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The paper presents a new sensorless approach for permanent magnet synchronous motor (PMSM). Current
sensors are assumed available, but position and velocity sensors are not. Based on the electrical equations,
sliding mode observers are designed to estimate the back-EMF of the motor. These estimations are used to
reconstruct the position and the velocity. From this estimation, a robust sliding mode control is developed which
ensures the position tracking of the motor. A new reference frame is used that presents advantages similar to
the standard (d− q) frame, but without the need for a position sensor. The efficiency of the algorithm is shown
through experimental results. The approach is potentially applicable to other types of synchronous motors as
well.
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1 Introduction

Permanent Magnet Stepper Motors (PMSM’s) are widely used in industry for position control,
especially in manufacturing applications. PMSM’s are more robust than brush DC motors and
produce high torque per volume. They are often controlled in open-loop, although the potential
loss of synchronism limits operation away from resonances and from high acceleration trajec-
tories. Using closed-loop control methods with position sensors of sufficient accuracy can solve
these problems. Recent research has focussed on whether the performance of closed-loop control
methods could be achieved using sensorless systems. In this case, sensorless refers to systems
that do not have position sensor nor velocity, although current sensors are still assumed to be
available.
One can find work in the literature which deals with the design of a control supposing that the

rotor position is known (Chiasson and Novotnak 1993, Nollet et al. 2008, Defoort et al. 2009).
Concerning “sensorless” based control, different approaches have been treated. One can refer to
the overviews of (Johnson et al. 1999, Schroedl 2004) treating brushless DC motor and PMSM,
respectively. Among the different approaches to treat this problem, the most current are the
high frequency injection method (Jang et al. 2004, Zhu et al. 2009), observer based approach
such as Extended Kalman Filter (Bolognani et al. 2001, Bendjedia et al. 2012), linear observer
(Son et al. 2002), nonlinear observer (Ortega et al. 2011, Shah et al. 2011, Khlaief et al. 2011,
Tomei and Verrelli 2011), adaptive interconnected observer (Hamida et al. 2013) and sliding
mode observers (Kim et al. 2011, Fiter et al. 2010, Zribi et al. 2001). Although not exhaustive,
this list gives an idea on the issues.
This article presents a solution for mechanical sensorless control of a PMSM based on high

order sliding modes. Sliding mode theory is commonly used for the design of robust nonlinear
observers or control laws. Indeed, sliding modes provide very good properties with respect to
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perturbations and uncertainties. Another interesting property of the sliding modes is the finite
time convergence, which unlike the asymptotic convergence, do not requires the use of separation
principle theorem to prove the convergence of an observer based control. The use of second order
sliding modes reduces the high frequency commutations known as Chattering. In the literature,
a wide range of applications using sliding modes can be found : (Bartolini et al. 2003, Bartolini
and Pisano 2003, Butt and Bhatti 2008, Canale et al. 2008, Davila et al. 2009, Defoort et al.
2008, Drakunov et al. 2005, Floquet et al. 2003, Fridman et al. 2007, Martinez et al. 2008, Pisano
et al. 2008, Riachy et al. 2008).
From a control engineer perspective, the most used control laws are designed in the field

oriented frame, referred as d− q frame. It offers several advantages since it provides a simplified
structure for the control, by avoiding sinusoidal functions. This frame from a sensorless point
of view is not usable since it relies on the use of the position sensor. The proposed approach
is based on the use of a different reference frame which is obtained from a reference position
instead of a measured position. This frame permits to have the same properties than the d− q
frame, with the advantage that it does not require the actual motor position. In the literature,
this frame was introduced for sensorless control and parameter identification in (Morimoto et al.
2002, 2006, Zheng et al. 2007, Shi et al. 2012, Delpoux et al. 2012).
The main contribution of the article is the use of second order sliding modes observers, based

on Super Twisting Algorithms (STA) for the estimation of the position and the velocity of the
motor. The observers use the input voltages and the measured currents only, to estimate the
motor back-EMF. From this estimation, both position and velocity can be reconstructed. These
estimations are used for the control. Here, we propose an observer based sliding mode control
for the motor position trajectory tracking. This control is based on the flatness property of the
PMSM (Sira-Ramı́rez 2000). The theory is validated through experiments that were performed

using a test bench available at the LAGIS laboratory at the École Centrale de Lille.
This article is divided into four parts. The first section presents the model of the PMSM in the

three different frames, particularly the reference rotating frame. The higher order sliding modes
as well as the control strategy are also presented in this section. Then second order sliding mode
observers are developed to estimate the position, velocity and acceleration of the PMSM in the
section 3. The control law is derived Section 4 together with the stability of the observer based
control. The last section is devoted to experimental results.

2 Problem Statement

2.1 PMSM Model

The model of the PMSM is given in three different frames (see Fig. 1). After a description of the
model in the variables (a−b), the model in the rotating frame (d−q) is presented. This model is
useful for the control law design. However this model is obtained from the measured position. In
sensorless application, the use of this model is not suitable. Hence a reference rotational frame
based on the reference trajectory, called (f − g) frame is introduced.

2.1.1 Model in the phase variables (a− b)

Equations (1) give the standard PMSM model in the phase (or winding) variables



































L
dia
dt

= va −Ria +Kω sin(npθ),

L
dib
dt

= vb −Rib −Kω cos(npθ),

J
dω

dt
= K (ib cos(npθ)− ia sin(npθ))− fvω − Cr,

dθ

dt
= ω,

(1)
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Figure 1. Variables in the different frames.

where va and vb are the voltages applied to the two phases of the PMSM, ia and ib are the two
phase currents, L is the inductance of a phase winding, R is the resistance of a phase winding,
K is the back-EMF constant, θ is the angular position of the rotor, ω is the angular velocity of
the rotor, np is the number of pole pairs (or rotor teeth), J is the moment of inertia of the rotor
(including the load), fv is the coefficient of viscous friction and Cr is the load torque, which may
vary as a function of the time.

