
HAL Id: hal-00957747
https://hal.science/hal-00957747v2

Submitted on 18 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerated A-contrario Detection of Smooth
Trajectories

Rémy Abergel, Lionel Moisan

To cite this version:
Rémy Abergel, Lionel Moisan. Accelerated A-contrario Detection of Smooth Trajectories. EUSIPCO
2014, 22nd European Signal Processing Conference , Sep 2014, Lisbonne, Portugal. �hal-00957747v2�

https://hal.science/hal-00957747v2
https://hal.archives-ouvertes.fr

ACCELERATED A-CONTRARIO DETECTION OF SMOOTH TRAJECTORIES

Rémy Abergel and Lionel Moisan

Université Paris Descartes, MAP5 (CNRS UMR 8145), France

ABSTRACT

The detection of smooth trajectories in a (noisy) point set se-
quence can be realized optimally with the ASTRE (A-contrario
Smooth TRajectory Extraction) algorithm, but the quadratic
time and memory complexity of this algorithm with respect
to the number of frames is prohibitive for many practical ap-
plications. We here propose a variant that cuts the input se-
quence into overlapping temporal chunks that are processed
in a sequential (but non-independent) way, which results in a
linear complexity with respect to the number of frames. Sur-
prisingly, the performances are not affected by this accelera-
tion strategy, and are in general even slightly above those of
the original ASTRE algorithm.

Index Terms— trajectory analysis; point tracking; mo-
tion detection; a-contrario model.

1. INTRODUCTION

Many image processing tasks that concern video or image
sequences are related to various forms of motion analysis
like optical flow, object tracking, trajectory detection, motion
compensation, etc. In the present work, we consider the fun-
damental problem of finding reliable trajectories in a point set
sequence that has been previously extracted from an image
sequence, without any attribute attached to each point.

This task, which has been considered several times in the
literature [1–5], is the core of various applications includ-
ing, e.g., particle velocimetry in fluid mechanics, dynamic
analysis of fluorescent probes in biology, study of ant or ter-
mite behavior, pedestrian and car tracking, etc. For the case
where smooth trajectories (more precisely, trajectories hav-
ing a small maximum acceleration) are to be detected among
a potentially high number of incoherent noise points, an algo-
rithm with optimality guarantees, called ASTRE [6], has been
recently built, but it turns out that it is nearly impossible to use
it on long image sequences (say K ≥ 1000 frames) because
its time and memory complexity is quadratic with respect to
K. We here propose to break this complexity limitation and
describe a new algorithm for which the complexity is linear
with respect to K, which substantially increases the possibil-
ities of real-world applications. In Section 2, we describe the
original ASTRE algorithm, and show that the introduction of a
maximum speed threshold may bring an important speed-up,

but does not break the O(K2) complexity. This is why in Sec-
tion 3 we present a new algorithm named CUTASTRE, which
cuts the original image sequence into overlapping small tem-
poral chunks and processes these chunks sequentially with the
ASTRE algorithm, using an incremental strategy to detect long
trajectories. This O(K) algorithm, though theoretically sub-
optimal in terms of detection performances, still offers (like
ASTRE) a rigorous control of false detections in pure noise
data. The new parameters (chunk size and overlapping ratio)
are analyzed in Section 4, and appear to be rather easy to set.
Moreover, numerical experiments on both synthetic and natu-
ral point set sequences reveal that the detection performances
of CUTASTRE are very similar to those of ASTRE, which, con-
sidering the dramatic speed-up offered by CUTASTRE, opens
very interesting perspectives.

2. THE FORMER ASTRE ALGORITHM

2.1. ASTRE methodology

The ASTRE algorithm is designed to perform trajectory detec-
tion over a sequence of K frames (with domain Ω) each con-
taining N points, applying the a-contrario methodology [7].
The domain Ω can be continuous or discrete, but here we
simply recall results in the continuous setting, when Ω is the
square [0, 1]× [0, 1].

