (see [START_REF] Mccullagh | Monographs on Statistics and Applied Probability[END_REF] and references therein). In many situations, finite mixtures of GLM can be very useful to deal with a large heterogeneity concerning the impact of those risk factors on some phenomenon in the population under study. This could be interpreted as complex interactions between a response and some covariates.

We focus in this paper on the topic of selecting the "best" GLM mixture; where "best" should be understood as the best trade-off between the fit and the clustering confidence (this notion will be more detailed further). In this view, we study a criterion which was originally proposed by [START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF]. We derive general exponential bounds for this type of criterion, and show how these results can be applied to the selection of the order (number of components) of GLM mixtures. Selecting one model within a collection is an important statistical problem that has undergone vigorous developments in the literature. In the mixture framework, a universal solution has failed to emerge to answer the question of selecting the right order. Many articles have been dedicated to the implementation of algorithmic mixture calibration techniques. Nevertheless, they often suffer from a lack of theoretical justification with respect to their convergence properties. Based on the information theory, [START_REF] Oliviera-Brochado | Assessing the number of components in mixture models: a review[END_REF] point that there are basically two main approaches to infer the order of a mixture: hypothesis tests, and information and classification criteria. [START_REF] Garel | Recent asymptotic results in testing for mixtures[END_REF] highlights the difficulty of establishing multimodality by means of the generalized likelihood ratio test in the first approach, because the classical result according to which the test statistic is χ 2 -distributed is generally not applicable where mixtures are concerned. [START_REF] Azais | Asymptotic distribution and power of the likelihood ratio test for mixtures: bounded and unbounded case[END_REF] and [START_REF] Azais | The likelihood ratio test for general mixture models with possibly structural parameters[END_REF], building on [START_REF] Gassiat | Likelihood ratio inequalities with applications to various mixtures[END_REF], offer a detailed solution to overcome this issue. When using information criteria, most authors [START_REF] Mclachlan | Finite Mixture Models. Wiley Series In Probability and Statistics[END_REF], [START_REF] Fraley | How many clusters? which clustering method? answer via model-based cluster analysis[END_REF] agree that the BIC criterion gives better results than AIC since it seeks to minimize the Kullback-Leibler (KL) divergence to the true distribution [START_REF] Raftery | Bayesian model selection in social research (with discussion)[END_REF], [START_REF] Ripley | Pattern Recognition and Neural Networks[END_REF]). For example, the convergence of BIC to estimate the order of gaussian mixtures has been proved in [START_REF] Keribin | Tests de modèles par maximum de vraisemblance[END_REF]. More generally, [START_REF] Gassiat | Consistent order estimation and minimal penalties[END_REF] unrolls the convergence properties (towards the theoretical model) of a model selected by a likelihood-penalized criterion (where the penalty linearly depends on the model dimension) in the context of mixtures. In practice, it is a well known fact that these two criteria tend to overestimate the theoretical number of components, especially when the model is misspecified [START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF]). This statement is not really surprising: AIC, BIC and their variations were originally proposed for model selection problems in regular statistical models, and thus their usage is not well-supported or motivated for model selection in non-standard models such as mixtures. [START_REF] Celeux | An entropy criterion for assessing the number of clusters in a mixture model[END_REF] and [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF] were the firsts to introduce a classification criterion to avoid this overestimation, namely the ICL criterion. However, ICL consistency has not been proved in the context of maximum likelihood theory. [START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF] recently demonstrated the consistency of a slightly modified version of ICL under the gaussian mixture framework; but no such property has been established in the context of GLM mixtures.

The aim of this paper is two-fold: obtaining new theoretical results concerning the classification criterion introduced by [START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF], and developing its application in the context of GLM mixtures. In section 2, we consider a general mixture framework and define the conditional classification likelihood. By maximizing this contrast, we obtain an estimator of the mixture parameters which differs from the maximum likelihood estimator. Indeed, its purpose is to find a compromise between a small classification error and a good fit to data. We obtain a general bound for the estimation error based on concentration inequalities. In section 3, general penalized criteria are considered to select the order of the mixture, and we determine conditions for the consistency of such procedures. The application of these results to GLM mixtures follows in section 4. The practical behavior of this approach is then investigated through simulation studies in section 5.

The maximum conditional classification likelihood estimator

Context of mixtures

Let (Y, F) be a measurable space and let (f θ ) θ∈Θ be a parametric family of densities on Y. The parameter θ is assumed to range over a set Θ ∈ B(R d ); where B(.) denotes the Borel sets and d ≥ 1. For any probability measure ν on (Θ, B(Θ)), the mixture density f ν is defined on Y by

f ν (y) = Θ f θ (y) ν(dθ) = Θ f (y; θ) ν(dθ).
ν is the mixing distribution and (f θ ) is called the mixands. If ν has finite support, f ν is a finite mixture density. In the present paper, our interest lies in discrete mixtures: for any y ∈ Y, the density f ν is assumed to belong to a collection of densities M g defined as

M g = f (y; ψ g ) = ng i=1 π i f i (y; θ i ) | ψ g = (π 1 , ..., π ng , θ 1 , ..., θ ng ) ∈ Ψ g , (1) 
where Ψ g = Π ng × Θ ng , with Π ng ⊂ (π 1 , ..., π ng ) : ng i=1 π i = 1 and π i ≥ 0 and Θ ng = (θ 1 , ..., θ ng ). We will denote K g the dimension of the parameter set Ψ g . Based on i.i.d. observations Y = (Y 1 , . . . , Y n ), the corresponding likelihood is given by

∀ψ g ∈ Ψ g , L(ψ g ; Y 1 , ..., Y n ) = L(ψ g ) = n j=1 ng i=1 π i f i (Y j ; θ i ).
(2)

Let us note that the true density function, f 0 (y), may not belong to any M g in a misspecified case. The maximum likelihood estimator (M LE) ψMLE g is defined as the maximizer of L(ψ g ) over Ψ g (in full generality, it may not be unique). Under some regularity conditions, ψMLE g converges towards ψ M LE g , which is the true parameter when the model is correctly specified.

A new contrast: the conditional classification likelihood

To figure out in what the optimization by conditional classification likelihood consists, we first have to define the conditional classification likelihood itself. This function is derived from the general principle of the EM algorithm and approximates the j th individual likelihood of the complete data (Y j , δ j ), where δ j = (δ ij ) i∈ 1,ng is the latent component indicator (more precisely δ ij equals 1 if observation j belongs to component i, 0 otherwise). Several authors have attempted to exploit the link between the likelihood of the observed data and the likelihood of the complete data [START_REF] Celeux | A classification em algorithm for clustering and two stochastic versions[END_REF]), originally noted by [START_REF] Hathaway | A constrained em algorithm for univariate normal mixtures[END_REF]. A specific term appears while writing the likelihood relatively to the complete data (Y, δ), hereafter named the classification likelihood:

∀ψ g ∈ Ψ g , ln L c (ψ g ; Y, δ) = n j=1 ng i=1 δ ij ln (π i f i (Y j ; θ i )) = n j=1 ng i=1 δ ij ln π i f i (Y j ; θ i ) ng k=1 π k f k (Y j ; θ k ) τ i (Y j ;ψg) + n j=1 =1 ng i=1 δ ij ln ng k=1 π k f k (Y j ; θ k ) ln L(ψg;Y) = n j=1 ng i=1 δ ij ln τ i (Y j ; ψ g ) + ln L(ψ g ; Y) (3) 
τ i (Y j ; ψ g ) is the a posteriori probability that observation j belongs to component i. The term that binds the two likelihoods is very close to what is commonly called the entropy:

∀ψ g ∈ Ψ g , ∀y j ∈ R d , Ent(ψ g ; y j ) = - ng i=1 τ i (y j ; ψ g ) ln τ i (y j ; ψ g ) .
This function results from the expectation (w.r.t.δ) taken in the first member of the right-hand term in (3), hence the "conditional classification likelihood" denoted further by L cc :

ln L cc (ψ g ; Y) = E δ [ln L c (ψ g ; Y, δ)] = ln L(ψ g ; Y) + n j=1 ng i=1 E δ [δ ij |Y j ] ln τ i (Y j ; ψ g ) = ln L(ψ g ; Y) -Ent(ψ g ; Y), (4) 
where Ent(ψ g ; Y) = n j=1 Ent(ψ g ; Y j ). The entropy is maximum in case of equiprobability (τ 1 (Y j ; ψ g ) = ... = τ ng (Y j ; ψ g )); and minimum when one of the a posteriori probabilities is worth 1. As highlighted by equation (4), this term can be seen as a penalization of the observed likelihood: the bigger the lack of confidence when making the a posteriori classification (via the Bayes rule), the greater the penalization (and vice versa). In fact, the entropy has a zero limit when τ i tends to 0 or 1. However, it is not differentiable at 0: consider the function h(τ i ) = τ i ln τ i , then we have lim τ i →0 + h ′ (τ i ) = -∞. This will be a key point in the definition of the parameters space that is acceptable to ensure the convergence of the estimator based on the conditional classification likelihood. We must therefore avoid the a posteriori proportions of the mixture tending to zero. Also essential is to keep in mind that the mixture model should be identifiable, see [START_REF] Mclachlan | Finite Mixture Models. Wiley Series In Probability and Statistics[END_REF] (p.26) for a further discussion on this issue. More generally, the L cc expression enables to deduce additional constraints to be imposed on the parameters space (so that L cc does not diverge) by studying its limits. Most of time, this suggests that critical situations correspond mainly to parameters that would not be bounded [START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF]). Define the maximum conditional classification likelihood estimator (M L cc E)

ψMLccE g = arg max ψg∈Ψg 1 n n j=1 ln L cc (ψ g ; y j ).
(5) [START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF] provides us with the following example so as to catch in what ψ M LccE g differs from ψ M LE g . Recall that the latter aims at minimizing the KL divergence between f (.; ψ g ) and the theoretical distribution f 0 (.).

It should converge towards ψ M LccE g = arg max ψg∈Ψg E f 0 [ln L cc (ψ g , Y )].
Example. f 0 is the normal density N (0, 1). Consider the model

M = 1 2 f N (.; -µ, σ 2 ) + 1 2 f N (.; µ, σ 2 ) ; µ ∈ R, σ 2 ∈ R + * ,
where no further condition is imposed. There is no closed-form expression for ψ M LccE g in this example (even when σ 2 is fixed!). However one can compute it numerically: (µ M LccE , σ M LccE ) = (0.83, √ 0.31). This means that there exists a unique maximizer of

E f 0 [ln L cc (µ, σ 2 )] in Ψ g (up to a label switch), which is obviously different from ψ M LE g . Indeed, ψ M LE g = (µ M LE , σ M LE ) = (0, 1)
, which leads to nothing else than the theoretical distribution itself.

It shows that the M L cc E does not aim at recovering the theoretical distribution, even when contained in the model under consideration. Here, M LE has no rule to designate two suitable classes (components) for this model: it would therefore construct the same two exactly superimposed f N (.; 0, 1).

The allocation of observations to one or any of these components would then be completely arbitrary (with probability 0.5, hence maximum entropy). In contrast, the compromise sought by the M L cc E, which penalizes such excessive entropy, leads to find another estimator resulting in greater confidence in the assignment of observations to mixture components.

Exponential bound for the M L cc E

To shorten the notation, let

ψ b g = ψ M LccE g and ψg = ψMLccE g . Define φ(ψ g ; y) = ln L cc (ψ g ; y) -ln L cc (ψ b g ; y), and d(ψ g , ψ b g ) = -E [φ(ψ g ; Y )]. If the model is correctly specified, that is if f 0 (•) = f (•; ψ b g )
, the function d is the Kullback-Leibler divergence between f (•; ψ g ) and f (•; ψ b g ). In full generality, this quantity will be different from the Kullback-Leibler, but will express some pseudo-distance between the parameters ψ g and ψ b g . Let us observe that, by definition of ψ b g , d(ψ g , ψ b g ) ≥ 0 for all ψ g ∈ Ψ g . The main result of this section is to provide an exponential bound for the deviation probability of the L cc contrast, centered by its expectation in the case where ln L cc is bounded. If the contrast is unbounded, up to some additional moment condition, the exponential bound is perturbed by a polynomial term multiplied by a constant which is a decreasing function of the sample size. As a corollary, we deduce bounds for d( ψg , ψ b g ). Let us note that, in view of applying our result to GLM inference, we require to have a result which is adapted to unbounded contrasts ln L cc (for many GLM distributions, the logarithm of the response density is unbounded).

To obtain the exponential bound, we first require an assumption which ensures a domination of the components f i as well as of their derivatives.

Assumption 1. Assume that Θ is a compact subset of R d . Denote by ∇ θ f i (y; θ i ) (resp. ∇ 2 θ f i (y; θ i ))
the vector (resp. the matrix) of partial derivatives of f i with respect to each component of θ i . Assume that, for all i = 1, ..., n g and all θ ∈ Θ,

f i (y; θ) ≤ Λ0 (y) < ∞, f i (y; θ) ≥ Λ-(y) > 0, ∇ θ f i (y; θ) ∞ ≤ Λ1 (y), ∇ 2 θ f i (y; θ) ∞ ≤ Λ2 (y), with sup l=0,1,2 Λj (y) Λ-(y) -1 ≤ Ã(y).
In the case where the functions f i are not bounded, we require some moment assumptions on both Ã(y) defined in Assumption 1 and some functions related to the contrast evaluated at the true parameter.

Assumption 2. Using the notations of Assumption 1, assume that there exists m > 0 such that

E[ Ã(Y ) m ] + E[|∇ ψg ln f (Y ; ψ b g )| m ] + E[ sup i=1,...,ng |g i,ψ b g (Y )| m ] < ∞,
where the g i,ψ (y) corresponds to the notations of Lemma B1.

We now state the main result of this section.