2.1.2 Model in the rotating frame (d− q)

The phase model can be transformed using Park’s transformation (Park 1929):

[id, iq]
T = U(θ) [ia, ib]

T , (2)

[vd, vq]
T = U(θ) [va, vb]

T , (3)

where

U(θ) =

[

cos(npθ) sin(npθ)
− sin(npθ) cos(npθ)

]

. (4)

Using this change of coordinates, the system (1) is transformed into the so-called (d− q) model



































L
did
dt

= vd −Rid + npLωiq,

L
diq
dt

= vq −Riq − npLωid −Kω,

J
dω

dt
= Kiq − fvω − Cr,

dθ

dt
= ω.

(5)

The (d−q) transformation is commonly used for PMSM’s (and synchronous motors in general),
because it results in constant voltages and currents at constant speed (instead of the high-
frequency phase variables). Also, the model highlights the role of the quadrature current iq in
determining the torque. However, the (d − q) transformation is based on the position θ, which
is not directly available in sensorless applications.

2.1.3 Model in the rotating reference frame (f − g)

To overcome the problems caused by the use of the position in the d − q frame, a different
reference frame that uses a reference position instead of the real position is proposed in this
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work. The transformation is expressed in matrix form as

[if , ig]
T = U(θr) [ia, ib]

T , (6)

[vf , vg]
T = U(θr) [va, vb]

T , (7)

where

U(θr) =

[

cos(npθr) sin(npθr)
− sin(npθr) cos(npθr)

]

. (8)

and θr is an arbitrary reference position.
The PMSM model in the transformed variables is



















































L
dif
dt

= vf −Rif −Kω sin(np∆θ) + Lnpωrig,

L
dig
dt

= vg −Rig −Kω cos(np∆θ)− Lnpωrif ,

J
dω

dt
= K(if sin(np∆θ) + ig cos(np∆θ))− fvω − Cr,

dθ

dt
= ω,

(9a)

(9b)

(9c)

(9d)

where ∆θ = θ − θr and ωr = dθr/dt. The (f − g) frame is potentially useful as θr may be
defined as the reference position that the motor is supposed to track. Then, the (f − g) model
approximates the (d − q) model, with the advantage that it is valid and computable even if θr
is not exactly equal to θ which cannot be used in the control law.

2.2 High order Sliding mode

The principle of higher order sliding mode control is to constrain the system trajectories to reach
and stay, after a finite time, on a given sliding manifold Sr in the state space (Emel’yanov et al.
1986, Perruquetti and Barbot 2002). Consider a system whose dynamics is given by:

x = f(t, x) + g(t, x)u, (10)

where x ∈ Rn is the system state, u ∈ R is the control and f , g are sufficiently smooth vector
fields. The sliding manifold is defined by the vanishing of a corresponding sliding variable S :
R+ × Rn → R and its successive time derivatives up to a certain order. In the literature, the
“sliding” algorithms are mainly of second order. The second order sliding set is written:

S2 = {(t, x) ∈ R+ × Rn : S(t, x) = Ṡ(t, x) = 0}.

The second derivative w.r.t the time of the sliding surface can be written:

S̈ = φ(t, S, Ṡ) + ϕ(t, S, Ṡ)U, (11)

where U = u (respectively U = u̇) for systems of relative degree 2 (relative degree 1) w.r.t S.
Under the assumption that there exists positive constants S0, km,KM , C0 such that ∀x ∈ Rn
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and |S(t, x)| < S0, the system satisfies the following conditions:

{

0 < km ≤ |ϕ(t, S, Ṡ| ≤ KM ,

|φ(t, S, Ṡ)| < C0.
(12)

Different sliding mode algorithms can be found in the literature, here are recalled only the
algorithms used in the article: the Super Twisting Algorithm and the Twisting Algorithm.

2.2.1 Super Twisting Algorithm

For systems of relative degree 1, the Super Twisting Algorithm will be used (Levant 1993,
2001). It is a second order sliding mode defined by:

ust(S) = u1(S) + u2(S), (13)

with:

{

u̇1(S) = −αsgn(S),

u2(S) = −λ|S|
1

2 sgn(S).
(14)

The finite time stability of the algorithm is proved using a Lyapunov function. With relative
degree equal to 1, one has:

Ṡ = ust +Π. (15)

where Π is a bounded perturbation, whose time derivative is also bounded. From the control
law defined equation (13), this equation can be written:

Ṡ = ξ − λ|S|1/2sgn(S),

ξ̇ = Π− αsgn(S),
(16)

where α and λ are positives gains to be defined. The finite time stability of the algorithm is
derived from (Barbot and Floquet 2010).

Consider the equations of the system (16) and note : ψ =

[

ψ1

ψ2

]

=

[

|S|1/2sgn(S)
ξ

]

.

Leading to:

ψ̇ = |ψ1|
−1

[

−λ 1
−α 0

]

ψ +

[

0
Π

]

= |ψ1|
−1

(

Mψ +

[

0
|ψ1|Π

])

.
(17)

Define the Lyapunov candidate function:

V = ψTPψ, (18)

where P =

[

p1 p3
p3 p2

]

is a symmetric positive definite matrix. The time derivative of V along the

solution of (17) is given by:

V̇ = |ψ1|
−1

(

ψT (MTP + PM)ψ + 2ψTP

[

0
|ψ1|Π

])

. (19)
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where:

2ψTP

[

0
|ψ1|Π

]

≤ k1ψ
2
1 + k2ψ

2
2 ,

with k1 = Π(2|p3|+ ǫ) and k2 = Πp2

2

ǫ , for all ǫ > 0.
Thus:

V̇ ≤ |ψ1|
−1ψT

(

MTP + PM +

[

k1 0
0 k2

])

ψ. (20)

Because M is a Hurwitz matrix, the observer gains α and λ can be chosen such that the matrix

−Q =MTP + PM +

[

k1 0
0 k2

]

,

is negative definite. By application of LaSalle theorem, the finite time convergence ψ toward
zero is proven (Barbot and Floquet 2010), i.e. the finite time convergence of S and ξ toward
zero. Thus after finite time ξ = 0 leading to Ṡ = 0.
In some cases, more particularly the observers, we resort a linear stabilizing term. This additive

term aims to reduce the noise and accelerating the convergence towards the sliding surface. The
approach given in (Shen and Huang 2009) extends the preceding results to this case.

