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A TEXTON FOR FAST AND FLEXIBLE GAUSSIAN TEXTURE SYNTHESIS

Bruno Galerne, Arthur Leclaire, Lionel Moisan

Université Paris Descartes, MAP5, CNRS UMR 8145, France

ABSTRACT

Gaussian textures can be easily simulated by convolving an

initial image sample with a conveniently normalized white

noise. However, this procedure is not very flexible (it does

not allow for non-uniform grids in particular), and can be-

come computationally heavy for large domains. We here

propose an algorithm that summarizes a texture sample into

a synthesis-oriented texton, that is, a small image for which

the discrete spot noise simulation (summed and normalized

randomly-shifted copies of the texton) is more efficient than

the classical convolution algorithm. Using this synthesis-

oriented texture summary, Gaussian textures can be generated

in a faster, simpler, and more flexible way.

Index Terms— Spot noise, texton, Gaussian texture, tex-

ture synthesis, error reduction algorithm

1. INTRODUCTION

Among the various existing models of textures, Gaussian tex-

tures form an interesting class, in particular because they rely

on a mathematical model that is very well adapted to theoret-

ical investigations. Gaussian textures allow for by-example

synthesis [4], and can be easily generalized to dynamic scenes

or used for texture mixing [10]. The classical spectral simu-

lation, which is based on the discrete Fourier transform and

consists in convolving a standard Gaussian white noise by

a kernel image k, has some limitations: 1) The underlying

Gaussian model is implicitly periodic; 2) It does not allow for

local variations of the kernel or the grid.

A Gaussian texture can be approximated by a high-

intensity discrete spot noise (DSN), obtained by summing

randomly-shifted copies of the kernel k along the points of a

Poisson process of intensity λ. The direct simulation of the

DSN is simple and allows parallel local evaluation using stan-

dard computer graphics techniques for the Poisson process

simulation [5]. Still, the DSN approximation of a Gaussian

texture is satisfying only for sufficiently high intensity λ,

so that the DSN simulation is generally not faster than the

spectral simulation. In particular, using the compact texton

introduced in [1] as a kernel for DSN synthesis generally

results in a very poor approximation for small values of λ.

In this paper we show that, given an exemplar texture im-

age u, it is possible to compute a synthesis-oriented texton

∗ =

Fig. 1. Spot noise synthesis at low intensity. The synthe-

sized texture on the right was obtained by the convolution of

a synthesis-oriented texton with a sparse Poisson process. The

exemplar texture is shown on the left.

(SOT) having a prescribed small support and for which the as-

sociated DSN is close to the Gaussian texture associated with

u even for a low intensity λ, as illustrated in Fig. 1. This SOT

is computed using the classical error reduction algorithm, in-

troduced by [3] for phase retrieval, with a random phase ini-

tialization (Section 3). As will be shown in Section 4, for an

average number of 30 impacts per pixels, the DSN associated

with the SOT produces visually satisfying results, and is thus

more competitive than the spectral simulation algorithm.

2. SPOT NOISE TEXTURE MODELS

2.1. DSN and ADSN models on Z2

We first describe the DSN and ADSN models on Z2, since it

is the most natural framework. In the following, h : Z2 → R

is a function with finite support Sh, and |A| stands for the

cardinality of a subset A of Z2.

The DSN on Z2 with spot h and intensity λ > 0, origi-

nally introduced in [9], is the stationary random process Fλ,h
on Z2 defined by

∀x ∈ Z
2, Fλ,h(x) =

∑

i≥1

h(x−Xi) ,

where the points Xi are chosen according to a Poisson point

process on Z2 with intensity λ. If one denotes by * the convo-

lution product on RZ
2

, one can see that Fλ,h = h ∗ Pλ where

the random variables Pλ(y) = |{i,Xi = y}| are i.i.d. and

follow a Poisson distribution with intensity λ.

The mean value of Fλ,h is given by m = E

(
Fλ,h(x)

)
=

λ
∑

y∈Z2 h(y) , and, setting h̃(x) = h(−x), its covariance is



C(v) = E

(
(Fλ,h(x)−m)(Fλ,h(x+v)−m)

)
= λh∗ h̃(v).