Theorem 1. Let

P (x; g) = P sup ψg∈Ψg n j=1 ln L cc (ψ g ; Y j ) -ln L cc (ψ b g ; Y j ) + d(ψ g , ψ b g ) ψ g -ψ b g > x ,
where Ψ g is a set of parameters such that, for all

ψ g = (π 1 , ..., π ng , θ 1 , ..., θ ng ) ∈ Ψ g , for all 1 ≤ i ≤ n g , π i ≥ π -> 0. Assume that ψ b
g is an interior point of Ψ g . Under Assumptions 1 and 2 with mε ≥ 2 for some ε ≥ 0, there exists four constants A 3 , A 4 , A 5 and A 6 (depending on the parameter space Θ and on the functions f i only) such that

P (x; g) ≤ 4 exp - A 3 x 2 n + exp - A 4 x n 1/2-ε + A 5 x (m-ε)/2 , for x > A 6 n 1/2 [ln n] 1/2 . Proof. Let φ ψg (y) = {ln Lcc(ψg;y)-ln Lcc(ψ b g ;y)} ψg-ψ b g . We can decompose φ ψg (y) = φ 1ψg (y) -φ 2ψg (y), where φ 1ψg (y) = ln f (y; ψ g ) -ln f (y; ψ b g ) ψ g -ψ b g , φ 2ψg (y) = Ent(ψ g , y) -Ent(ψ b g , y) ψ g -ψ b g .
The proof consists of applying the concentration inequality of Proposition A1, along with Proposition A2 to the classes of functions F l = {φ lψg : ψ g ∈ Ψ g } for l = 1, 2. To apply Proposition A2, we have to check that polynomial bounds on the covering numbers of these two classes hold (condition (i) in Proposition A2). This is done in the first step of the proof. Nevertheless, Proposition A1 and A2 require the boundedness of the class of functions that one considers. Therefore it can only be obtained for a truncated version of these two classes, that is F l 1 F l (y)≤M for some M going to infinity at some reasonable rate, and some appropriate function F l . The application of the concentration inequality to the truncated version is performed in the second step of the proof. In a third step, the difference between the truncated version and the remainder term is considered. Finally, in a fourth step of the proof, all the results are gathered.

Step 1: covering numbers requirements.

Let A i = {π f i (y; θ) : θ ∈ Θ, π ∈ [π -, 1]} . Due to Assumption 1, a first order Taylor expansion shows that ln f (y; ψ g ) -ln f (y; ψ b g ) ψ g -ψ b g ≤ n g d Λ1 (y) Λ-(y) ,
where we recall that d is the dimension of Θ. So the class F 1 admits the envelope

F 1 (y) = ∇ ψg ln f (y; ψ b g ) + n g d Ã(y)diam(Ψ g )
, where diam(Ψ g ) denotes the diameter of Ψ g with respect to • . Observe that, from Assumption 1, it follows from a second order Taylor expansion and Lemma 2.13 in [START_REF] Pakes | Simulation and the asymptotics of optimization estimators[END_REF] [START_REF] Nolan | U -processes: rates of convergence[END_REF] applies, so that

) that N F 1 (ε, A i ) ≤ C 1 ε -V 1 , for some constants C 1 > 0 and V 1 > 0. Since F 1 = ng i=1 A i , Lemma 16 in
N F 1 (ε, F 1 ) ≤ C 1 n ngV 1 g ε -ngV 1 .
For the class F 2 , the bound on the covering number is a consequence of Lemma B2. The assumptions of Lemma B1, required to obtain Lemma B2, clearly hold from Assumption 1, with Λ

-(y) = Λ(y), Λ 0 (y) = Λ0 (y), Λ 1 (y) = d Λ1 (y) + Λ0 (y), Λ 2 (y) = 2 -1 d 2 Λ2 (y). The envelope of F 2 is F 2 (y) = n g [Λ 3 (y)diam(Ψ g ) + sup i=1,...,ng |g i,ψ 0 (y)|], with Λ 3 (y) = CA(y) 3 .
Step 2: concentration inequality for truncated classes. Introduce a constant M n > 0, and consider the classes F Mn l = F l 1 F l (y)≤Mn for l = 1, 2, where the functions F l are the envelope functions defined in Step 1. Observe that the covering number of F Mn l can be bounded using the same bound as in Step 1, since truncation does not alter this bound (this can be seen as a consequence of Lemma A.1 in [START_REF] Einmahl | An empirical process approach to the uniform consistency of kernel-type function estimators[END_REF]). Let

P (l) 1 (x; g) = P sup ψg∈Ψg n j=1 {φ lψg (Y j ) -E[φ lψg (Y )]}1 F l (Y j )≤Mn > x .
To bound this probability, we combine Proposition A1 and Proposition A2. The requirements (ii) and (iii) of Proposition A2 hold with M = M n , σ 2 = E[F l (Y ) 2 ], while the requirement (i) follows from Step 1. Observe that M n can be taken large enough so that M n ≥ σ (in Step 4 of the proof, we will make M n tend to infinity). Following the notations of Proposition A2, introducing a sequence of Rademacher variables (ε j ) 1≤j≤n independent from (Y j ) 1≤j≤n , we get

E sup ψg∈Ψg n j=1 ε j φ lψg (Y j )1 F l (Y j )≤Mn ≤ C g n 1/2 [log(M n )] 1/2 , ( 6 
)
where C g is a constant depending on K g , the dimension of the model.

Taking u = x(2A 1 ) -1 in Proposition A1, we get, for x > 2A 1 C g n 1/2 [log M n ] 1/2 , that the probability P (l) 1 (x; g) is bounded by P sup ψg∈Ψg n j=1 {φ Mn lψg (Y j ) -E[φ Mn lψg (Y )]} > A 1 E sup ψ∈Ψg n j=1 ε j φ lψg (Y j )1 F l (Y j )≤Mn + u ,
where φ Mn lψg (y) = φ lψg (y)1 F l (y)≤Mn . Hence, from Proposition A1 with σ 2

F M l = σ 2 , we get P (l) 1 (x; g) ≤ 2 exp - C 2 x 2 n + exp - C 3 x M n , with C 2 = A 2 [4A 2 1 σ 2 ] -1 , and C 3 = A 2 [2A 1 ] -1 . Step 3: remainder term. Define φ M c n lψg (y) = φ lψg (y)1 F l (y)>Mn . We have n j=1 φ M c n lψg (Y j ) ≤ n j=1 F l (Y j )1 F l (Y j )>Mn =: S l,Mn .
Hence, from Markov's inequality, P(S l,Mn > x)

≤ n k x k E[F l (Y ) k 1 F l (Y )>Mn ]. Next, from Cauchy-Schwarz inequality, E[F l (Y ) k 1 F l (Y )>Mn ] ≤ E[F l (Y ) 2k ] 1/2 P(F l (Y ) > M n ) 1/2 . Again, from Markov's inequality, P(F l (Y ) > M n ) ≤ E[F l (Y ) k ′ ] M k ′ n .
This finally leads to

P(S l,Mn > x) ≤ n k x k M k ′ /2 n E[F l (Y ) k ′ ] 1/2 E[F l (Y ) 2k ] 1/2 . (7) Take M n = n 1/2-ε . Then n k M k ′ /2 n is equal to 1 provided that k ′ = 2k + ε. We take k ′ = m, which corresponds to k = m/2 -ε/2. Next, E[φ M c n lψg (Y )] ≤ E F l (Y ) 2 1/2 P(F l (Y ) > M n ) 1/2 ≤ E[F l (Y ) m ] 1/2 M m/2 n E[F l (Y ) 2 ] 1/2 . Therefore, since (m -ε) ≥ 2, n j=1 E[φ M c n lψg (Y )] ≤ E[F l (Y ) 4k ] 1/2 E[F l (Y ) 2 ] 1/2 =: C 5 .
Hence, for x > C 5 ,

P sup ψg∈Ψg n j=1 E[φ M c n lψg (Y )] > x = 0. (8) 
Let

P (l) 2 (x; g) = P sup ψg∈Ψg n j=1 {φ M c n lψg (Y j ) -E[φ M c n lψg (Y )]} > x .
It follows from ( 7) and (8) that

P (l) 2 (x; g) ≤ P(S l,Mn > x/2) + P sup ψg∈Ψg n j=1 E[φ M c n lψg (Y )] > x/2 ≤ C 6 x (m-ε)/2 , for x > C 5 .
Step 4: summary. We have

P (x; g) ≤ 2 l=1 P (l) 1 (x/4; g) + P (l) 2 (x/4; g).

