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ACCELERATED A-CONTRARIO DETECTION OF SMOOTH TRAJECTORIES

Rémy Abergel and Lionel Moisan

Université Paris Descartes, MAP5 (CNRS UMR 8145), France

ABSTRACT

The detection of smooth trajectories in a (noisy) point set se-

quence can be realized optimally with the ASTRE algorithm,

but the quadratic time and memory complexity of this al-

gorithm with respect to the number of frames is prohibitive

for many practical applications. We here propose a variant

that cuts the input sequence into overlapping temporal chunks

that are processed in a sequential (but non-independent) way,

which results in a linear complexity with respect to the num-

ber of frames. Surprisingly, the performances are in general

not affected by this acceleration strategy, and are sometimes

even slightly above those of the original ASTRE algorithm.

Index Terms— trajectory analysis; point tracking; mo-

tion detection; a-contrario model.

1. INTRODUCTION

Many image processing tasks that concern video or image

sequences are related to various forms of motion analysis

like optical flow, object tracking, trajectory detection, motion

compensation, etc. In the present work, we consider the fun-

damental problem of finding reliable trajectories in a point set

sequence that has been previously extracted from an image

sequence, without any attribute attached to each point.

This task, which has been considered several times in the

literature [1–5], is the core of various applications includ-

ing, e.g., particle velocimetry in fluid mechanics, dynamic

analysis of fluorescent probes in biology, study of ant or ter-

mite behavior, pedestrian and car tracking, etc. For the case

where smooth trajectories (more precisely, trajectories hav-

ing a small maximum acceleration) are to be detected among

a potentially high number of incoherent noise points, an algo-

rithm with optimality guarantees, called ASTRE [6], has been

recently built, but it turns out that it is nearly impossible to use

it on long image sequences (say K ≥ 1000 frames) because

its time and memory complexity is quadratic with respect to

K. We here propose to break this complexity limitation and

describe a new algorithm for which the complexity is linear

with respect to K, which substantially increases the possibil-

ities of real-world applications. In Section 2, we describe the

original ASTRE algorithm, and show that the introduction of a

maximum speed threshold may bring an important speed-up,

but does not break the O(K2) complexity. This is why in Sec-

tion 3 we present a new algorithm named CUTASTRE, which

cuts the original image sequence into overlapping small tem-

poral chunks and processes these chunks sequentially with the

ASTRE algorithm, using an incremental strategy to detect long

trajectories. This O(K) algorithm, though theoretically sub-

optimal in terms of detection performances, still offers (like

ASTRE) a rigorous control of false detections in pure noise

data. The new parameters (chunk size and overlapping ratio)

are analyzed in Section 4, and appear to be rather easy to set.

Moreover, numerical experiments on both synthetic and natu-

ral point set sequences reveal that the detection performances

of CUTASTRE are very similar to those of ASTRE, which, con-

sidering the dramatic speed-up offered by CUTASTRE, opens

very interesting perspectives.

2. THE FORMER ASTRE ALGORITHM

2.1. ASTRE methodology

The ASTRE algorithm is designed to perform trajectory detec-

tion over a sequence of K frames (with domain Ω) each con-

taining N points, applying the a-contrario methodology [7].

The domain Ω can be continuous or discrete, but here we

simply recall results in the continuous setting, when Ω is the

square [0, 1]× [0, 1].

General a-contrario algorithms are based on two main in-

gredients: a naive model (called H0) describing what could

be pure noise data, and a measurement function that char-

acterizes the kind of structures looked for. In [6], the naive

model H0 is a uniform draw of N points in each of the K
frames, and the measurement function associated to a trajec-

tory T = (Xk0

i1
, Xk0+1

i2
, . . . , Xk0+ℓ−1

iℓ
) with length ℓ is its
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where Xk
i is the i-th point of frame k. We shall denote

the (random) trajectory T by Xk0

i1
→ Xk0+1

i2
→ · · · →

Xk0+ℓ−1
iℓ

, and a link between two points Xk
i and Xk+1

j by

Xk
i → Xk+1

j . Similarly, the local discrete acceleration will

be written a(u, v, w) = a(u → v → w) = ‖w − 2v + u‖.