2.2.2 Twisting Algorithm

For systems of relative degree 2, the Twisting algorithm can be used. This algorithm can be
written has follow:

w , wt(S, Ṡ) =

{

−λM sgn(S) if SṠ > 0,

−λmsgn(S) if SṠ ≥ 0.
(21)

From (Levant 1993) one can find the sufficient conditions which show the finite time convergence
onto the real second order sliding set:

λm > 4KM

S0

,

λm > C0

km
,

λM > KMλm

km
+ 2C0

km
,

(22)

where:

0 < km ≤ |ϕ(t, S, Ṡ)| ≤ KM and |φ(t, S, Ṡ)| < C0.

The finite time convergence of this algorithm based on a Lyapunov function can be found in
(Orlov 2009).

2.3 Control strategy

Previously, three different frames to express the model of the PMSM have been presented. It
will be shown that the f − g frame is suitable for sensorless control of PMSM.
The control law is proposed for the position tracking of PMSM. The control is designed from

the flatness property of the motor. Indeed, in (Sira-Ramı́rez 2000) it was shown that PMSM
were flat systems, where the flat outputs are the direct currents and the position. For this system
to be controlled, it is necessary to design a control loop for the direct currents and another for
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the position. For the current loop, the sliding variable is chosen so that the system has relative
degree equal to 1, a Super Twisting algorithm can be used. The sliding variable measurement
only is needed and this algorithm reduces the chattering phenomena. For the position control
loop, the system is of third degree. A judicious choice of the sliding variable lead to a system
with relative degree equal to 2 with respect to the sliding variable which enables the use of a
Twisting algorithm, for which the position, the velocity and the acceleration are needed.
For a mechanical sensorless control, based on this described control law, the position and the

velocity must be estimated but also the acceleration of the motor. Here, the proposed approach is
based on the back-EMF estimation. The electrical equations (9a), (9b) are used to estimate the
back-EMF using input voltages and measured currents only. From this estimation, the position
and the velocity can be reconstructed for the control. For this purpose, two sliding mode observers
are designed. These observers are advantageous in the presence of the nonlinearities of the back-
EMF. The observers convergence is ensured under the assumption that the time derivatives of
these terms are bounded. Moreover these observers ensure the finite time convergence of the
estimate that facilitates the proof of the closed-loop stability of the whole control-observer. The
proposed control law also needs the estimation of the acceleration to be designed. It is estimated
from the mechanical equation (9c) using the estimated position and velocity.
Moreover, the PMSM is not observable at zero velocity, as it is proven in (Ezzat et al. 2010).

To overcome the unobservability case, in the sequel, a low-speed strategy to bring the motor
states in the observable domain is proposed. Thus, the main objective of this work is the robust
position trajectory tracking without any mechanical sensors.
The control scheme is shown Fig. 2.

Observers

Open loop law

Other
Variables

Trajectories

Generator
Flat variables

Trajectories 

+
−

fg

PMSMab

SM control Law

if
ig

θ̂

ω̂
˙̂
ω̂

|ωlim|

if

ig

va

vb

θ

Ω
ia

ib

vf

vg

if,ref θref

xref
vref

x

Figure 2. System global scheme.

3 Mechanical sensorless sliding mode observers

In this paragraph, sliding mode observers are designed for the estimation of the position, the
velocity and the acceleration. The observers are designed in the (f − g) frame. The position and
the velocity are estimated using the electrical equations. These estimations are then used for the
acceleration estimation based on the mechanical equation.

3.1 Electrical equations based observers

3.1.1 Observer design

The electrical equations of the motor in the (f − g) frame are given by (9a) and (9b).
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These equations can be represented under the form:

ẋfg = Afgxfg + ufg + dfg,
yfg = Cfgxfg,

(23)

where xfg = [if ig]
T , ufg =

[

1
L(vf −Rif )

1
L(vg −Rig)

]T
and,

Afg =

[

0 npωr

−npωr 0

]

, dfg =

[

df
dg

]

=

[

K
L ω sin(np∆θ)

−K
L ω cos(np∆θ)

]

and Cfg =

[

1 0
0 1

]

,

the disturbance dfg are introduced by the permanent magnets. A second order sliding mode
observer is designed. Given that is acts on the sliding variable and its first derivative, the model
(23) is rewritten under an augmented form, where the variables df and dg are the augmented
state variables to be estimated:

ẋfg = Afgxfg +Bfgufg + dfg,
yfg = Cfgxfg,

(24)

where xfg = [if ig df dg]
T and,

Afg =

[

A I2×2

02×2 02×2

]

,Bfg =

[

I2×2

02×2

]

,Cfg =
[

I2×2 02×2

]

and

dfg =





02×1
K
L (ω̇ sin(np∆θ) + npω∆ω cos(np∆θ))

−K
L (ω̇ cos(np∆θ)− npω∆ω sin(np∆θ))



 ,

where ∆ω = ω − ωr. The sliding mode observer is constructed by replacing the disturbance
voltages by the output injection matrix χfg(yfg − ŷfg) yet to be defined. A stabilizing linear
part Lfg(yfg − ŷfg) is also introduced. The observer is defined by:

˙̂xfg = Afgx̂fg +Bfgufg − χfg(yfg − ŷfg)− Lfg(yfg − ŷfg),
ŷfg = Cfgx̂fg.