From

Step 2 and 3, we deduce that

P (x; g) ≤ 4 exp - C 2 x 2 16n + exp - C 3 x 4M n + C 7 x (m-ε)/2 , for x > max(C 5 , 2A 1 C g n 1/2 log M n ).
The result follows from the fact that we can impose C g large enough so that C 5 ≤ 2A 1 C g n 1/2 log M n , and from the fact that we imposed M n = n 1/2-ε/2 at Step 3.

Remark 1: in the bound of P (x; g), two terms decrease exponentially, while a third one decreases in a polynomial way. This additional term is the price to pay for considering potentially unbounded variables Y (see [START_REF] Gassiat | Likelihood ratio inequalities with applications to various mixtures[END_REF] and [START_REF] Gassiat | Consistent order estimation and minimal penalties[END_REF] for related bounds in the bounded case). If we increase the assumptions on Y, by assuming the existence of an exponential moment for Ã(y) instead of a finite m th moment for m large enough in Assumption 2, a better bound can be obtained. This will especially be the case when one considers bounded variables Y, which lead to a bounded function Ã(y). In appendix Appendix C, we show how this bound can be obtained under this more restrictive assumption.

Remark 2: it is easy to see, from the proof of Theorem 1, that a similar bound holds if ln L cc is replaced by the log-likelihood, and ψ b g is the limit of the M LE. Indeed, the proof is divided into proving bounds for the classical log-likelihood, and for the entropy term. In this last situation, note that the restriction of the probabilities π i to values larger than π -is not required. This restriction in Theorem 1 was imposed by the behavior of the derivative of the entropy near 0, which could explode otherwise. This problem does not appear when one only considers the log-likelihood.

2.4. Almost sure rates for the M L cc E Corollary 1. Assume that ln L cc is twice differentiable with respect to ψ g , and denote by H ψg the Hessian matrix of E[ln L cc (ψ g ; Y )] evaluated at ψ g . Assume that, for some c > 0, ψ T g H ψg ψ g > c ψ g 2 2 for all ψ g ∈ Ψ g , where • 2 denotes the L 2 -norm. Then, under the assumptions of Theorem 1, for m ≥ 2 in Assumption 2 and for the norm • 2 , we have

ψg -ψ b g 2 = O P 1 n 1/2 . If m > 4, ψg -ψ b g 2 = O a.s. [ln n] 1/2 n 1/2 .
Proof. Observe that, from a second order Taylor expansion,

d( ψg , ψ b g ) ≥ c ψg -ψ b g 2 2 .
By definition of ψg , we have

n j=1 ln L cc ( ψg ; Y j ) -ln L cc (ψ b g ; Y j ) ψg -ψ b g 2 ≥ 0. Therefore, n j=1 {ln L cc ( ψg ; Y j ) -ln L cc (ψ b g ; Y j )} ψg -ψ b g 2 + nd( ψg , ψ b g ) ψg -ψ b g 2 ≥ nd( ψg , ψ b g ) ψg -ψ b g 2 ≥ cn ψg -ψ b g 2 .
Applying Theorem 1, we get, for

x > A 6 n 1/2 [ln n] 1/2 , P cn ψg -ψ b g 2 > x ≤ P (x; g) ≤ 4 exp - A 3 x 2 n + exp - A 4 x n 1/2-ε + A 5 x (m-ε)/2 . Define E n (u) = P(n 1/2 ψg -ψ b g 2 > u[ln n] 1/2 ). We have P(E n (u)) ≤ P (x; g) with x = ucn 1/2 [ln n] 1/2 , if u > A 6 .
Proving the almost sure rate of Corollary 1 is done by applying the Borel-Cantelli Lemma to the sets {E n (u)} n∈N , for some u large enough. We need to show that for some u large enough,

n≥1 P(E n (u)) < ∞. We have, for u > A 6 , ∞ n=1 P(E n (u)) ≤ ∞ n=1 4 n A 3 u 2 + ∞ n=1 4 exp -A 4 n ε [ln n] 1/2 u + ∞ n=1 A 5 u m/4 c m/2 n (m-ε)/2 [ln n] (m-ε)/2 .
We see that the first sum in the right-hand side is finite provided that u > A -1/2 3 . The second sum is finite if ε > 0. The third is finite if m > 4 and ε taken sufficiently small.

To prove the O P -rate of Corollary 1, we need to show that p n (u) = P(E n (u/[ln n] 1/2 )) tends to zero when u tends to infinity. Using the same arguments as before, for m ≥ 2,

p n (u) ≤ 4 exp(-A 3 u 2 ) + 4 exp(-A 4 [ln n] 1/2 u) + 2 4m A 5 c -m/2 u -m/2 ,
where the right-hand side tends to zero when u tends to infinity.

Remark 3: it also follows the proof of Corollary 1 the stronger result

1 n n j=1 {ln L cc ( ψg ; Y j ) -ln L cc (ψ b g ; Y j )} ψg -ψ b g + d( ψg , ψ b g ) ψg -ψ b g = O a.s. [ln n] 1/2 n -1/2 . This implies 1 n n j=1 {ln L cc ( ψg ; Y j ) -ln L cc (ψ b g ; Y j )} + d( ψg , ψ b g ) = O a.s. [ln n]n -1 . (9)

A new penalized selection criterion: ICL *

As mentioned before, a crucial issue in clustering and mixture analysis is to determine the appropriate order of the mixture to correctly describe the data. [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF] tried to circumvent the challenge faced by BIC as for selecting the right number of classes, especially in the case of a misspecified mixture model. He wanted to emulate the BIC approach by replacing the observed likelihood by the classification likelihood, and eliminate the problem of overestimating the order in the mixture. This way, he expected to find a criterion that allows achieving a better compromise between the classification quality and the fit to data. This criterion, called ICL, is henceforth well suited to issues of population clustering. But a particular attention should be paid to the definition of the penalty: early works used to consider entropy as part of the penalty. Unfortunately no theoretical result could be demonstrated from this viewpoint, despite promising results in practical applications [START_REF] Biernacki | Model-based cluster and discriminant analysis with the mixmod software[END_REF]). [START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF] then proposed to redefine the ICL criterion by combining it to the L cc contrast. The penalty thus becomes identical to that of BIC, and the estimator (M L cc E) used to express the "new" ICL criterion differs from the maximum likelihood estimator. In this regard, we have in the previous section shown the strong convergence of this estimator towards the theoretical parameter of the underlying distribution under particular regularity conditions. We now focus on the selection process from a finite collection of nested models M g , g = {1, ..., G}.