The amount of surprise when observing a trajectory T with

length ℓ and acceleration a(T ) = δ can be estimated by us-

ing a simple (but precise) upper bound of the probability of



observing a trajectory with acceleration smaller than δ in H0,

PH0
(a(T ) ≤ δ) ≤

(

πδ2
)ℓ−2

. (1)

Using the a-contrario methodology (see prop. 2 in [8]), one

can design a number of false alarms by

∀ℓ, ∀T ∈ Tℓ, NFAT (δ) = K(K−ℓ+1)N ℓ
(

πδ2
)ℓ−2

(2)

(Tℓ denotes the set of trajectories of length ℓ) for the measure-

ment δ = a(T ), that is, a function that satisfies

∀ε > 0, EH0

[

#
{

T
∣

∣ NFAT (a(T )) ≤ ε
}]

≤ ε. (3)

Trajectories having a NFA smaller than ε are said to be ε-

meaningful (or detected at level ε) and the so-called NFA-

property (3) ensures that the average number of (false) detec-

tions made in H0 at level ε is less than ε.

The ASTRE algorithm has ε for unique parameter; it rep-

resents the maximal NFA value of a trajectory that the user

wants to extract (usually one chooses ε = 1). In practice the

extraction scheme is greedy: if m, the minimal NFA among

all possible trajectories is less than ε, a trajectory having NFA
equal to m is extracted, its points are removed from the se-

quence and the process is repeated until no trajectory with

NFA less than ε can be found any more.

To compute the smallest NFA among all possible trajec-

tories, a dynamic programming strategy is used. The problem

boils down to compute, for any x, y, ℓ, the minimal accelera-

tion G (x, y, ℓ) of a trajectory T ∈ Tℓ ending with link y → x
(see (9) in [6]). We refer the reader to [6] for a complete de-

scription of ASTRE, and in particular how to smoothly extend

the method when the number of points is non-constant over

the frame sequence, how to handle properly data quantiza-

tion (when the domain Ω is discrete). Notice also that ASTRE

can be extended to handle trajectory with missing points (that

is, “with holes”), but this case will not be considered in the

present work.

2.2. Improvement of the execution time

The main weakness of ASTRE is its quadratic time and mem-

ory complexity with respect to K, due to the extensive com-

putation of G . A very simple way to reduce the execution

time of this algorithm is to introduce a threshold Sthre on the

speed of the trajectories: as soon as the distance between two

points x and y of two consecutive frames is higher than Sthre,

we consider that link y → x cannot exist. Hence we can avoid

the computation of G (x, y, ℓ) for those pairs of points.

A speed threshold is a physical parameter that can be eas-

ily adjusted in many applications. The use of this additional

knowledge restricts the number of linking possibilities among

the sequence, and reduces very significantly the execution

time in general. However the complexity remains O(K2) and

ASTRE is still inapplicable to long data sequences, as can be

seen in the ASTRE columns of Table 1.
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Fig. 1. Example of grouping for a twenty-two frames sequence

(vertical segments) containing five points each (black disks). Here

frames are grouped into three chunks of ten frames each, with four

frames overlap.
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Fig. 2. Extraction of meaningful trajectories within chunk B3.

Trajectories are being detected using ASTRE, taking k3 = 10 in-

stead of K for the NFA computation. Each time a trajectory is

extracted, all its points are removed from the sequence. Once all

trajectories are extracted, we set back to the sequence all points of

overlapping frames (frames f13 to f16). The corresponding links are

removed (dotted links) excepting those linking a point of frame f15
with a point of frame f16. Trajectory (4) being entirely included into

R2↔3, all its links are removed.

3. CUTASTRE

Our approach consists in grouping consecutive frames of the

full sequence into overlapping chunks B1, . . . ,Bn (an ex-

ample of grouping is proposed in Fig. 1). Trajectories will

be detected within each chunk (starting from chunk Bn) with

an algorithm similar to ASTRE, which will be adapted to ex-

tend trajectories extracted from a chunk Bk when processing

its predecessor Bk−1. The function G will be computed only

within a single chunk, allowing a drastic reduction of the time

and memory complexity. In the following we will denote by

ki the number of frames contained in the chunk Bi.