(25)

The output injection matrix χfg(yfg−ŷfg) is defined by the Super Twisting algorithm (relative
degree equal to 1 w.r.t. the sliding variable):

χfg(yfg − ŷfg) =









λf |if − îf |
1

2 sgn(if − îf )

λg|ig − îg|
1

2 sgn(ig − îg)

αf sgn(if − îf )

αgsgn(ig − îg)









.

The linear term is defined by:

Lfg =





lf 0
0 lg
02×2



 ,

where lf and lg are adjustable gains yet to be defined.
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The observation errors are defined by the vector:

ǫfg = xfg − x̂fg =









ǫf
ǫg
ǫdf

ǫdg









=









if − îf
ig − îg
df − d̂f
dg − d̂g









.

From equations (23) and (25), the errors dynamics are given by:

ǫ̇fg = ẋfg − ˙̂xfg = (Afg − LfgCfg)ǫfg + dfg − χ(ǫfg). (26)

Under physical assumption, one can consider that the velocity and the acceleration of
the motor are bounded. Thus, the disturbances df and dg are upperbounded by Πd =
K
L (|ω̇|max + np|ω∆ω|max). The finite time convergence conditions of the Super Twisting algo-
rithms are satisfied choosing the parameters α, λ and the gain matrix Lfg such that they satisfy
the conditions given by the Lyapunov function introduced in (18).
After a finite time, a second order sliding motion occurs on the sliding manifold {ǫfg = ǫ̇fg = 0}

implying:















ǫ̇f = 0,
ǫ̇g = 0,

ǫ̇df
= 0 = K

L (ω̇ sin(np∆θ) + npω∆ω cos(np∆θ))− αf sgn(ǫf ),
ǫ̇dg

= 0 = −K
L (ω̇ cos(np∆θ)− npω∆ω sin(np∆θ))− αgsgn(ǫg),

(27)

whether:



















































d̂f =
K

L
ω sin(np∆θ),

d̂g = −
K

L
ω cos(np∆θ),

αf sgneq(ǫf ) =
ω̇

ω
d̂f − npd̂g∆ω,

αgsgneq(ǫg) =
ω̇

ω
d̂g + npd̂f∆ω,

(28a)

(28b)

(28c)

(28d)

where α∗sgneq(ǫ∗) with ∗ ∈ {f, g} represents the equivalent output injections obtained after
filtering.

3.1.2 Position and velocity reconstruction

Position estimation:
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From equations (28a) and (28b), the estimation ∆θest of ∆θ is given by:

∆θest =



























































undefined if ω = 0,
1
np
arctan

(

d̂f

d̂g

)

if ĉ > 0,

π/2np if ŝ = 1,
−π/2np if ŝ = −1,

1
np

(

arctan
(

d̂f

d̂g

)

− π
)

if ĉ < 0,

and ŝ > 0,
1
np

(

arctan
(

d̂f

d̂g

)

+ π
)

if ĉ < 0,

and ŝ < 0,

(29)

where ĉ = d̂g/
√

d̂2f + d̂2g, ŝ = d̂f/
√

d̂2f + d̂2g are the estimations of cos(np∆θ) and sin(np∆θ),

respectively. The output value of the function arctan computed using (29) takes values in the

interval
]

− π
np
, π
np

[

, leading to discontinuous output.

Velocity estimation: From equations (28a) and (28b) the estimation of the velocity module
could be reconstructed as:

|ωest| =
√

d̂2f + d̂2g. (30)

This expression gives only the absolute value of the velocity.
However, substituting ω and ω̇ in equations (28c) and (28d), one has:

∆ωest =
1

np

αgsgneq(ǫg)d̂f − αf sgneq(ǫf )d̂g

d̂2f + d̂2g
. (31)

From equations (30) and (31), one deduces the velocity estimation:

ωest = ωr +∆ωest. (32)

Remark 3.1 Note that the acceleration could also be obtained from equations (28c) and (28d).
The discontinuities of the Super Twisting algorithm acting on these equations make them more
sensitive to chattering phenomenon, the resulting expression for the acceleration is ill condi-
tioned. An alternative method is discussed in the next section.

3.2 Mechanical equation based observer

In order to apply a second order the sliding mode control, one proposes to design an observer to
estimate the acceleration. Therefore the mechanical equation in the (f − g) frame is rewritten
replacing the position and the velocity by their estimates

ω̇ =
1

J
(K(if sin(np∆θest) + ig cos(np∆θest)− fvωest − Cr) . (33)

The load torque is considered as a perturbation denoted:

dωest
= −

Cr

J
.
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The augmented system is defined by:

ẋωest
= Aωest

xωest
+Bωest

uωest
+ dωest

,
yωest

= Cωest
xωest

,
(34)

where xωest
=

[

ωest dωest

]T
, uωest

= K
J (if sin(np∆θest) + ig cos(np∆θest)) and,

Aωest
=

[

− fv
J 1
0 0

]

, Bωest
=

[

1
0

]

, dωest
=

[

0

− 1
J
dCr

dt

]

and Cωest
=

[

1 0
]

.

The observer under the augmented form becomes:

˙̂xωest
= Aωest

x̂ωest
+Bωest

uωest
+ χωest

(yωest
− ŷωest

) + lωest
(yωest

− ŷωest
),

ŷωest
= Cωest

x̂ωest
,

(35)

where

χωest
(yωest

− ŷωest
) =

[

λωest
|yωest

− ŷωest
|
1

2 sgn(yωest
− ŷωest

)
αωest

sgn(yωest
− ŷωest

)

]

,

lωest
(yωest

− ŷωest
) =

[

lω
0

]

(yωest
− ŷωest

).