Previous works on ICL criteria

The ICL criterion was defined on the same basis as the BIC criterion: [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF] suggests to select in the collection the model satisfying

M ICL = arg min Mg∈{M 1 ,...,M G } -max ψg∈Ψg ln L c (ψ g ; Y, δ) + K g 2 ln n .
In practice, one approximates arg max ψg L c (ψ g ; Y, δ) by ψMLE g when n gets large, which is clearly questionable since the contrast is different from the classical likelihood. Besides, the label vector δ is not observed, so that the Bayes rule is used on a posteriori probabilities to assign observations to each mixture component: the predicted label is denoted δB and also depends on the MLE. This leads to consider the following procedure:

M ICLa = arg min Mg∈{M 1 ,...,M G } -ln L c ( ψMLE g ; Y, δB ) + K g 2 ln n = arg min Mg∈{M 1 ,...,M G } -ln L( ψMLE g ; Y) - n j=1 ng i=1 δB ij ln τ i (Y j ; ψMLE g ) + K g 2 ln n .
McLachlan and Peel (2000) suggest to use the a posteriori probabilities τ i (y; ψMLE g ) instead of δB :

M ICL b = arg min Mg∈{M 1 ,...,M G } -ln L c ( ψMLE g ; Y, τ ( ψMLE g )) + K g 2 ln n = arg min Mg∈{M 1 ,...,M G } -ln L( ψMLE g ; Y) + Ent( ψMLE g ) + K g 2 ln n pen ICL b (Kg)
.

In fact, ICL a and ICL b are really different in practice only if ∀i, τ i (Y j ; ψMLE g ) ≃ 1/n g . Some basic algebra shows that ICL a ≥ ICL b : this means that ICL a penalizes to a greater extent a model whose observations allocation is uncertain than does ICL b . [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF] and [START_REF] Mclachlan | Finite Mixture Models. Wiley Series In Probability and Statistics[END_REF] have shown, through various simulated and real-life examples, that the ICL criterion is more robust than the BIC criterion when the model is misspecified (which is often the case in reality). Granted, BIC and ICL have similar behaviors when the mixture components are distinctly separated; but ICL severely penalizes the likelihood in the reverse case, still taking into account its complexity. However, there is no clear relationship between the maximum likelihood theory and the entropy. In addition, the criterion defined as such is not fully satisfactory from a theoretical viewpoint. Indeed, its properties have not been proved yet: for instance it is not consistent in the sense that BIC is, because its penalty does not satisfy Nishii's conditions [START_REF] Nishii | Maximum likelihood principle and model selection when the true model is unspecified[END_REF]). In particular, it is not negligible in front of n:

1 n Ent(ψ g ; Y) P -→ n→∞ E f 0 [Ent(ψ g ; Y )] > 0 It follows that Ent(ψ g ; Y) = O(n).
Until very recently, there was therefore clearly a gap between the practical interest aroused by ICL and its theoretical justification. This was partly plugged by [START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF] who introduced a new version of ICL integrating a "BIC-type penalty":

M ICL * = arg min Mg∈{M 1 ,...,M G } -ln L cc ( ψMLccE g ) + K g 2 ln n .
In the context of gaussian mixtures, [START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF] has rigorously shown that the number of components selected using this criterion converges weakly towards the theoretical one, but only in the bounded case.

Consistency of selection criteria

Still in the mixture modelling framework, let M g * denote the model with smallest dimension

K g * such that E[ln L cc (ψ b g * )] = max g=1,...,G E[ln L cc (ψ b g )].
The following theorem provides consistency properties of a class of penalized estimators. Related results can be found in [START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF].

Theorem 2. Consider a collection of models (M 1 , ..., M G ) satisfying the assumptions of Theorem 1.Consider a penalty function pen(M g ) = K g u n , and

ĝ = arg max g=1,...,G 1 n n j=1 ln L cc (ψ b g ; Y j ) -pen(M g ) .
Then, if m > 2 in Assumption 2 and if nu n → ∞, we get ∀g = g * P(ĝ = g) = o(1).

If m > 4 in Assumption 2, there exists some constant C such that, if nu n > C ln n, almost surely, ĝ = g for n large enough and for all g = g * .

Proof. Let

ε g = E ln L cc (ψ b g * ; Y ) -E ln L cc (ψ b g ; Y ) . Decompose 1 n n j=1 ln L cc ( ψg * ; Y j ) -ln L cc ( ψg ; Y j ) =ε g + 1 n n j=1 ln L cc (ψ b g * ; Y j ) -E[ln L cc (ψ b g * ; Y )] - 1 n n j=1 ln L cc (ψ b g ; Y j ) -E[ln L cc (ψ b g ; Y )] + 1 n n j=1 ln L cc ( ψg * ; Y j ) -ln L cc (ψ b g * ; Y j ) + d( ψg * , ψ b g * ) - 1 n n j=1 ln L cc ( ψg ; Y j ) -ln L cc (ψ b g ; Y j ) + d( ψg , ψ b g ) . ( 10 
)
It follows from the remark following Corollary 1 that the last two terms in (10) are O a.s. ([ln n]n -1 ) (or O P (n -1 )). We now distinguish two cases: ǫ g > 0 and ǫ g = 0.

Step 1: ǫ g > 0. It follows from the law of iterated logarithm that

1 n n j=1 ln L cc (ψ b g * ; Y j ) -E[ln L cc (ψ b g * ; Y )] + 1 n n j=1 ln L cc (ψ b g ; Y j ) -E[ln L cc (ψ b g ; Y )] = O a.s. ([ln ln n] 1/2 n -1/2 ).
Note that these two terms are O P (n -1/2 ) if we only focus on O P -rates.

If ĝ = g, we have

1 n n j=1 ln L cc ( ψg * ; Y j ) -ln L cc ( ψg ; Y j ) -pen(g * ) + pen(g) < 0. ( 11 
)
However, due to the previous remarks, if we take u n = o(1), the left-hand side in (11) converges almost surely towards ε g (in probability rates, is equal to ε g + o P (1)). This ensures that M g is almost surely not selected for n large enough (in probability rates, P(ĝ = g) = o(1)).

Step 2:

ǫ g = 0. Since ψ b g = ψ b g * , 1 n n j=1 ln L cc (ψ b g * ; Y j ) -E[ln L cc (ψ b g * ; Y )] = 1 n n j=1 ln L cc (ψ b g ; Y j ) -E[ln L cc (ψ b g ; Y )] ,
and ε g = 0, which shows that the first three terms in (10) are zero. This leads to

1 n n j=1 ln L cc ( ψg * ; Y j ) -ln L cc ( ψg ; Y j ) -pen(g * ) + pen(g) ≥ u n + O a.s. ln n n u n + O P 1 n , since K g -K g * > 1
. This shows that there exists a constant C > 0 such that, if nu n > C ln n, M g is almost surely not selected when n tends to infinity. To obtain that P(ĝ = g) = o(1), it is sufficient to have nu n tending to infinity.

Application to the selection of GLM mixture models

4.1. Description of the GLM framework GLM are a common way to integrate specific risk factors; and notably include analysis-of-variance models, logit and probit models for quantal responses, log-linear models and multinomial response models for counts, but also classical models for survival data. Due to this flexibility, the topic of GLM has undergone vigorous development in the 1980's and these models are nowadays used in many fields among which marketing, economics, medicine, astronomy. For example, it has become a standard tool in insurance pricing [START_REF] Ohlson | Non-Life Insurance Pricing with Generalized Linear Models[END_REF]). GLM have been introduced as an extension of classical linear models where the response variable is assumed to be the realization of a random variable belonging to the exponential family. Among many others, [START_REF] Young | Mixtures of regressions with predictordependent mixing proportions[END_REF], [START_REF] Gruen | Fitting finite mixtures of generalized linear regressions in r[END_REF] and [START_REF] Leisch | Modelling background noise in finite mixtures of generalized linear regression models[END_REF] are currently interested in GLM mixtures. However, no theoretical development exists about selection criteria that satisfy classifying objectives in the context of GLM mixtures: this section thus aims at giving the suitable convergence conditions using the ICL * criterion.