General a-contrario algorithms are based on two main in-
gredients: a naive model (called H0) describing what could
be pure noise data, and a measurement function that char-
acterizes the kind of structures looked for. In [6], the naive
model H0 is a uniform draw of N points in each of the K
frames, and the measurement function associated to a random
trajectory T = (Xk0

i1
, Xk0+1

i2
, . . . , Xk0+`−1

i`
) with length ` is

its acceleration

a(T) = max
p=3,...,`

∥∥∥Xk0+p−1
ip

− 2Xk0+p−2
ip−1

+Xk0+p−3
ip−2

∥∥∥ ,
where Xk

i is the i-th point of frame k. We shall denote the
random trajectory T by Xk0

i1
→ Xk0+1

i2
→ · · · → Xk0+`−1

i`
,

and a link between two successive points Xk
i and Xk+1

j by
Xk
i → Xk+1

j . Similarly, the local discrete acceleration will
be written a(u, v, w) = a(u → v → w) = ‖w − 2v + u‖.
The amount of surprise when observing an actual trajectory t
with length ` and acceleration δ := a(t) can be estimated by

using a simple (but precise) upper bound of the probability of
observing a trajectory with acceleration smaller than δ inH0,

PH0
(a(T) ≤ δ) ≤

(
πδ2
)`−2

. (1)

Using the a-contrario methodology (see prop. 2 in [8]), one
can design a number of false alarms by

∀`, ∀t ∈ T`, NFAt(δ) = K(K− `+ 1)N `
(
πδ2
)`−2

(2)

(T` denotes the set of trajectories of length `) for the measure-
ment δ = a(t), that is, a function that satisfies

∀ε > 0, EH0

[
#
{
T
∣∣ NFAT (a(T)) ≤ ε

}]
≤ ε. (3)

Trajectories having a NFA smaller than ε are said to be ε-
meaningful (or detected at level ε) and the so-called NFA-
property (3) ensures that the average number of (false) detec-
tions made inH0 at level ε is less than ε.

The ASTRE algorithm has ε for unique parameter; it rep-
resents the maximal NFA value of a trajectory that the user
wants to extract (usually one chooses ε = 1). In practice the
extraction scheme is greedy: if m, the minimal NFA among
all possible trajectories is less than ε, a trajectory having NFA
equal to m is extracted, its points are removed from the se-
quence and the process is repeated until no trajectory with
NFA less than ε can be found any more.

To compute the smallest NFA among all possible trajec-
tories, a dynamic programming strategy is used. The problem
boils down to compute, for any x, y, `, the minimal accelera-
tion G (x, y, `) of a trajectory t ∈ T` ending with link y → x
(see (9) in [6]). We refer the reader to [6] for a complete de-
scription of ASTRE, and in particular how to smoothly extend
the method when the number of points is non-constant over
the frame sequence, how to handle properly data quantiza-
tion (when the domain Ω is discrete). Notice also that ASTRE
can be extended to handle trajectory with missing points (that
is, “with holes”), but this case will not be considered in the
present work.

2.2. Improvement of the execution time

The main weakness of ASTRE is its quadratic time and mem-
ory complexity with respect to K, due to the extensive com-
putation of G . A very simple way to reduce the execution
time of this algorithm is to introduce a threshold Sthre on the
speed of the trajectories: as soon as the distance between two
points x and y of two consecutive frames is higher than Sthre,
we consider that link y → x cannot exist. Hence we can avoid
the computation of G (x, y, `) for those pairs of points.

A speed threshold is a physical parameter that can be eas-
ily adjusted in many applications. The use of this additional
knowledge restricts the number of linking possibilities among
the sequence, and reduces very significantly the execution
time in general. However the complexity remains O(K2) and
ASTRE is still inapplicable to long data sequences, as can be
seen in the ASTRE columns of Table 1.

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

Fig. 1. Example of grouping for a twenty-two frames sequence
(vertical segments) containing five points each (black disks). Here
frames are grouped into three chunks of ten frames each, with four
frames overlap.

•
•
•
•
•

•
•
•
•
•
•
•

• •
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•

•
•
•

•
•
•
•
•

• •
•
•
•
•

•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•••
•
•
•
•

•
•
•
•
•
•

•
•
•
•

•
•
•
•
•

•
•
•

Fig. 2. Extraction of meaningful trajectories within chunk B3.
Trajectories are being detected using ASTRE, taking k3 = 10 in-
stead of K for the NFA computation. Each time a trajectory is
extracted, all its points are removed from the sequence. Once all
trajectories are extracted, we set back to the sequence all points of
overlapping frames (frames f13 to f16). The corresponding links are
removed (dotted links) excepting those linking a point of frame f15
with a point of frame f16. Trajectory (4) being entirely included into
R2↔3, all its links are removed.