3.1. Description of the process

The first chunk to be processed is Bn. For this very first

chunk we simply apply the ASTRE algorithm on the corre-

sponding subsequence of frames, and replace K by kn in (2).

When ASTRE terminates, we put back in the sequence all

points that have been removed from the overlapping block

of frames Rn−1↔n. We remove the corresponding links ex-

cept those linking points of the two last frames of Rn−1↔n.

Finally, when a trajectory is entirely included into Rn−1↔n,

all its links are removed (this is the case of trajectory (4) in

Fig. 2). This ends the process for chunk Bn.

Let us now describe the process for the other chunks

(Bi)1≤i<n. We say that a trajectory t is extendable to Bi if

t has been extracted while processing chunk Bi+1 (not Bi)



and reaches the two last frames (that we denote F i
0 and F i

1)

of Ri↔i+1 (see Fig. 2, trajectories (1) and (2) are extendable

to B2, as both reach frames F 2
0 = f15 and F 2

1 = f16). To

process these chunks, we need to adapt the computation of

G (x, y, ℓ) and NFA(G (x, y, ℓ)) when x or y belongs to an

extendable trajectory. Let us say we focus on chunk Bi, four

cases must be distinguished:

i. neither x nor y belongs to a trajectory extendable to Bi,

ii. x ∈ F i
1 and x belongs to a trajectory t extendable to Bi

that also contains y (necessarily y ∈ F i
0),

iii. x ∈ F i
0 and x belongs to a trajectory t extendable to Bi,

iv. any other case.

In case i, K is replaced by ki in (2), and G (x, y, ℓ) and

NFA(G (x, y, ℓ)) are computed exactly as in [6]. In cases

ii and iii, K is replaced by ki + ki+1. Let us consider

the sub-trajectory t0 of t that is obtained by removing

from t all points that do not belong to chunk Bi+1, and

let a0 denotes the acceleration of the (sub-)trajectory t0
and ℓ0 its length. In case ii, t0 starts with link y → x,

so we replace G (x, y, ℓ) by max (a0,G (x, y, ℓ)) and re-

place ℓ by ℓ + ℓ0 − 2 in the NFA formula when com-

puting NFA(G (x, y, ℓ)). In case iii, t0 starts with a link

x → w (x belongs to frame F i
0 and w to frame F i

1) so

we replace G (x, y, ℓ) by max (a0, a(y, x, w),G (x, y, ℓ)) and

replace ℓ by ℓ + ℓ0 − 1 in the NFA formula when com-

puting NFA(G (x, y, ℓ)). Last, in case iv we simply set

G (x, y, ℓ) = +∞ and NFA(G (x, y, ℓ)) = +∞ in order to

avoid the detection of a trajectory ending with link y → x (or

equivalently, we just do not compute G (x, y, ℓ) for such pairs

of points). Moreover, all the NFA values considered in the

four cases are multiplied by the number of chunks n.

The strategy concerning trajectories extraction is exactly

the same that in [6]; when all ε-meaningful trajectories are

extracted, we set back again to the sequence all points be-

longing to Ri−1↔i and unless Bi is chunk B1, we repeat the

link suppression process (see Fig. 3).

We would like to emphasize the ability of this algorithm

to not necessarily redraw removed links when a trajectory ex-

tension is done (look carefully at trajectory (4)), hence avoid-

ing edge effects that would fatally occur if the overlapping

areas contained only two frames. These areas can be seen as

decision areas and removed links as hypotheses that can be

validated or not when trajectories are being extended.

3.2. Preservation of the NFA property

A natural question arises: do we still control the number of

false detections by (3) like the ASTRE algorithm? The answer

is yes, and it simply comes from the fact that the number of

new trajectories extracted in a given chunk is controlled by

ε/n, thanks to the multiplication of the individual NFA by

the number of chunks n in the four cases considered above.
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Fig. 3. Top: extraction of meaningful trajectories within chunk B2

with several links suppression within R1↔2. Trajectories (1) and

(2) have been extended, trajectory (4) is detected again but is now

longer. Bottom: extraction of meaningful trajectories within chunk

B1, trajectories (1), (2) and (4) have been extended, no link suppres-

sion must be done, as trajectories will not be extended anymore.