Notice that Supp(C) ⊂ Sh − Sh := {x− y ; x,y ∈ Sh}.
The renormalized DSN defined by

Gλ,h =
Fλ,h − E(Fλ,h)√

λ
=

1√
λ

(
h ∗ Pλ − λ

∑

y∈Z2

h(y)
)

has zero-mean and covariance function h ∗ h̃, and it is well-

known [8] that when λ → +∞, Gλ,h converges in distribu-

tion to the Gaussian random field Gh with same mean and

covariance, which is thus called the ADSN associated to h.

Notice that the random process Gh can be simply simulated

by k ∗ W , where W is a standard Gaussian white noise on

Z2 and k : Z2 → R is any function with compact-support

such that k ∗ k̃ = h ∗ h̃. Such a square root k of the covari-

ance is called a texton in [1,10]. In the present paper, we will

call a SOT any compactly-supported function k which is an

approximate square root of the covariance and such that the

approximation of Gk by Gλ,k is visually satisfying even for

low values of λ.

In the following, the random fields Gλ,h and Gh will be

referred to as DSNλ(h) and ADSN(h) respectively.

2.2. DSN and ADSN models on a circular finite domain

We now consider the case of a finite (circular) domain, which

is a more adapted framework for numerical simulations. Let

Θ ⊂ Z2 be a finite rectangular domain of size M × N ,

equipped with the addition modulo (M,N) and the circular

convolution operator ⊙. We will assume that Θ contains a

translation of Sh, so that h can be identified to a function

defined on Θ. This allows us to consider the circular DSN

(CDSN) associated to h, denoted by FΘ

λ,h, which is built by

adding copies of h positioned according to a Poisson point

process on Θ with intensity λ. All the properties mentioned

in Section 2.1 have their circular counterparts. In particular,

the renormalized CDSN GΘ

λ,h has mean 0, covariance equal

to h ⊙ h̃, and when λ → +∞ it converges in distribution to

the Gaussian random field GΘ

h with same mean and covari-

ance, called the circular ADSN (CADSN) associated to h. In

the following, the random fields GΘ

λ,h and GΘ

h will also be

referred to as CDSNΘ

λ (h) and CADSNΘ(h).
It is interesting to remark that a restriction of DSN(h) to

a rectangular domain Ω ⊂ Z2 can be seen as a restriction

of a well-chosen CDSN. Indeed, by construction, as soon as

Ω−Sh ⊂ Θ, the restrictions to Ω of GΘ

λ,h and Gλ,h share the

same distribution, which is also true for GΘ

h and Gh.

In the following, we will need the discrete Fourier trans-

form (DFT) on Θ, defined, for a function v : Θ→ R, by

v̂(ξ) =
∑

x∈Θ

v(x) exp

(
−2iπ

(x1ξ1
M

+
x2ξ2

N

))

where x = (x1, x2) and ξ = (ξ1, ξ2).

2.3. Optimal transport distances between ADSN models

Among the numerous assets of Gaussian texture models is

the possibility to compute the L2 optimal transport distance

(OTD) between finite-dimensional marginal distributions in

terms of the covariance operators. As shown in [10], the cor-

responding expression becomes tractable as soon as there ex-

ists a common eigenvector basis for the covariance operators.

Using for example the Fourier basis, the L2 OTD between

µ0 = CADSNΘ(h0) and µ1 = CADSNΘ(h1) is given by

d2OT (µ0, µ1) =
1

|Θ|
∑

ξ 6=0

(
|ĥ0|2 + |ĥ1|2 − 2|ĥ∗0ĥ1|

)
(ξ). (1)

This allows us to define a projection of h1 on the set of kernels

associated to the model µ0 as a solution of

Argmin
k, k⊙k̃=h0⊙h̃0

dOT (CADSNΘ(k),CADSNΘ(h1)) .