3. CUTASTRE

Our approach consists in grouping consecutive frames of the
full sequence into overlapping chunks B1, . . . ,Bn (an ex-
ample of grouping is proposed in Fig. 1). Trajectories will
be detected within each chunk (starting from chunk Bn) with
an algorithm similar to ASTRE, which will be adapted to ex-
tend trajectories extracted from a chunk Bk when processing
its predecessor Bk−1. The function G will be computed only
within a single chunk, allowing a drastic reduction of the time
and memory complexity. In the following we will denote by
ki the number of frames contained in the chunk Bi.

3.1. Description of the process

The first chunk to be processed is Bn. For this very first
chunk we simply apply the ASTRE algorithm on the corre-
sponding subsequence of frames, and replace K by kn in (2).
When ASTRE terminates, we put back in the sequence all
points that have been removed from the overlapping block
of frames Rn−1↔n. We remove the corresponding links ex-
cept those linking points of the two last frames of Rn−1↔n.
Finally, when a trajectory is entirely included into Rn−1↔n,
all its links are removed (this is the case of trajectory (4) in
Fig. 2). This ends the process for chunk Bn.

Let us now describe the process for the other chunks
(Bi)1≤i<n. We say that a trajectory t is extendable to Bi if
t has been extracted while processing chunk Bi+1 (not Bi)

and reaches the two last frames (that we denote F i
0 and F i

1)
of Ri↔i+1 (see Fig. 2, trajectories (1) and (2) are extendable
to B2, as both reach frames F 2

0 = f15 and F 2
1 = f16). To

process these chunks, we need to adapt the computation of
G (x, y, `) and NFA (G (x, y, `)) when x or y belongs to an
extendable trajectory. Let us say we focus on chunk Bi, four
cases must be distinguished:

i. neither x nor y belongs to a trajectory extendable to Bi,

ii. x ∈ F i
1 and x belongs to a trajectory t extendable to Bi

that also contains y (necessarily y ∈ F i
0),

iii. x ∈ F i
0 and x belongs to a trajectory t extendable to Bi,

iv. any other case.

In case i, K is replaced by ki in (2), and G (x, y, `) and
NFA(G (x, y, `)) are computed exactly as in [6]. In cases
ii and iii, K is replaced by ki + ki+1. Let us consider
the sub-trajectory t0 of t that is obtained by removing
from t all points that do not belong to chunk Bi+1, and
let a0 denotes the acceleration of the (sub-)trajectory t0
and `0 its length. In case ii, t0 starts with link y → x,
so we replace G (x, y, `) by max (a0,G (x, y, `)) and re-
place ` by ` + `0 − 2 in the NFA formula when com-
puting NFA (G (x, y, `)). In case iii, t0 starts with a link
x → w (x belongs to frame F i

0 and w to frame F i
1) so

we replace G (x, y, `) by max (a0, a(y, x, w),G (x, y, `)) and
replace ` by ` + `0 − 1 in the NFA formula when com-
puting NFA (G (x, y, `)). Last, in case iv we simply set
G (x, y, `) = +∞ and NFA(G (x, y, `)) = +∞ in order to
avoid the detection of a trajectory ending with link y → x (or
equivalently, we just do not compute G (x, y, `) for such pairs
of points). Moreover, all the NFA values considered in the
four cases are multiplied by the number of chunks n.

The strategy concerning trajectories extraction is exactly
the same that in [6]; when all ε-meaningful trajectories are
extracted, we set back again to the sequence all points be-
longing to Ri−1↔i and unless Bi is chunk B1, we repeat the
link suppression process (see Fig. 3).

We would like to emphasize the ability of this algorithm
to not necessarily redraw removed links when a trajectory ex-
tension is done (look carefully at trajectory (4)), hence avoid-
ing edge effects that would fatally occur if the overlapping
areas contained only two frames. These areas can be seen as
decision areas and removed links as hypotheses that can be
validated or not when trajectories are being extended.