4. EXPERIMENTS

We first compare the ASTRE and CUTASTRE algorithms on

synthetic sequences produced by the Point-Set Motion Gen-

eration (PSMG) algorithm described in [9] (see also [6], 4.2):

• The initial position of a trajectory is chosen uniformly on

the (continuous) image domain Ω;

• The initial velocity magnitude is ν0 ∼ α|Z|, where Z ∼
N (µ = 5, σ = 0.5) is a Gaussian random variable and

α a scale factor whose setting will be detailed later. The

initial velocity angle βo is uniformly chosen on [0, 2π].

• The velocity magnitude and angle are updated in each

frame using

{

νk+1 = |Z|, Z ∼ N (µ = νk, α · σν)

βk+1 ∼ N (µ = βk, σβ).

• The generation ends when the trajectory reaches the last

time index or when it goes outside Ω. Once the trajectory

is generated, its points are quantized on a discrete grid.

In all our experiments we set σβ = 0.2, σν = 0.2 or

0.5, and the frame domain Ω is quantized in 1000 × 1000
pixels. The setting of the other parameters (length K of the

sequence, length ℓ of the trajectories) will be signaled in each

experiment. The scale factor α is equal to ( #Ω

100×100
)1/2 (that

is, α = 10 in our experiments), which allows to change the

domain quantization while maintaining the acceleration and

speed characteristics of the trajectories. Last, when a trajec-

tory does not cover the whole sequence (that is ℓ < K), its

starting frame index is chosen uniformly among {1, . . . ,K −
ℓ+ 1}.

The detection performances are evaluated using the F1-

score criterion defined by

F1-score = 2 ·
recall · precision

recall + precision
, (4)
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Fig. 4. Setting chunk size (c) and overlap size (o). We compute

(over 50 realizations) the average F1-score obtained with CUTASTRE

on synthetic sequences (σν = 0.2 or 0.5) of K = 90 frames, each

containing 20 trajectories with length ℓ ≥ 45 and Nnoise ∈ {50, 250}
spurious points (uniformly drawn) per frame. Several chunk sizes (c)

are tested for all possible overlap sizes (2 ≤ o ≤ c− 1). We display

the F1-score as a function of the ratio o/c. As could be expected, the

optimal chunk size copt increases with σν and Nnoise (the algorithm

needs bigger chunks to catch the temporal coherence of the motion),

but surprisingly enough it remains quite small compared to K. The

performance is stable according to the choice of c as soon as c is not

chosen too small. Conversely, once c is set, taking o = c

2
seems to

be the optimal (or at least a reasonable) choice for the overlap size.

where 1− precision measures the proportion of false positive

links among found links, and 1− recall measures the propor-

tion of false negative links among actual links, that is,

precision = #of correct links found
#of links found

, recall = #of correct links found
#of actual links

.

Unless explicitly signaled, we systematically take ε = 1 for

both algorithms.

4.1. Setting the chunk-size and overlap-size parameters

The ASTRE algorithm has the NFA threshold ε as unique pa-

rameter, which is remarkably easy to set (ε is a simple bound

on the average number of detections that would be done in

pure noise data, usually one chooses ε = 1). The CUTASTRE

algorithm introduces two new parameters that are the chunk

and overlap sizes, and the setting of such non-physical (al-

though still intuitive) parameters may be difficult and com-

promise the relevance of the algorithm for practical applica-

tions. Fortunately, the setting of these parameters appears to

be quite simple, according to the experiments performed on

synthetic and real-life data (see Fig. 4 and 6-left).
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Fig. 5. Comparison of ASTRE and CUTASTRE F1-scores (same

data sequences as in Fig. 4). CUTASTRE is tested for several (near

optimal) chunk sizes and the overlap size is set to c/2 (integer part).