One particular solution ph0
(h1) can be computed by imposi-

tion of the Fourier modulus:

∀ξ 6= 0, ̂ph0
(h1)(ξ) =

(
ĥ0ĥ

∗
0ĥ1

|ĥ∗
0
ĥ1|

1
ĥ∗

0
ĥ1 6=0

)
(ξ). (2)

Notice that ph0
(h1) is defined on Θ and does not a priori

identifies to a spot h : Z2 → R with compact support. Let us

mention that (1) and (2) extend to the case of color CADSN,

using a componentwise (R,G,B) DFT (in that case, z∗ stands

for the transpose conjugate of the vector z). Note that with d

channels, ph0
reduces to the orthogonal projection, for each

ξ, of ĥ1(ξ) onto the Cd-circle {eiϕĥ0(ξ);ϕ ∈ R}, leading to

a geometric interpretation of (2).

The extension of those results to a non-circular framework

may be difficult. One can try for example to express the OTD

between the Ω-restrictions of ADSN(h0) and ADSN(h1), but

since the corresponding covariance operators are now only

Toeplitz (and not circulant), the Fourier basis functions are no

longer eigenvectors. However, the last remark of Section 2.2

shows that the OTD between the Ω-restrictions is less than

dOT (CADSNΘ(h0),CADSNΘ(h1)), for any Θ containing

Ω − Sh. Thus, the OTD between finite ADSN pieces is con-

trolled by the OTD between larger circular counterparts.

2.4. Simulation on a finite domain

As explained above, the DSN (resp. ADSN) on Z2 or a circu-

lar domain Θ can be seen as a convolution of the spot with a

Poisson point process (resp. a Gaussian white noise). In the

circular framework, the convolution can be performed using

the DFT. In fact, this spectral method can also be used to sim-

ulate a DSN on a non-circular finite domain by using a larger

domain and using a crop as post-processing (in view of the

remark of Section 2.2).



However, for a DSN with a very low intensity λ, the Pois-

son point process is sparse so that the convolution can be per-

formed efficiently in spatial domain. This direct summation

method, summarized in Algorithm 1, can be used for the sim-

ulation of a finite restriction of DSNλ(h), or for the simula-

tion of CDSNΘ

λ (h).

Algorithm 1: DSN simulation on a finite domain Ω

- Set Ω̄ = Ω− Sh = {x− y ; x ∈ Ω,y ∈ Sh}.
- Draw n with Poisson distribution of intensity λ|Ω̄|.
- Draw x1, . . . ,xn independently and uniformly in Ω̄.

- ∀x ∈ Ω, f(x) := 1√
λ
(
∑n
i=1

h(x− xi)− λ
∑
h) .

A simple analysis show that Algorithm 1 has a mean

complexity of O(λ|Sh||Ω|), λ|Sh| being the mean number

of impacts per pixel, versus O(|Ω| log(|Ω|)) for the spectral

method. Therefore, the direct summation method will be

faster for large domains Ω or for on-demand synthesis. No-

tice that it can be parallelized using a grid-based simulation

scheme for the Poisson point process [7].

3. A SYNTHESIS-ORIENTED TEXTON

The complexity analysis above shows that the efficiency of

Algorithm 1 is closely linked to the possibility of obtaining a

visually satisfying texture with a small value of λ. As we said

in Introduction, the texton originally proposed in [1] is inad-

equate for our purpose, since the convergence of the Poisson

process to the Gaussian model is particularly slow for this

concentrated kernel. The object of this part is to describe an

algorithm that computes a kernel h : Z2 → R with support

Sh ⊂ S (S being a given finite subset of Z2) that leads to

an efficient DSN synthesis of the Gaussian texture associated

to an original texture sample u : Ω → R. For the sake of

clarity, we assume that Ω (a M ×N rectangle of Z2) contains

S and S − S (in particular, the observation is larger than the

covariance support).

3.1. Gaussian model estimation

A first question that arises is the estimation of the Gaussian

model associated to u. Following [1, 4, 10], we compute the

mean m = 1

|Ω|
∑

x∈Ω
u(x) and the periodic autocorrelation

cu = tu ⊙ t̃u , where tu =
1√
|Ω|

(u− ū) . (3)

Even if the non-periodic nature of the observation u may bias

this estimator of the covariance, it is of great practical use

because its DFT is given by ĉu = |t̂u|2, and also because it is

the actual covariance of the circular Gaussian field N (0, cu)
on Θ, which is the CADSN associated to any kernel k such

that k ⊙ k̃ = cu (or in Fourier domain, |k̂| = |t̂u|).