To be in line with the previous notations, consider i.i.d. replications (Y j ) 1≤j≤n with Y j = (Z j , X j ). Z j is the random response for the j th individual, and X T j = (1, X j1 , ..., X jp ) its vector of covariates (we use superscript T to denote the matrix transpose). Introduce an invertible link function l such that l(E[Z j ]) = X T j β, with β T = (β 0 , ..., β p ). Moreover we assume that the conditional distribution of Z j given X j belongs to an exponential family, that is

f Z|X (z j ; α, φ) = exp z j α -b(α) a(φ) + c(z j , φ) , (12) 
where a(.), b(.) and c(.) are specific functions depending on the model under study, and α and φ are the parameters to be estimated. This is similar to the vector θ in section

2 if θ = (α 1 a(φ) -1 , ..., α d a(φ) -1 , φ) = ( θT , φ).
Hence, it is easy to check that Assumptions 1 and 2 hold with Ã(y) = z 2 exp(z sup θ∈Θ | θT x|). As a matter of fact, the choice of the response distribution determines how we explicit the relation between α, φ and the parameters of the outcome distribution itself. The interested reader can learn more about GLM in the seminal book by [START_REF] Mccullagh | Monographs on Statistics and Applied Probability[END_REF].

Apart from the model selection issue, potential difficulties in GLM mixtures concern the identifiability due to the existence of the covariates. Further details can be found in McLachlan and Peel (2000) (p.146) and [START_REF] Wang | Mixed Regression Models for Discrete Data[END_REF], and special cases about the Poisson regression model as well as the binomial regression model are available in [START_REF] Wang | Mixed poisson regression models with covariate dependent rates[END_REF] and [START_REF] Follmann | Identifiability for non parametric mixtures of logistic regressions[END_REF] respectively.

L cc likelihoods for two members of the GLM family

We focus here on discrete support mixtures with components all belonging to the same GLM family, which is actually the type of model resorted to in practice. One thus considers the set M g of density functions given by

f (.; ψ g ) = ng i=1 π i f i (.; α i , φ i ) | ψ g = (π 1 , ..., π ng , α 1 , ..., α ng , φ 1 , ..., φ ng ) ∈ Ψ g ,
where f i (.; α i , φ i ) follows ( 12). Our goal is to study deeply the characteristics of the L cc contrast for most famous distributions of the GLM family. We would like to formulate the constraints to impose on the parameters space for each density function, as well as on auxiliary functions (a(), b() and c()). To simplify, our results are expressed for a one-dimensional outcome Y but remain valid when Y is kdimensional (k > 1). For the sake of conciseness, we focus more intensively on the two families that will be considered in the simulation study.

Mixture of linear regression models. The gaussian distribution N (µ, σ 2 ) belongs to the exponential family, and is thus a potential choice to model the error in a GLM mixture. The density of this random variable can be written in the exponential form (12) by operating the following transformations:

α = µ (hence α ∈ R), b(α) = µ 2 /2 (so that b(α) ∈ R + ), φ = a(φ) = σ 2 (hence φ ∈ R + *
), and c(y; φ) = -1/2 (y 2 /σ 2 + ln 2πσ 2 ) (so that c(y; φ) ∈ R).

Considering an identity link and a gaussian error in the GLM mixture model, we fall back on gaussian mixtures to which shall be added some dependence in function of observed covariates. Following (4), the conditional classification likelihood for a single observation y j reads

ln L cc (ψ g ; y j ) = ln     ng i=1 π i 2πσ 2 i e - 1 2 (y j -X j β i ) 2 σ 2 i     + ng i=1 τ i (y j ; ψ g ) ln τ i (y j ; ψ g ),
where τ i (y j ;

ψ g ) = π i 2πσ 2 i e -1 2 (y j -X j β i ) 2 σ 2 i ng k=1 π k 2πσ 2 k e -1 2 (y j -X j β k ) 2 σ 2 k -1
.

Clearly, the same constraints as those on gaussian mixtures should be imposed: constraints on µ i and σ 2 i are to be passed onto β i and σ 2 i , and therefore also onto α i and φ i . One should work in a properly selected compact space to ensure the bounded nature of the L cc log-likelihood as well as its derivative.

To summarize, the study of these limits shows that: i) σ 2 i has to be upper-bounded, so that φ i should be bounded; ii) σ 2 i should not tend to 0, hence the same constraint on φ i ; iii) regression coefficients must remain bounded (∀i ∈ 1, n g ,

|β i | = ∞).
Given that α i = µ i = Xβ i , we deduce that α i should also be bounded.

Mixture of Poisson regression models. When dealing with counting data, another option for modeling the error might be a Poisson law P(µ). Table 1 provides the correspondence between µ and the parameters of the exponential family. The individual likelihood in such a mixture follows (after some computations):

∀ψ g ∈ Ψ g , L(ψ g ; y j ) = ng i=1
π i e -e X j β i e X j β i y j y j ! .

From (4), the conditional classification likelihood is thus given by ln L cc (ψ g ; y j ) = ln ng i=1

π i e -e X j β i e X j β i y j y j ! + ng i=1 τ i (y j ; ψ g ) ln τ i (y j ; ψ g ),

where τ i (y j ; ψ g ) = π i e -e X j β i e X j β i y j y j ! ng k=1

π k e -e X j β k e X j β k y j y j ! -1

.

Let us make the parameter µ i tend towards the bounds of its domain and study the limits of the L cc likelihood. We obtain, after some tedious computations, the following constraint: β i coefficients must remain bounded (∀i ∈ 1, n g , |β i | = ∞), which means the same constraint for parameters α i .

Summary of constraints on the parameter space. Table 1 compiles the overall results for other classical distribution of the GLM family. It permits to recap the constrained support of both α and φ parameters, which guarantees the convergence results of the M L cc E estimator and the ICL * criterion. Indeed, it has become obvious that the GLM family members behave in the same way regarding the constraints to be imposed upon the parameters of the exponential family. Provided the dispersion does not tend to 0 and once the trend parameter and / or the dispersion are bounded, the conditional classification log-likelihood as well as its derivative (including, particularly, the entropy derivative) remains finite. These results confirm the necessity to choose compact sets for the parameters space.

Simulation study

In this section, we perform a simulation study to check the previous theoretical results. One would like to validate the convergence properties of both the M L cc E and the ICL * criterion. By sampling observations coming from finite mixtures (firstly mixtures of normal regressions, then mixtures of Poisson regressions), we show that i) the new estimator seems to tend towards the true parameter (maximizing the expected log-contrast), ii) the selection criterion looks consistent while being adapted for clustering purposes. Indeed, the well-known tendency to overestimate the order of the mixture when using AIC or BIC tends to disappear, which is a very good news since ICL * was initially designed to this end. For practical considerations, the latter result is also interesting because it enables to lower the model dimension: this should bring more robustness to the parameters estimation, probably leading to more relevant predictions. Moreover we mecanically lower the probability to make an error when assigning observations to mixands in less complex mixture models, a nice and desired feature in a clustering perspective.