The observation error is defined by:

ǫωest
= xωest

− x̂ωest
=

[

ǫyωest

ǫdωest

]

=

[

yωest
− ŷωest

dωest
− d̂ωest

]

, (36)

leading to the dynamics:

ǫ̇ωest
= ẋωest

− ˙̂xωest
= (Aωest

− lωest
Cωest

) ǫωest
+ dωest

− χωest
(ǫyωest

). (37)

Under the assumption that the coefficient of Coulomb friction is differentiable, and that the
derivative of Cr is bounded

(

i.e.
∣

∣

dCr

dt

∣

∣

max
< ΠCr

where ΠCr
is a positive constant

)

, the finite
time convergence of the observer is guaranteed choosing the gains αωest

, λωest
, and lωest

satisfying
the conditions of the Lyapunov function (20). Thus after finite time, one has ǫ̇ωest

= ǫωest
= 0,

leading to the estimation of the acceleration ω̇est. Note that at the same time the load torque is
also estimated.
This section has shown a method for the estimation of the position, the velocity and the

acceleration. The next section is devoted to the control law design.

4 Sliding mode control for the PMSM

The control law is designed considering that the PMSM model is flat. The flatness theory was
introduced in (Fliess et al. 1995). A system is said flat if the states and the inputs of the system
can be expressed from the flat outputs and a finite number of their time derivatives only. The
flatness of the PMSM was shown in (Sira-Ramı́rez 2000) in the rotating (d− q) frame, without
Coulomb friction (i.e. unperturbed), with the flat outputs θ and id. To be transformed into the
(f − g) frame, it suffices to apply the transformation (4) using U(∆θ) instead of U(θ), leading
to the flat outputs in the (f − g) frame Yfg = (yfg,1, yfg,2) = (θ, if cos(np∆θ) + ig sin(np∆θ))
Flatness property allows defining easily a reference trajectory (denoted Γr), satisfying the

system dynamics. Considering that θr is the reference position to be tracked, the reference
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model of the motor in the (f − g) frame is obtained, replacing θ by θr in the model and is given
by:



































L
dif,r
dt

= vf,r −Rif,r + npLωrig,r,

L
dig,r
dt

= vg,r −Rig,r − npLωrif,r −Kωr,

J
dωr

dt
= Kig,r − fvωr,

dθr
dt

= ωr.

(38)

The flat outputs reference trajectories are defined by θr and if,r. From these outputs, all the
reference variables can be defined using the equations:

ωr = dθr
dt ,

ig,r = 1
K

(

J d2θr
dt2 + fv

dθr
dt

)

,

vf,r = Ldif,r
dt +Rif,r −

NL
K

dθr
dt

(

J d2θr
dt2 + fv

dθr
dt

)

,

vg,r =
JL
K

d3θr
dt3 + 1

K (Lfv +RJ) d2θr
dt2 +

(

Rfv
K +K +NLif,r

)

dθr
dt .

(39)

The dynamics of the tracking error:

efg = [ef , eg, eω , eθ]
T =









if cos(npeθ) + ig sin(npeθ)− ifr
−if sin(npeθ) + ig cos(npeθ)− igr

∆ω
∆θ









. (40)

are given by:















ėf = 1
L (vf −Ref + npL(eωeg + eωig,r + egωr)) ,

ėg = 1
L (vg −Reg + npL(eωef + eωif,r + efωr)−Keω) ,

ėω = 1
J (Keg − fveω − Cr),

ėθ = eω,

(41)

with:

[

vf
vg

]T

= U(eθ)

[

vf
vg

]T

−

[

vf,r
vg,r

]T

.

The flat variables can be expressed as a function of the inputs:















ėf =
1

L
vf + µ1(efg),

e
(3)
θ =

K

JL
vg + µ2(efg) +

fv
J2
Cr −

1

J

dCr

dt
,

(42a)

(42b)

where:

µ1(efg) =
1
L (−Ref +NL(eωeg + eωig,r + egωr)) ,

µ2(efg) = − K
JL(Reg +NL(eωef + eωif,r + efωr) +Keω)−

fv
J2 (Kef − fveω).
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4.1 Observation based state feedback control

The control law is designed using the state estimation obtained Section 3. The error vector is
defined between the estimated variables and the reference trajectories by:

ξ = [ξf , ξg, ξω, ξθ]
T , (43)

with









ξf
ξg
ξω
ξθ









=









if cos(N(θest − θr)) + ig sin(N(θest − θr))− if,r
−if sin(N(θest − θr)) + ig cos(N(θest − θr))− ig,r

ωest − ωr

θest − θr









, (44)

Leading to:















ξ̇f =
1

L
vf + µ1(ξfg),

ξ
(3)
θ =

K

JL
vg + µ2(ξfg) +

fv
J2
Cr −

1

J

dCr

dt
,

(45a)

(45b)

where:

µ1(ξfg) =
1
L (−Rξf +NL(ξωξg + ξωig,r + ξgωr)) ,

µ2(ξfg) = − K
JL(Rξg +NL(eωξf + ξωif,r + ξfωr) +Kξω)−

fv
J2 (Kξf − fvξω).

It is desired to ensure the convergence to the origin of the system (45). In this section, the
perturbations are unknown, but supposed bounded as well as their time derivatives. It is then
important to propose a control law which guarantee the convergence despite the perturbations.
From equation (45), one has to design a control law for the if current tracking and a law for the
position tracking.