3.2. Preservation of the NFA property

A natural question arises: do we still control the number of
false detections by (3) like the ASTRE algorithm? The answer
is yes, and it simply comes from the fact that the number of
new trajectories extracted in a given chunk is controlled by
ε/n, thanks to the multiplication of the individual NFA by
the number of chunks n in the four cases considered above.

processing chunk B2

•
•
•
•
•

•
•
•
•
•
•
•

• •
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•

•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•••
•
•
•
•

•
•
•
•
•
•

•
•
•
•

•
•
•
•
•

•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

processing chunk B1

•
•
•
•
•

•
•
•
•
•
•
•

• •
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•

•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•••
•
•
•
•

•
•
•
•
•
•

•
•
•
•

•
•
•
•
•

•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

Fig. 3. Top: extraction of meaningful trajectories within chunk B2

with several links suppression within R1↔2. Trajectories (1) and
(2) have been extended, trajectory (4) is detected again but is now
longer. Bottom: extraction of meaningful trajectories within chunk
B1, trajectories (1), (2) and (4) have been extended, no link suppres-
sion must be done, as trajectories will not be extended anymore.

4. EXPERIMENTS

We first compare the ASTRE and CUTASTRE algorithms on
synthetic sequences produced by the Point-Set Motion Gen-
eration (PSMG) algorithm described in [9] (see also [6], 4.2):
• The initial position of a trajectory is chosen uniformly on

the (continuous) image domain Ω;

• The initial velocity magnitude is ν0 ∼ α|Z|, where Z ∼
N (µ = 5, σ = 0.5) is a Gaussian random variable and
α a scale factor whose setting will be detailed later. The
initial velocity angle βo is uniformly chosen on [0, 2π].

• The velocity magnitude and angle are updated in each

frame using

{
νk+1 = |Z|, Z ∼ N (µ = νk, α · σν)

βk+1 ∼ N (µ = βk, σβ).

• The generation ends when the trajectory reaches the last
time index or when it goes outside Ω. Once the trajectory
is generated, its points are quantized on a discrete grid.
In all our experiments we set σβ = 0.2, σν = 0.2 or

0.5, and the frame domain Ω is quantized in 1000 × 1000
pixels. The setting of the other parameters (length K of the
sequence, length ` of the trajectories) will be signaled in each
experiment. The scale factor α is equal to (#Ω

100×100)1/2 (that
is, α = 10 in our experiments), which allows to change the
domain quantization while maintaining the acceleration and
speed characteristics of the trajectories. Last, when a trajec-
tory does not cover the whole sequence (that is ` < K), its
starting frame index is chosen uniformly among {1, . . . ,K −
`+ 1}.

The detection performances are evaluated using the F1-
score criterion defined by

F1-score = 2 · recall · precision
recall + precision

, (4)

0.94

0.95

0.96

0.97

0.98

0.99

1.00 c= 6
c= 10
c= 15

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98

0.0 0.2 0.4 0.6 0.8 1.0

c= 10
c= 20
c= 25

0.50

0.55

0.60

0.65

0.70

0.0 0.2 0.4 0.6 0.8 1.0

c= 25
c= 35
c= 40

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.0 0.2 0.4 0.6 0.8 1.0

c= 6
c= 10
c= 15

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.0 0.2 0.4 0.6 0.8 1.0

c= 10
c= 20
c= 30

Fig. 4. Setting chunk size (c) and overlap size (o). We compute
(over 50 realizations) the average F1-score obtained with CUTASTRE

on synthetic sequences (σν = 0.2 or 0.5) of K = 90 frames, each
containing 20 trajectories with length ` ≥ 45 and Nnoise ∈ {50, 250}
spurious points (uniformly drawn) per frame. Several chunk sizes (c)
are tested for all possible overlap sizes (2 ≤ o ≤ c− 1). We display
the F1-score as a function of the ratio o/c. As could be expected, the
optimal chunk size copt increases with σν and Nnoise (the algorithm
needs bigger chunks to catch the temporal coherence of the motion),
but surprisingly enough it remains quite small compared to K. The
performance is stable according to the choice of c as soon as c is not
chosen too small. Conversely, once c is set, taking o = c

2
seems to

be the optimal (or at least a reasonable) choice for the overlap size.

where 1− precision measures the proportion of false positive
links among found links, and 1− recall measures the propor-
tion of false negative links among actual links, that is,

precision = #of correct links found
#of links found , recall = #of correct links found

#of actual links .