For the sake of simplicity, we consider two-component GLM mixtures with no intercept and a unique covariate: the random design is generated from a uniform distribution on some interval [a, b]. Thanks to the maximum likelihood estimation properties, the theoretical maximizer of the classical log-likelihood is obviously the theoretical parameter itself. On the contrary and not surprisingly, it could be quite difficult to find the maximizer of the L cc contrast because of the entropic term. However, this is the first mandatory step so as to check the convergence properties of the M L cc E.

Empirical convergence of the M L cc E

In the sequel, 10 000 uniformly-distributed observations X j are sampled to compute ψ 0 . In both applications mixture weights are set constant in the optimization process to gain some computation time, as well as variances in the normal regression case. We thus have π 1 = π 2 = 0.5, with standard deviations σ 1 = √ 10, σ 2 = 2 in the normal regression mixture setting. Table 2 gives the theoretical parameters to be reached by our M-estimator, and Figure 1 illustrates how the Kullback-Leibler divergence between the L cc contrast and the true distribution behaves at the MLE neighborhood. Notice that the theoretical M L cc E is not very close to the theoretical MLE (true parameters), while still being comparable. Now we simulate random samples of normal and Poisson regression mixtures (respectively with the same true densities f 0 as previously, see Table 2), and see whether the M L cc E tends towards the L cc minimizer. The idea is to repeat this procedure 100 times, and then study the mean and the standard deviation of the estimator values. This way, the M L cc E empirical behaviour can be investigated adequately. We expect that the mean of the euclidian distance between the M L cc E and the L cc minimizer tends to 0, with a dispersion that narrows down when the number of observation increases. Results are summarized in Figure 2, which confirm this convergence whatever the random variables type. Indeed, mixtures of linear regressions stand for the continuous case whereas ~KL(Lcc,f0) VS (beta1.1, beta1.2) mixtures of Poisson regressions represent the discrete case. Despite the high number of observations, notice that the optimization can still lead to some erroneous estimations (especially in the Poisson case): this could partly be explained by the contrast complexity and some difficulties experienced in the maximization algorithms.

-1 0 1 2 3 -1 0 

Illustration of ICL * consistency

As Figure 2 suggests, we consider at least 2000 observations to ensure reasonable convergence properties of the M L cc E. There are two interesting situations in which the consistency of ICL * should be tested: the first one stands for the selection of a mixture density where components are strongly overlapping, whereas the other one corresponds to well-separated component densities. Theoretically speaking, the ICL selection criterion may not be too different from the BIC one in the latter case because the entropic term must be negligible. In other words, these two criteria should lead to similar results as they use the same estimator (M LE) apart from that. On the contrary, although the penalty term is exactly alike for ICL * and BIC, the ICL * selection process is based on the M L cc E. This is clearly censed to affect the model selection in a different manner, to be identified in this case study. Of course, it is much more exciting to look at what is happening with strongly overlapping components. The entropic term is obviously not negligible in such a case and the selection criteria have no problem of selecting too much complex mixtures (% overestimation) and looks better than AIC, BIC and ICL when trying to recover the right number of components. However, the case of overlapping components in poisson regression mixtures is somehow problematic in the sense that the percentage of right predictions for the number of components g is not really satisfying (even if the probability to overestimate g is once again diminished). This is certainly linked with what was observed on Figure 2: indeed there are still come cases where the M L cc E is far from the best possible estimator. In this case, the selection process simply looses it efficiency because it is based on a poor estimator, and its consistency deteriorates.

have for all u,

P sup f ∈F n j=1 f (Y j ) -E[f (Y )] > A 1 E sup f ∈F n j=1 f (Y j )ε j + u ≤ 2 exp - A 2 u 2 nσ 2 F + exp - A 2 u M ,
with σ 2 F = sup f ∈F V ar(f (Y )), and where A 1 and A 2 are universal constants.

Proposition A1 introduces the expectation of the supremum of a symmetrized sum that can make this inequality difficult to handle in full generality. [START_REF] Einmahl | Uniform in bandwidth consistency of kernel-type function estimators[END_REF] proposed a simple result to bound this expectation under generic conditions on the class of functions F. Before stating their result, let us introduce the concept of covering numbers. For a probability measure Q, define • 2,Q as the L 2 -norm associated to measure Q. For a class F with envelope F (that is such that, for all f ∈ F, f (y) ≤ F (y)), define N(ε, • 2,Q ) as the minimal number of balls (with respect to the • 2,Q -metric) of radius ε required to cover F, and define

N F (ε, F) = sup Q:Q(F 2 )<∞ N(εQ(F 2 ), • 2,Q ).
The proposition below, due to [START_REF] Einmahl | Uniform in bandwidth consistency of kernel-type function estimators[END_REF] is valid up to some control on N F (ε, F) (which should not increase too fast when ε tends to zero) and some condition on the second order moments in the class F. Proposition A2. Let F be a pointwise measurable class of functions bounded by M such that, for some constants C, ν ≥ 1, and 0 ≤ σ ≤ M, we have

(i) N M (ε, F) ≤ Cε -ν , for 0 < ε < 1, (ii) sup f ∈F E [f (Y, X) 2 ] ≤ σ 2 , (iii) M ≤ 1 4ν nσ 2 / log(C 1 M/σ), with C 1 = max(e, C 1/ν ).
Then,

E sup f ∈F n j=1 f (Y j , X j )ε j ≤ A νnσ 2 log(C 1 M/σ).
Observe that g 1 (y) ≥ Λ -(y), so using equation (B.1), we get 
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 1 Figure 1: KL divergence between the true distribution and the L cc contrast. On the left: normal regression mixture. On the right: poisson regression mixture.

  number of observations Euclidian distance between psi^{MLccE}_0 and hat(psi)^{MLccE}Convergence of MLccE with mixtures of poisson regressions

Figure 2 :

 2 Figure 2: Boxplot (100 experiments) M L cc E convergence towards the maximizer of the expected log-contrast. From top to bottom: normal and poisson regression mixtures.

  |h 1 (y)h 2 (y)| ≤ Λ 1 (y) ψ 1ψ 2 Λ -(y) + Λ 1 (y)Λ 0 (y) ψ 1ψ 2 Λ -(y) 2 .Due to assumption (B.3),|h 1 (y)h 2 (y)| ≤ (A(y) + A(y) 2 ) ψ 1ψ 2 , (B.6)for some constant A > 0. Next, observe that, again from (B.1),|h 2 (y)h 0 (y)| ψ 2ψ b g ≤ Λ 1 (y) Λ -(y) ≤ A(y), (B.7)where we used again (B.3) and the fact that min(g 2 (y), g 0 (y)) ≥ Λ -(y). Using again (B.5), but this time for l = 0, we get, according to (B.2),h 1 (y)h 0 (y) ψ 1ψ b g -h 2 (y)h 0 (y) ψ 2ψ b g ≤ Λ 2 (y) ψ 1ψ 2 Λ -(y) + Λ 2 (y)Λ 0 (y) ψ 1ψ 2 Λ -(y) 2 ≤ (A(y) + A(y) 2 ) ψ 1ψ 2 ..3). Finally, again due to (B.3), note that, for l = 0, 1x) = x ln(x). Observe that H(h l (y)) = Ent(ψ l ; y). Then decompose[H(h 1 (y)) -H(h 0 (y))] 0 (y), h 1 (y)) +|h 2 (y)h 0 (y)| |h 1 (y)h 2 (y)| min(h 0 (y), h 1 (y), h 2 (y)) ψ 2ψ b g ,

Table 1 :

 1 Constraints to be applied on the parameters of the exponential family (12).

Table 2 :