4.1.1 if current tracking

In order to ensure the current tracking, the following sliding variable is chosen:

Sf = ξf . (46)

From equation (45a), the time derivative of this variable is given by:

Ṡf = ξ̇f =
1

L
vf + µ1(ξfg). (47)

Since the control appears in the first derivative, the system has a relative degree equal to 1
w.r.t. the sliding variable. A first order sliding mode algorithm would have been sufficient in
this case. However the chattering phenomena is more important if the discontinuous control
is applied directly on the time derivative of the current. It is proposed here to use a second
order algorithm so that the discontinuous action is applied to the second derivative. The Super
Twisting algorithm which require the knowledge of ξf , only, is used.
Define first a static state feedback vf :

1

L
vf = −µ1(ξfg) + ust(Sf ), (48)
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where ust(Sf ) is the Super Twisting algorithm defined in (13). The gains α and λ are determined
considering the system (16) without perturbations.
The time derivative of the Lyapunov function (20) is given by:

V̇ = |ψ|−1ψT (MTP + PM)ψ, (49)

with P a symmetric positive definite and M =

[

−λ 1
−α 0

]

.

The gains α and λ must be chosen such that:

−Q1 =MTP + PM, (50)

with Q1 positive definite.
This condition is satisfied if the matrix M is Hurwitz, whether:

tr(M) = −λ,
det(M) = α.

(51)

Choosing α and λ strictly positive, this condition is satisfied.

4.1.2 Position tracking

In order to obtain a system with relative degree equal to 2, the sliding variable is defined by:

Sθ = kξθ + ξ̇θ, (52)

with k > 0. Moreover, the sliding variable depends on the position and the velocity only, and do
not depends on the motor parameters. The successive time derivatives of Sθ are:

Ṡθ = kξ̇θ + ξ̈θ,

S̈θ = kξ̇ω + ξ̈ω

= k
J (Kξg − fveω) +

K
JLvg + µ2(ξfg)−

(

k
J − fv

J2

)

Cr −
1
J
dCr

dt .

(53)

In (Nollet et al. 2008), the Sampled Twisting algorithm was used. This algorithm does not
require the time derivative of the sliding variable, but it uses the difference over a sampling
period of the variable, which is very sensitive to measurement noise. Thus in the section 2.2, we
have introduced the Twisting algorithm to treat systems of relative degree equal to 2.
Choosing the control input vq as follow:

K

JL
vg = −

k

J
(Kξg − fvξω)− µ2(ξfg) + wt(Sθ, Ṡθ), (54)

where wt(Sθ, Ṡθ) is the twisting algorithm defined by equation (21).
The second time derivative of the sliding variable (52) can be written as:

S̈θ = φ1(t) + wt(Sθ, Ṡθ), (55)

where:

φ1(t) = −

(

k

J
−
fv
J2

)

Cr −
1

J

dCr

dt
. (56)
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Equation (55) is expressed with the form given in equation (11). Thus the finite time conver-
gence towards the surface Sθ = 0 is guaranteed if the conditions (22) for the controller gains λm
and λM :

λm >
∣

∣

∣

(

k
J − fv

J2

)

Cr −
1
J
dCr

dt

∣

∣

∣

max
,

λM > λm + 2
∣

∣

∣

(

k
J − fv

J2

)

Cr −
1
J
dCr

dt

∣

∣

∣

max
,

(57)

holds.
Therefore, the presented control law guarantees exponential convergence to 0 of the tracking

error, in the case where the estimation from the observers are equal to the real variables. Note
that this control law is robust with respect to disturbances and parameter uncertainties. However
the system is nonlinear. The separation principle is then not valid. In the next subsection we
will study the convergence of the control law and the observers together.

4.2 Closed loop stability

The state dynamics of the complete system including the tracking errors as well as the estimation
errors

Ξ , [ef , eg, eω, eθ, ǫf , ǫg, ǫdf
, ǫdg

ǫyωest
, ǫdωest

]T , (58)

are given by:

Ξ̇ =

































−R
L
ef + np(eωeg + eωig,r + egωr)

−R
L
eg + np(eωef + eωif,r + efωr)−

K
L
eω

1
J
(Keg − fveω − Cr)

e3
−lfǫf + npωrǫg
−npωrǫf − lgǫg

K
L
(ω̇ sin(npeθ) + np(eω + ωr)eω cos(npeθ))

−K
L
(ω̇ cos(npeθ)− np(eω + ωr)eω sin(npeθ))

(− fv
J

− lωest
)ǫyωest

+ ǫdg

− 1
J

dCr

dt

































+































1
L
vf

1
L
vg
0
0

wst,1(ǫf )
wst,1(ǫg)
ẇst,2(ǫf )
ẇst,2(ǫg)

wst,1(ǫyωest
)

ẇst,2(ǫyωest
)































, (59)

where:

ω̇ =
1

J
(K(if sin(−Neθ) + ig cos(−Neθ))− fv(eω + ωr)− Cr) .

To prove the exponential convergence of the system (59), one has to show that the trajectories
of the complete system (59) remain bounded on a finite time interval. Indeed, if the system
is bounded, the trajectories are maintained in a compact until the observers converge. Then
since the designed observers converge in finite time, after this finite time the system will behave
exactly like the system controlled with the state feedback described previously. To prove that
the system is bounded the estimated variables ξ have to be written as a function of the system
states Ξ, the reference trajectory Γr and the control inputs.

[

ξf
ξg

]

= U(∆θest)

[

îf
îg

]

−

[

if,r
ig,r

]

, (60)
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with:











∆θest = − 1
np

arctan
(

d̂f

d̂g

)

,

îf = ǫf + if = ǫf + ef + if,r,

îg = ǫg + ig = ǫg + eg + ig,r.