We observe that better performances can be reached with CUTASTRE

when the noise level is not too high, especially for data sequences

with σν = 0.2 (smooth trajectories). When working with σν = 0.5
(trajectories with high accelerations) and Nnoise > 50 ASTRE remains

slightly better but performances are still very close.

4.2. Performances ASTRE versus CUTASTRE

We evaluated both algorithms on synthetic data sequences

(with different characteristics, see Fig. 5) but also on a real

one (see Fig. 6). It turns out from our experiments that AS-

TRE performances can be slightly better when dealing with

highly accelerated trajectories (σν = 0.5) and high level of

noise. Conversely, CUTASTRE achieved better detection on

the smooth synthetic data set (σν = 0.2) and the snow se-

quence (when ε = 1). This result is surprising as the global-

ity in time of ASTRE should intuitively lead to better perfor-

mances. It would be interesting to further study the mecha-

nisms of this unexpected behavior.

4.3. Time and space complexity

The introduction of a speed threshold discussed in section 2.2

can be applied to both algorithms; it decreases the execution

time, but does not change the time and memory complexities,

which are respectively O(N3K2) and O(N2K2) for ASTRE,

and respectively O(N3K) and O(N2K) for CUTASTRE. Ex-

amples of practical execution time are given in Table 1.

4.4. Tuning the threshold parameter ε

In general, the numbers of false alarms of a-contrario algo-

rithms are built using a probability upper bound (like (1)) that

is not necessarily sharp. Furthermore, in the case of ASTRE,

trajectories are greedily extracted, thus the number of trajec-

tories extracted at level ε in any data sequence is always less

than the number of ε-meaningful trajectories. As a conse-

quence, ε is in practice a pessimistic estimation of the number

of detections that really occur in pure noise data, and the user

can usually obtain better detection results by increasing the

NFA-threshold parameter ε, as illustrated in Fig. 6 and 7.



K
no speed threshold Sthre = 150

ASTRE CUTASTRE ASTRE CUTASTRE

N
n
o
is

e
=

1
0 200 30 1.4 1.2 0.09

500 270 3.6 11 0.26

1000 2160 7.6 80 0.51

3000 - 24.8 1230 1.64

5000 - 39.7 - 2.76

N
n
o
is

e
=

5
0 200 718 27 18 0.91

500 104 88 226 2.88

1000 - 158 1686 5.13

3000 - 444 - 15.20

5000 - 743 - 24.87

Table 1. Comparison of typical execution times on synthetic se-

quences (σν = 0.2) with various values of the number of frames

K. Each sequence contains K/10 trajectories with length ℓ ∈
[100, 200] and Nnoise spurious points per frame. We compare the

execution time (in seconds) of ASTRE and CUTASTRE algorithms,

with and without speed threshold (we took Sthre = 150, which was

three times the typical maximal speed that we could observe in the

data). This experiment shows that the use of a speed threshold (even

pessimistic) reduces significantly the execution time (for both algo-

rithms), but does not break the O(K2) complexity of ASTRE, which

is prohibitive for long data sequences. With CUTASTRE, the execu-

tion time increases linearly with the number of frames.

5. CONCLUSION AND PERSPECTIVES

We proposed a new algorithm that manages to break the

quadratic O(K2) time and memory complexity of ASTRE,

while showing similar detection performances, and a good

ease-of-use since the two algorithmic parameters involved

in the time-cut strategy of CUTASTRE do not require a com-

plex and accurate tuning. This fast variant could be extended

to handle missing points (trajectories ”with holes”), as this

functionality is already available with ASTRE but is still too

computationally expensive for many applications.
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Fig. 7. Influence of the threshold parameter ε. (same data se-

quences as in Fig. 4-5). We display the (average) F1-score as a func-

tion of ε. Algorithm CUTASTRE is used with a near-optimal setting

of parameters c and o (which revealed to be robust to ε changes). For

both algorithms, the F1-score increases with ε until a global maxi-

mum, then it falls down. We observe as in Fig. 5 that better perfor-

mances can be reached with CUTASTRE when trajectories have low

acceleration (small σν ), especially when the noise level is low.
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