Now, we would like to find a kernel h with support Sh ⊂
S such that cu = h ∗ h̃. This problem is an analog of the

phase retrieval problem and may lead to multiple solutions (if

h is a solution, so are −h, h̃ or −h̃, and in particular cases

there may be other solutions, see [6]). Here, because of the

constraint on Sh, there is no exact solution in general, but we

can look for an approximate solution by trying to solve

Argmin
h, Sh⊂S

dOT (CADSNΩ(h),CADSNΩ(tu)) , (4)

where the use of circular models is justified by the need of an

explicit formula for the OTD.

3.2. Alternating projections for SOT computation

The optimization problem (4) is difficult to solve, but we can

propose an approximate algorithm that has proven useful in

the phase retrieval literature. Indeed, Algorithm 2 below al-

ternates between imposition of the Fourier modulus (2) and

the projection qS : t 7→ t1S on the support constraint (recall

that qS is an orthogonal projection on a convex set).

Algorithm 2: SOT computation

- Initialization: t̂← t̂ue
iψ where ψ is a uniform random

phase function, and tu is given by (3).

- Repeat (n times) t← qS(ptu(t)) .

Let us remark that if u is a realization of the random phase

noise (RPN) [4] associated to a texton τ with support S, then

we have exactly |t̂u| = |τ̂ | so that the problem of recovering

τ from u is exactly a phase retrieval problem for which the

above algorithm was already proposed in [3]. But in general,

we do not know if there exists such a compactly-supported

texton, and even if there is one, it might not be appropriate

for DSN synthesis. So in some way, we would like to take

profit of the cases where the alternating projections converges

towards a compact kernel which is not an ideal solution of the

phase retrieval problem.

Exploiting a remark of [6], the algorithm is initialized

with a random phase function. Let us stress that this choice

is very important for the SOT computation. Indeed, as will

be seen in Section 4, except for particular cases, the output

SOTs are not quantized, and have no salient features, com-

plying well with the requirements for DSN synthesis. The

output of Algorithm 2 can be seen as a kernel with maximally

random phase under Fourier modulus and support constraints.

Finally, let us mention that Algorithm 2 can be used as is

to produce SOTs for RGB textures (see Section 2.3) .

The questions of the convergence and the influence of the

random initialization were raised by [6]. The study below

shows that both these issues are negligible in terms of the re-

sulting Gaussian texture. Indeed, let us analyze the behavior
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Fig. 2. Iterates of Algorithm 2. Evolution of the empirical

mean (left) and standard deviation (right) of the RME com-

puted after n iterations of Algorithm 2 (estimated over 1000

samples) run on a gray-level version of the texture used in

the top row of Fig. 3. Observe that the mean RME quickly

decreases, which means that most of the Gaussian model ap-

proximation is done in the first iterations. Notice also that the

standard deviation does not tend to zero; this reflects that the

algorithm does not have a unique convergence point.

of Algorithm 2 by considering the relative model error defined

by

RME(t, tu)
2 =

∑
ξ 6=0

(
|t̂u|2 + |t̂ |2 − |t̂∗ut̂ |

)
(ξ)

∑
ξ 6=0
|t̂u|2(ξ)

.

The numerator is the OTD between CADSNΩ(tu) and

CADSNΩ(t), and the denominator is the marginal variance

of CADSNΩ(tu).
A direct observation of the iterates shows that for each

random initialization, they seem to stabilize after a small

number of iterations, as already mentioned in [6]. To be more

precise, we computed the empirical mean d̄n and variance

σ̄2
n of the random variable Dn = RME(tu, Tn), where Tn

is the SOT obtained after n iterations of the algorithm with

random initialization. As one can see in Fig. 2, d̄n and σ̄n
do not change much for n ≥ 50, reflecting again the quick

stabilization of the iterates. Besides, the fact that σ̄n does not

tend to zero reaffirms the random nature of the output.

We also investigated the idea of running several times Al-

gorithm 2 with different random initializations and selecting

the output with the smallest RME, but numerical simulations

showed that the improvement in RME (for a fixed computa-

tion time) was not significant (below 1%).