(61)

Similarly:

[

ξω
ξθ

]

=

[

ωest

θest

]

−

[

ωr

θr

]

=





± L
K

√

d̂2f + d̂2g

− 1
N arctan

(

d̂f

d̂g

)



−

[

ωr

θr

]

. (62)

After substitution in the system (59), of the control equations vf and vg with the expressions
(60) and (62) of the errors between the estimated variables and the reference variables, one
obtain a model depending on the states, the desired trajectories and the control inputs:

Ξ̇ = F (Ξ,Γr, wst,1(ǫf ), wst,1(ǫg), ẇst,2(ǫf ), ẇst,2(ǫg), wst,1(ǫyωest
), ẇst,2(ǫyωest

)). (63)

Without loss of generalities, one can assume that the chosen reference trajectory is bounded.
One has then, using (60):

{

ξf = O(ǫf + ef ),
ξg = O(ǫg + eg).

(64)

Since the current if and ig are saturated, as well as their estimates values îf and îg, the tracking
errors of the currents ef and eg and estimation errors ǫf and ǫg are bounded. Thus, the error
variables ξf and ξg are bounded. Moreover, the Super Twisting and the Twisting algorithms are
bounded.
The system can be written as Ξ̇ = f(Ξ) + g. Thereby, including all the dominations in the

complete system, one obtain the inequalities:

||Ξ̇|| ≤ Q||Ξ||+ g, (65)

where Q and g are positive constants.
Integrating (65) one obtain:

||Ξ(t)|| ≤ ||Ξ(0)|| +

∫ t

0
(Q||Ξ(τ)|| + g)dτ. (66)

Applying the Gronwall lemma, one has:

||Ξ(t)|| ≤ ||Ξ(0)|| exp(Ct) +
g

Q
exp(Ct− 1), (67)

where C is a positive constant.
Therefore, the complete state system Ξ is bounded. This proves the exponential convergence

of the mechanical sensorless control law.
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5 Experimental results

5.1 Open-loop strategy

As mentioned Section 3, the position is not identifiable at standstill. To overcome the problem,
a low speed scenario is described. If the motor velocity is lower than a certain velocity |ωlim|,
the motor is driven in open loop. The following control law in the rotating reference frame is
used:

v =

{√

R2 + (NωrefL)2I2max + (Kωref)2, if v < Vmax,
Vmax, else.

(68)

Imax is the current limit, Vmax is the voltage limit. v is applied to the motor using the transfor-
mation va = v cos(Nθref ) and vb = v sin(Nθref ). Because this method does not rely on position
and velocity sensors or on estimates of these variables, we will refer to the control algorithm as
the open-loop controller.
When the PMSM is controlled in open-loop, it can be assumed that Ωr ≃ Ω as long as

the motor keeps synchronism. This condition can be verified without a sensor because loss of
synchronism results in a stalled motor and/or considerable vibrations.
The open-loop controller is useful at low speed, but falls short of what would be desired from

a sensorless control law. In particular, this strategy is not able to achieve great acceleration
profiles and the motor cannot operate in certain resonant region.

5.2 Reference trajectory

In order to shown the performances of the proposed algorithm, a reference trajectory has been
designed. Thanks to the flatness properties, the reference trajectory is completely determined
from the flat outputs. It is then sufficient to determine θr and if,r. Form these variables, all the
remaining reference variables are computable.
The objective is to bring the motor position from a position θr(ti) = θi to a position θr(tf ) = θf

using smooth dynamics without discontinuities. The following constraints are chosen:















θr(ti) = θri, θr(tf ) = θrf ,

θ̇r(ti) = 0, θ̇r(tf ) = 0,

θ̈r(ti) = 0, θ̈r(tf ) = 0,

θ
(3)
r (ti) = 0, θ̇

(3)
r (tf ) = 0.

(69)

Having 8 constraints, the minimal polynomial must be of degree 7:

θr(t) = θri + (θrf − θri)( a0∆(t)7 + a6∆(t)6 + a2∆(t)5 + a3∆(t)4

+a4∆(t)3 + a5∆(t)2 + a6∆(t) + a7),
(70)

with:

∆(t) =
t− ti
tf − ti

,

and:

a0 = 20, a1 = −70, a2 = 84, a3 = −35,
a4 = 0, a5 = 0, a6 = 0, a7 = 0.

The direct reference current is defined to be null, in order to minimize the Joule losses and
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maximize the motor torque (Bodson et al. 1993), it leads to if,r = 0A. The trajectory of the
current could also have been chosen as in (Verl and Bodson 1998), but the optimization is not
the goal of this article. From these two variables, ωr, ω̇r and ig,r are determined from (38).

5.3 Test-Bench Description

Figure 3. Stepper-motor test bench.

The experimentations are realized using a stepper motor bench developed in LAGIS at École
Centrale de Lille (see Fig. 3). The motor parameters have been identified using a mechanical
sensorless procedure described in (Delpoux et al. 2012). The motor characteristics, with coils in
series are

• Inductance L = 9mH,

• Resistance R = 3.01Ω,

• Back-EMF constant K = 0.27N.m/A,

• Moment of inertia J = 3.18.10−4kg.m2,

• Coefficient of viscous friction fv = 2.37.10−3N.m.S/rad,

• Coefficient of Coulomb friction Cr = 0.0752N.m,

• Number of pole pairs np = 50.

It is important to note that number of pole pairs is higher than conventional two-phase perma-
nent magnet synchronous motors. Such a rotor design has a low moment of inertia, resulting
in outstanding acceleration behavior. However, this large number of poles produces currents
and voltages in the fix frame at higher frequencies, which vary at np = 50 times the frequency
of the motor rotation. The computer hardware on the test-bench is a dSpace 1104, with Con-
trolDesk software as interface. Using the library RTlib developed by dSpace, the algorithms are
implemented in C language. The input voltages va and vb of each coils are delivered by two
D/A outputs of the dSpace and amplified by two linear amplifiers. The currents ia and ib are
measured using hall effect sensors with a precision of 1% of the nominal current In = 3A. The
power supply provides a maximum voltage vmax = 30V and imax = 3A. Fig. 2, show the whole
control scheme. The sampling frequency for the experiments is constant and equal to 10−4s.