Unless explicitly signaled, we systematically take ε = 1 for
both algorithms.

4.1. Setting the chunk-size and overlap-size parameters

The ASTRE algorithm has the NFA threshold ε as unique pa-
rameter, which is remarkably easy to set (ε is a simple bound
on the average number of detections that would be done in
pure noise data, usually one chooses ε = 1). The CUTAS-
TRE algorithm introduces two new parameters, which are the
chunk and overlap sizes. Fortunately, the setting of these pa-
rameters appears to be quite simple, according to the exper-
iments performed on synthetic and real-life data (see Fig. 4
and 6-left). Indeed, a standard setup like c = 30 (or more)
and o = c/2 seems to lead to near-optimal performances in
most situations.

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

0 50 100 150 200 250

ast re
c= 10
c= 15
c= 20

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 50 100 150 200 250

ast re
c= 20
c= 28
c= 35

Fig. 5. Comparison of ASTRE and CUTASTRE F1-scores (same
data sequences as in Fig. 4). CUTASTRE is tested for several (near
optimal) chunk sizes and the overlap size is set to c/2 (integer part).
We observe that better performances can be reached with CUTASTRE

especially for data sequences with σν = 0.2 (smooth trajectories).
When working with σν = 0.5 (trajectories with high accelerations)
CUTASTRE remains slightly better but performances are very close.

4.2. Performances ASTRE versus CUTASTRE

We evaluated both algorithms on synthetic data sequences
(with different characteristics, see Fig. 5) but also on a real
one (see Fig. 6). It turns out from our experiments that AS-
TRE and CUTASTRE lead to similar performances when deal-
ing with highly accelerated trajectories (σν = 0.5) and a high
level of noise. Conversely, CUTASTRE achieved better de-
tection on the smooth synthetic data set (σν = 0.2) and the
snow sequence (when ε = 1). This result is surprising as
the globality in time of ASTRE should intuitively lead to bet-
ter performances. It would be interesting to further study the
mechanisms of this unexpected behavior.

4.3. Time and space complexity

The introduction of a speed threshold discussed in section 2.2
can be applied to both algorithms; it decreases the execution
time, but does not change the time and memory complexities,
which are respectively O(N3K2) and O(N2K2) for ASTRE,
and respectively O(N3K) and O(N2K) for CUTASTRE. Ex-
amples of practical execution time are given in Table 1.

4.4. Tuning the threshold parameter ε

In general, the numbers of false alarms of a-contrario algo-
rithms are built using a probability upper bound (like (1)) that
is not necessarily sharp. Furthermore, in the case of ASTRE,
trajectories are greedily extracted, thus the number of trajec-
tories extracted at level ε in any data sequence is always less
than the number of ε-meaningful trajectories. As a conse-
quence, ε is in practice a pessimistic estimation of the number
of detections that really occur in pure noise data, and the user
can usually obtain better detection results by increasing the
NFA-threshold parameter ε, as illustrated in Fig. 6 and 7.

K
no speed threshold Sthre = 150

ASTRE CUTASTRE ASTRE CUTASTRE

N
no

is
e

=
1
0 200 30 1.4 1.2 0.09

500 270 3.6 11 0.26
1000 2160 7.6 80 0.51
3000 - 24.8 1230 1.64
5000 - 39.7 - 2.76

N
no

is
e

=
5
0 200 718 27 18 0.91

500 104 88 226 2.88
1000 - 158 1686 5.13
3000 - 444 - 15.20
5000 - 743 - 24.87

Table 1. Comparison of typical execution times on synthetic se-
quences (σν = 0.2) with various values of the number of frames
K. Each sequence contains K/10 trajectories with length ` ∈
[100, 200] and Nnoise spurious points per frame. We compare the
execution time (in seconds) of ASTRE and CUTASTRE algorithms,
with and without speed threshold (we took Sthre = 150, which was
three times the typical maximal speed that we could observe in the
data). This experiment shows that the use of a speed threshold (even
pessimistic) reduces significantly the execution time (for both algo-
rithms), but does not break the O(K2) complexity of ASTRE, which
is prohibitive for long data sequences. With CUTASTRE, the execu-
tion time increases linearly with the number of frames.