 2 Minimizers of the KL divergence between f 0 and the L cc contrast.

	Model class:	X	True β 1 True β 2 L cc minimizer β 0 1	L cc minimizer β 0 2
	Linear regression ∼ U(0, 1) Poisson regression ∼ U(0, 1)	1 1.1	1.3 1.6	0.5 -0.16	1.66 1.75

Table 4 :

 4 Consistency of ICL * in the case of mixtures of normal regressions.

	Model complexity (# components): 2 3 4 5 % overestimation % right g
	Distinct components			
	AIC	4 8 7 11	60%	27%
	BIC	4 8 7 11	60%	27%
	ICL	4 9 6 11	57%	30%
	ICL *	0 21 3 6	30%	70%
	Overlapping components			
	AIC	4 13 5 8	43%	43%
	BIC	4 13 5 8	43%	43%
	ICL	6 13 5 6	37%	43%
	ICL *	7 23 0 0	0%	77%

Table 5 :

 5 Consistency of ICL * in the case of mixtures of poisson regressions.

	Model complexity (# components): 2 3 4 5 % overestimation % right g
	Distinct components			
	AIC	0 10 12 8	67%	33%
	BIC	0 11 12 7	63%	37%
	ICL	0 14 10 6	53%	47%
	ICL *	4 17 3 6	30%	57%
	Overlapping components			
	AIC	2 10 6 12	60%	33%
	BIC	2 10 5 13	60%	33%
	ICL	20 5 4 1	17%	17%
	ICL *	11 8 9 0	30%	27%

Law:

Normal Binomial Poisson Gamma Inverse Gaussian N (µ, σ 2 ) B(n, µ)

Table 3: True parameters for the simulation of mixture models.

Mixture parameters:

reason to behave analogously. In particular, do we still observe the famous issue of overestimating g? To overcome the problem of little confidence when assigning observations to mixture components, the ICL * may strongly penalize a mixture density embedding highly overlapping components: naturally, this should result in a simpler model (which sometimes could even become too simplistic). To check this, let us consider 30 experiments for which the following steps are undertaken:

1. (X j ) 1≤j≤2000 is sampled from the uniform distribution; 2. draw a 3-component mixture with user-defined parameters; 3. fit 4 different mixture models (from 2 to 5 components): for each one, (a) find the MLE and M L cc E corresponding to the empirical density, (b) compute the values of the model selection criteria (AIC, BIC and ICL from the M LE; and ICL * from the M L cc E); 4. for each model selection criterion, the selected model corresponds to the minimum over the 4 available criterion values.

This algorithm is performed for both normal regression mixtures and poisson regression mixtures respectively. Concerning mixture parameters, they are stored in Table 3 (except for the standard deviations in the normal regression case which all equal to √ 3). These parameters were randomly chosen, and we checked that this choice had no influence on our final results to guarantee their robustness (by changing these values to other coherent ones). Tables 4 and5 offers an overview of ICL * performance by summarizing the statistics over these 30 experiments for these two model classes: the goal is to see whether using the ICL * criterion leads to select an appropriate mixture model, knowing that the true model has only 3 components. In most of cases, its performance looks satisfactory: it generally avoids the

Conclusion

In this paper, we developed a new approach in clustering population from mixtures of generalized linear models. In this context this is a key matter since most of model selection criteria such as AIC or BIC have a wellknown tendency to overestimate the order of the mixture. This means that the actual impact of covariates over the response variable is not adequately captured. Motivated by this, our technique is based on some theoretical extensions to the works by [START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF]: it embraces both the convergence of a specific M-estimator (adapted to the clustering purpose) and the consistency of the ICL * criterion (a derivative of ICL). The bounds that we obtained through concentration inequalities hold even in a non-asymptotic framework. Moreover, they are valid even when the considered density is unbounded, a crucial feature when dealing with GLM mixtures. Concerning the ICL * criterion, empirical studies on simulated gaussian mixtures in [START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF] reveal that the overestimation of the number of components tends to disappear: this is also confirmed in our simulation study involving different GLM members for mixture components. The position of ICL * for segmentation purpose when observing large heterogeneity within the population under study is thus strengthened. For future research it would be tempting to adapt this concept to other practical matters and seek the theoretical properties of such estimators: integrating specific quantities within the contrast instead of considering them as part of the penalty is innovative, and should lead to promising developments.

Appendix A. Concentration inequality

In this section, we present the concentration inequality that we use to derive our exponential bounds. This inequality is due to [START_REF] Talagrand | Sharper bounds for Gaussian and empirical processes[END_REF]. We use a formulation of this inequality similar to the one used in [START_REF] Einmahl | Uniform in bandwidth consistency of kernel-type function estimators[END_REF].

Proposition A1. Let F be a pointwise measurable class of functions bounded by M. Let (ε j ) 1≤j≤n denote an i.i.d. sequence of Rademacher variables independent from (Y j ) 1≤j≤n , that is P(ε j = 1) = P(ε j = -1) = 1/2. Then, we ), ψ 1 = (π 11 , ..., π ngg1 , θ 11 , ..., θ ng1 ), ψ 2 = (π 11 , ..., π ng1 , θ 11 , ..., θ ng1 ), with ng i=1 π il = 1 for l = 0, 1, 2. Assume that, for all i ∈ {1, ..., n g },

Moreover, assume that for all

Consider the classes of functions

with g i,ψ 0 (y) = lim ψ→ψ b g g i,ψ (y). Then, assuming that, for all ψ ∈ Ψ g , π l ≥ π -> 0 for all l = 1, ..., n g ,

for some function Λ 3 (y) ≤ CA(y) 3 for some constant C > 0.

Proof. Define, for l = 0, 1, 2,

Write, for l = 0, 2,

where we used that | log(x/x ′ )| ≤ |xx ′ |/ min(x, x ′ ). Combining this with (B.6), (B.7), (B.8), (B.9) and (B.10) shows that

where

, where diam(Ψ g ) denotes the diameter of Ψ g for the norm • . Then, G g is bounded by G(y) = n g [Λ 3 (y) diam(Ψ g ) + g ψ 0 (y)]. From Lemma 2.13 in [START_REF] Pakes | Simulation and the asymptotics of optimization estimators[END_REF], we get N G(ε, G i ) ≤ Cε -V , for some constants C > 0 and V > 0. The result then follows from Lemma 16 in [START_REF] Nolan | U -processes: rates of convergence[END_REF].

Appendix C. Improvement of the bound of Theorem 1 under an exponential moment assumption Assumption 3. Using the notations of Assumption 1, assume that there exists ρ > 0 such that

where the g i,ψ (y) corresponds to the notations of Lemma B1.

Theorem C1. Using the notations and assumptions of Theorem 1, but with Assumption 2 replaced by Assumption 3, we have

for x > A 6 n 1/2 [ln ln n] 1/2 , and some constant A 7 > 0.

Proof. The proof is similar as the one of Theorem 1, but with Step 3 replaced by:

Step 3': remainder term using the exponential moments assumption.

Using the same notations as in Step 3 of Theorem 1, from Chernoff's inequality

Next, from Cauchy-Schwarz inequality,

Again, from Chernoff's inequality,

This finally leads to

Taking M n = ρ -1 ln n leads to P(S l,Mn > x) ≤ C ρ exp(-ρx).

(C.1)

Next,

Again, since M n = ρ -1 ln n, we get n exp(-ρM n ) = 1. Therefore,