5.4 Experimental results

The performances of the approach are demonstrated by choosing a particular reference trajectory.
The objective is to show that the motor is able, starting from a null velocity, to track the reference
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trajectory even for negative velocities. As mentioned before, the open loop control is used for
velocities lower than |ωlim|, where ωlim is chosen equal to 3rad.s−1. The switching instants are
represented in the following figures by a magenta line. The desired trajectory is defined applying
(70) twice, the first time starts with a position equal to zero to reach an intermediate position,
from 0 to 18rad in 2seconds. Then equation (70) is applied from the intermediate position until
a final position equal to 0. This leads to a velocity profile which is positive during the first 2
seconds, and negative the 2 last ones.

5.4.1 Convergence of the observer based on electrical equations

The position and the velocity are estimated from the observer (26). In order to be well re-
constructed, it must be shown that the observers converge correctly. In Fig. 4 are plotted the
currents if and ig and their estimates îf and îg. The figure shows that the estimated currents
are close to the measured ones. The estimations errors ǫf and ǫg are less that 0.01A.
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îf

ig
îg
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Figure 4. (top) Currents and their estimations, (bottom) observations errors.

The measured disturbance voltages df = K
L ω sin(np∆θ) and dg = −K

L ω cos(np∆θ) are drawn

Fig. 5 with their estimates d̂f and d̂g and appear to be closely related. The unknown inputs
of the observer are well reconstructed. This shows the convergence of the observer, from these
results, one can be able to reconstruct the estimated position and velocity.

5.4.2 Position and velocity reconstruction

The position is reconstructed from the estimation of cos(np∆θ) and sin(np∆θ), which enables
to estimate the error between the desired trajectory and the motor position. The variable ∆θest is
then computed modulo 2π

np
. One has to verify that the error between the position and the reference

position remains in this interval. In the case where the error leaves the interval, one has to add
±2 π

np
to compensate for the error. A procedure is implemented to count these “jumps”. The

integer k is incremented if the estimation leaves the interval by the upper bound and decremented
conversely. Such an algorithm is sensitive to measurement noise: a “jump” caused by the noise
could be interpreted by the passage to another interval. However, the Super Twisting algorithm
plays the role of a filter and provides a continuous estimation ∆θest. From this estimate, the
position can be reconstruct as:

θest = θr +∆θest + 2k
π

N
. (71)
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Figure 5. Disturbance voltages and their estimations.

Fig. 6 shows the estimates of these variables, which are plotted while the motor is controlled in
closed loop. Firstly it should be noted that the position error is always less than the distance
between two poles. The maximum error is around 0.02rad while the angle between two poles
is equal to 2π

50 = 0.126rad. The estimated position is reconstruct using (71) where k is equal
to zero. The resulting estimation is plotted Fig. 7. The figure shows the closed loop position
tracking. Again the estimated position is plotted when controlled in closed loop. In open loop,
the position is equal to the integral of the reference velocity plus the initial position, which is
zero at the beginning of the experimentation. Thereafter, the position takes the last estimated
value.
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The estimated position is plotted in green on the Fig. 7. The second subplot shows the error
between the measured and estimated position. The error is less than 0.01rad. The blue curve
represents the closed loop performance, and it can be seen that the tracking error in closed
loop is less than 0.02rad. This means that over three rounds, the position is tracked without
mechanical sensor with a precision less than one degree.
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Figure 7. (top) Reference position, measured position and estimated position, (bottom) position tracking error and position
observation error.

The velocity estimate is plotted Fig. 8. This figure presents the reference (red), the measured
(blue) and the estimated (green) position in the first subplot and in the second subplot the error
ǫω between the measured and the estimated position (green) and the tracking position error eω.
The experiment shows that the motor reaches 20rad.s−1 with a precision around 1rad.s−1.
Finally, the acceleration is low pass filtered using a discrete third-order filter (Butterworth).

The resulting estimation is plotted with the reference acceleration Fig. 9.
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Figure 8. (top) Reference velocity, measured velocity, estimated velocity, (bottom) velocity tracking error, velocity obser-
vation error.

Remark 5.1 It is important to recall that the motor used in the experiment has a large number
of pole np = 50, which limits the speed. In the literature, for example, in (Ortega et al. 2011)
np = 4, in (Khlaief et al. 2011) np = 3.
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Figure 9. Reference acceleration and observed acceleration.

The results presented in this section prove the effectiveness of the proposed approach.

6 Conclusion

There has been considerable interest in developing sensorless control methods for synchronous
motors, and permanent magnet stepper motors in particular. The objective is to replace position
and velocity sensors with less costly and more reliable current sensors (which are often present
anyway).
In this paper, a new approach was proposed for mechanical sensorless control of PMSMs using

current sensors only. The model is expressed in a frame, which is obtained from the reference
position instead of the measured position. The frame has the advantages of the (d − q) frame
without necessity of the measured position and moreover it has the advantage to be valid even
when the reference position is different from the measured one. Using a second order sliding mode
observer the position, the velocity and the acceleration were estimated. Experimental results that
show a very good estimation of this variables. From the observed variables, a trajectory tracking
was designed using sliding mode control. This control strategy has the advantage to be robust
with respect to external perturbations.
Using an initial scenario, which is used to control the motor when the position is not identi-

fiable, the experimental results show that we are able to realize a position tracking in a large
range of velocities, even for negative velocities. The position tracking error is less than 0.02rad
which seems to be really reasonable in sensorless applications.
The low speed sensorless control and observability is still an open problem. In many articles,

the experimental results are shown at non-null speed only. In this article was described an open
loop procedure to overcome this problem. The experimental results have shown very good results
with this strategy. However, the theoretical proof is missing. We did not talk neither about the
switch between the open loop and the closed loop strategy.
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