4. RESULTS

In this last part, we present experiments (see Fig. 1, 3 and 4)

showing that the SOT computed by Algorithm 2 allows us to

synthesize a Gaussian texture associated to a sample image u

by a DSN with a very low number of impacts per pixel. For

comparison purpose, we used in Fig. 4 the luminance texton

tlum obtained by subtracting to each channel of t̂u the phase

of 1

3
ûr+

1

2
ûg+

1

6
ûb (see [1]). Notice also that the use of small

support textons may decrease the color diversity, but as men-

tioned in [2], it is possible to apply a simple post-processing

Fig. 3. Synthesis of color textures. One can see on the left

three Gaussian textures, and on the right, the results of DSN

synthesis (with 50 impacts per pixel) using the SOTs shown

in the middle.

(a 3× 3 linear transform of the color channels) to recover the

marginal color covariance of the original sample. We applied

this post-processing for the simulations of Fig. 3 only.

We can see that the DSN synthesis with the SOT is gen-

erally satisfying in terms of frequency content, even for a

low number of impacts per pixel. Using the SOT, the direct

summation method of Algorithm 1 thus becomes a competi-

tive way of synthesizing Gaussian textures, with an expected

number of operations per pixel below 100. As can be seen in

Fig. 4, the results are as good as Gabor noise by example [5]

(which requires around 1000 operations per pixel).

Concerning the precision of the model, with a reasonable

intensity, the DSN synthesis is considered to be a good ap-

proximation of the ADSN. It is thus sufficient to compare the

ADSNs obtained with tu and t, both visually and using the

RME. Fig. 4 shows that ADSN(t) and ADSN(tu) have in-

deed a close aspect. In spite of this, the RME remains sur-

prisingly high (we often observed RMEs between 0.4 and

0.7). Notice however that the SOT leads to lower RME value

than the luminance texton cropped with the same support. It

means that, although the luminance texton is a very concen-

trated summary of the texture, its cropped version is not the

optimal way of representing the texture on a given support.

The SOT is thus slightly better than the luminance texton for

asymptotic synthesis, and drastically better for DSN synthe-

sis.

To conclude, let us discuss the influence of the support

size. In the Gaussian model with a circular texton of radius

r, the values of two pixels at distance greater than 2r are in-
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RME = 0.48
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lum

RME = 0.51

DSN(tclum), 30 imp./px

Cropped RPN
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RME = 0.68

DSN(trpn), 30 imp./px Gabor noise

Fig. 4. DSN synthesis of a natural color texture, comparison. Top row: original texture (u), and the DSN and ADSN

synthesis results obtained with a 31 × 31 SOT t computed by Algorithm 2 (1000 iterations). The DSN intensities were set in

order to match a given average number of impacts per pixel. Bottom row: sample of the Gaussian model associated to u, DSN

obtained with the cropped luminance texton tclum [1], DSN obtained with a texton trpn cropped from a realization of the RPN of

u (that is, the random-phase image t used in the initialization of Algorithm 2), and Gabor noise synthesis [5]. Each DSN model

is displayed with its corresponding kernel. One can see that contrary to the other DSN models, the proposed SOT achieves a

good visual proximity with the reference model ADSN(tu) as the number of impacts per pixel attains 30. Moreover, it also

defines the most accurate asymptotic model (smallest RME).

u ADSN(t5) ADSN(t15) ADSN(t25)
RME = 0.56 RME = 0.49 RME = 0.43

Fig. 5. Influence of the support size. A Gaussian texture (u),

and samples of the models obtained with different SOTs tr

with circular supports of radius r ∈ {5, 15, 25}. As expected,

the quality of approximation increases as r grows.

dependent. Therefore, increasing r results in the capture of

longer-range dependencies of the original texture, as illus-

trated in Fig. 5. Hence, the efficiency of Algorithm 1 (and

of the SOT presented here) is directly linked to the nature of

the covariance of the considered Gaussian texture: in the case

of very long-range dependencies, the computational speed-

up may vanish and only the flexibility (on-demand synthesis,

texture with local variations, non-uniform grid) remains.
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