5. CONCLUSION AND PERSPECTIVES

We proposed a new algorithm that manages to break the
quadratic O(K2) time and memory complexity of ASTRE,
while showing similar (or slightly higher) detection perfor-
mances and a good ease-of-use since the two algorithmic
parameters involved in the time-cut strategy of CUTASTRE
are easy to set. This fast variant could be extended to handle
missing points (trajectories ”with holes”), as this functionality
is already available with ASTRE but is still too computation-
ally expensive for many applications.

REFERENCES

[1] C.J. Veenman, M.J. T. Reinders, and E. Backer, “Resolv-
ing motion correspondence for densely moving points,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 1,
pp. 54–72, 2001.

[2] K. Shafique and M. Shah, “A non-iterative greedy al-
gorithm for multi-frame point correspondence,” in Int.
Conf. Comp. Vision, 2003, pp. 110–115.

[3] Z. Khan, T. Balch, and F. Dellaert, “MCMC-based parti-
cle filtering for tracking a variable number of interacting
targets,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 11, pp. 1805–1819, 2005.

[4] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multi-
ple object tracking using k-shortest paths optimization,”

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.0 0.2 0.4 0.6 0.8 1.0

c= 6
c= 8
c= 10
c= 14

0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84

0 1 2 3 4 5 6 7 8 9 10

ast re
cutast re (c= 8,o= 4)
cutast re (c= 15,o= 7)
cutast re (c= 20,o= 10)

Fig. 6. Performances evaluation on a real sequence. We evaluated
the algorithms on the snow sequence described in [6] (available on-
line at http://www.mi.parisdescartes.fr/∼moisan/astre/). On the left,
we reproduce the parameter exploration of Fig. 4. We find copt = 8
and the performance is stable for c ≥ copt. Also, the setting o = c/2
remains a good choice (often the best) once the parameter c is set.
On the right, we display the evolution of the F1-score with respect to
log10(ε). We can see, as in Fig. 5, that the two algorithms achieve
similar performances (actually slightly better for CUTASTRE when
the parameters c and o are optimally set).

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.0 1.0 2.0 3.0 4.0

ast re
cutast re (c= 20,o= 10)
cutast re (c= 35,o= 17)

0.85

0.90

0.95

1.00

0.0 1.0 2.0 3.0 4.0

ast re
cutast re (c= 10,o= 5)
cutast re (c= 20,o= 10)

Fig. 7. Influence of the threshold parameter ε (same data se-
quences as in Fig. 4-5). We display the (average) F1-score as a func-
tion of ε. Algorithm CUTASTRE is used with a near-optimal setting
of parameters c and o (which revealed to be robust to ε changes).
For both algorithms, the F1-score increases with ε up to a global
maximum, then it falls down. We observe as in Fig. 5 that the per-
formances of CUTASTRE are similar to those of ASTRE (and even
slightly better for low accelerations and low noise levels).

IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 9,
pp. 1806–1819, 2011.

[5] R.T. Collins, “Multitarget data association with higher-
order motion models,” in IEEE Conf. on Comp. Vision
and Pattern Recognition (CVPR), 2012, pp. 1744–1751.

[6] M. Primet and L. Moisan, “Point tracking: an a-contrario
approach,” preprint MAP5, 2012.

[7] A. Desolneux, L. Moisan, and J.-M. Morel, From
Gestalt Theory to Image Analysis. A Probabilistic Ap-
proach, Springer-Verlag, collection Interdisciplinary Ap-
plied Mathematics, 2008.

[8] B. Grosjean and L. Moisan, “A-contrario detectability of
spots in textured backgrounds,” Journal of Mathematical
Imaging and Vision, vol. 33:3, pp. 313–337, 2009.

[9] J. Verestóy and D. Chetverikov, “Experimental compar-
ative evaluation of feature point tracking algorithms,” in
Performance Characterization in Computer Vision, pp.
167–178. Springer, 2000.

